

DATASHEET Part No. M830520 Product: 2.4/5 GHz Ceramic Antenna

Part No. M830520 WLAN / BT / Zigbee Embedded Ceramic Antenna

2.4 / 4.9 / 5.2 / 5.8 GHz (802.11 a/b/g/n/c + Japan)

Supports: Wi-Fi applications, Agriculture, Automotive, Bluetooth, Zigbee, WLAN, Smart Home, Healthcare, Digital Signage

Wi-Fi / BT / Zigbee Dual Band Ceramic Antenna

2.4 GHz; 5 GHz

KEY BENEFITS

Stay-in-Tune

Ethertronics antenna technology provides superior RF field containment, resulting in less interaction with surrounding components.

Quicker Time-to-Market

By optimizing antenna size, performance and emissions, customer and regulatory specifications are more easily met.

Reliability

Products are the latest RoHS version compliant

APPLICATIONS

•	Embedded	•	Telematics
	design	•	Tracking
•	Cellular,	•	Healthcare
	Headsets,	•	M2M,
	Tablets		Industrial
•	Gateway,		devices
	Access	٠	Smart Grid
	Point	•	OBD-II
•	Handheld		

Ethertronics' series of Ceramic Isolated Magnetic Dipole[™] (IMD) antennas deliver on the key needs of device designers for higher functionality and performance in smaller/thinner designs. These innovative antennas provide compelling advantages for a full WIFI dual band enabled handheld devices, media players and other mobile devices.

Real-World Performance and Implementation

Ceramic antennas may look alike on the outside, but the important difference is inside. Other antennas may contain simple PIFA or monopole designs that interact with their surroundings, complicating layout or changing performance with use position. Ethertronics' antennas utilize patented IMD technology to deliver a unique size and performance combination.

Greater Flexibility

Ethertronics' first-in-class IMD technology enables you to develop designs that are more advanced and that deliver superior performance in reception critical applications.

Electrical Specifications

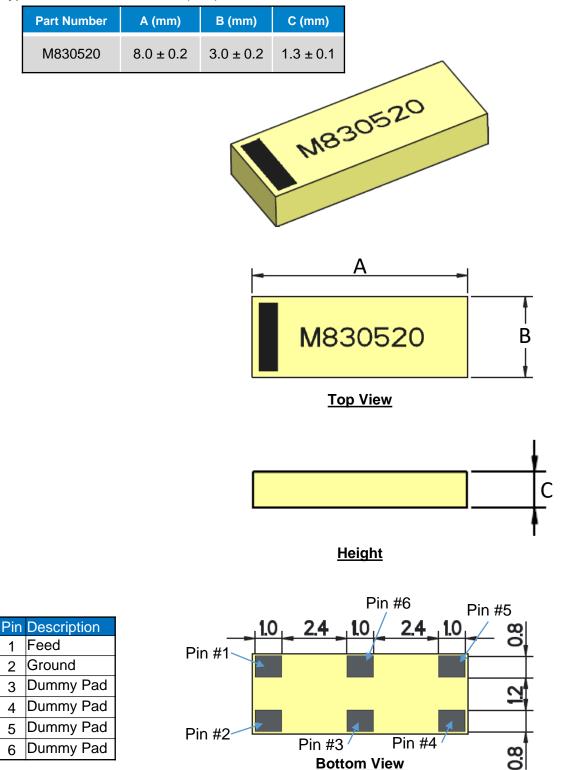
Typical Characteristics, on 40 x 80 mm PCB

Frequency	2400 – 2485 MHz	5150 – 5825 MHz		
Peak Gain	1.0 dBi	2.6 dBi		
Average Efficiency	62%	56%		
VSWR Match	2.1:1 max	2.8:1 max		
Feed Point Impedance	50 ohms	50 ohms unbalanced		
Polarization	Polarization Linear			
Power Handling	Power Handling 0.5 Watt CW			

Mechanical Specifications & Ordering Part Number

Ordering Part Number	M830520
Size (mm)	8.0 x 3.0 x 1.3
Mounting	SMT
Weight (grams)	0.2
Packaging	Tape & Reel, M830520 – 1,000 pieces per reel
Demo Board	M830520-01

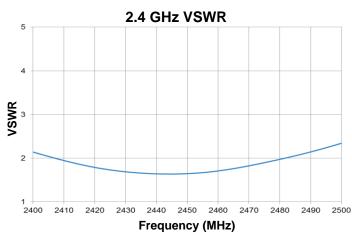
11/15/2018

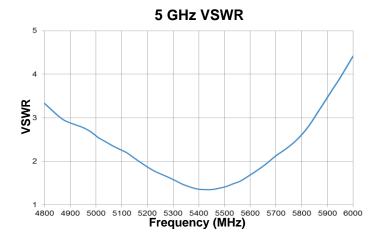

Proprietary

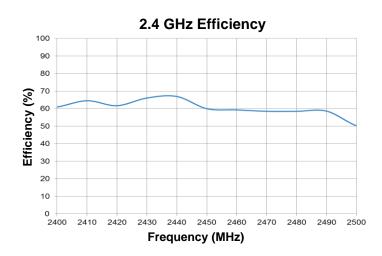
www.ethertronics.com

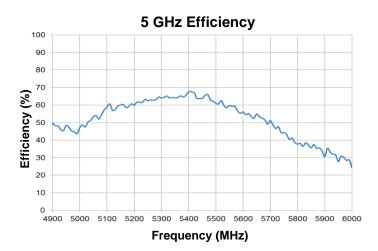
Antenna Dimensions

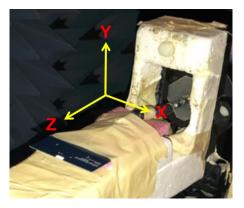
Typical antenna dimensions (mm)

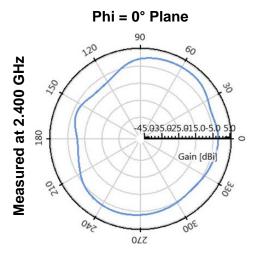

tel +(1) 858.550.3820 | fax +(1) 858.550.3821 email: eth.info@avx.com 5501 Oberlin Drive, Suite 100 San Diego, CA 92121 - USA

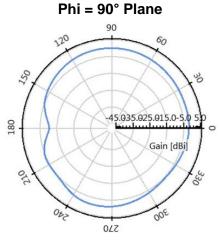


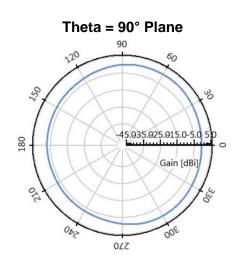

VSWR and Efficiency Plots (Off-Ground)

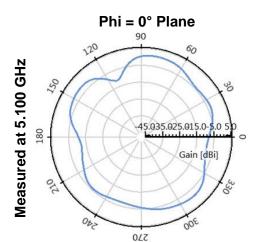

Typical performance on 40 x 80 mm PCB

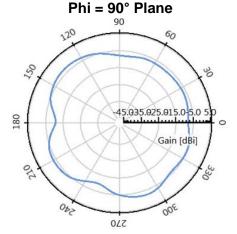


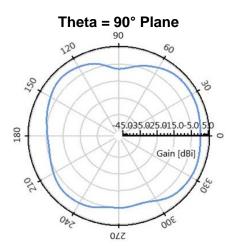

tel +(1) 858.550.3820 | fax +(1) 858.550.3821 email: eth.info@avx.com 5501 Oberlin Drive, Suite 100 San Diego, CA 92121 - USA

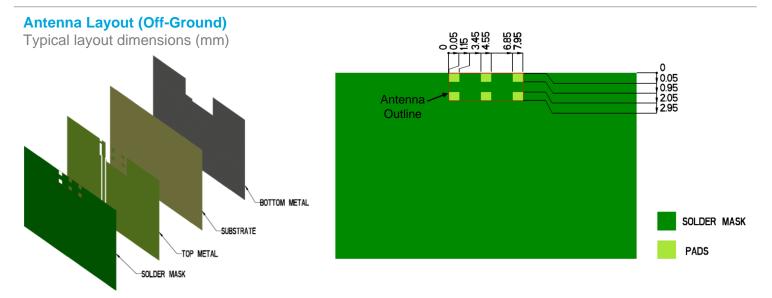


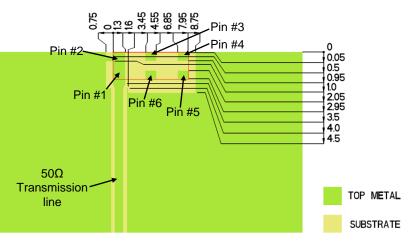

Antenna Radiation Patterns

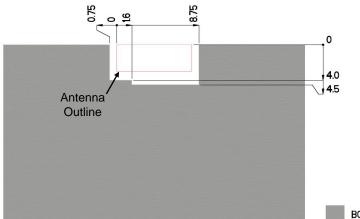

Typical performance on 40 x 80 mm PCB








tel +(1) 858.550.3820 | fax +(1) 858.550.3821 email: eth.info@avx.com 5501 Oberlin Drive, Suite 100 San Diego, CA 92121 - USA



- Additional VIAS: Diam. 0.2mm to be placed around antenna, (no vias on transmission lines).
- Via holes must be covered by solder mask **Pin Descriptions**

Pin# Description Feed 1 2 Ground Dummy Pad 3 Dummy Pad 4 Dummy Pad 5 Dummy Pad 6

BOTTOM METAL

tel +(1) 858.550.3820 | fax +(1) 858.550.3821 email: eth.info@avx.com 5501 Oberlin Drive, Suite 100 San Diego, CA 92121 - USA

Antenna Layout Tips (General reference)

Important, layout guidelines for correct operation of Ethertronics Ceramic Antennas. Please read guidelines below before laying out the antenna in a device. Figure 1 shows the typical antenna layout. Figure 2 shows Ethertronics' antenna layout.

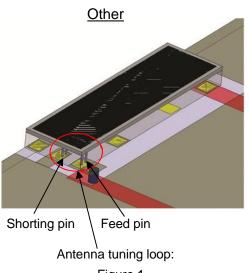
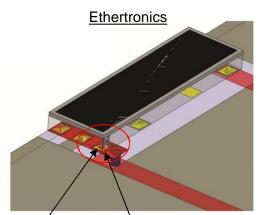



Figure 1 Typical Antenna Layout

Shorting pin and feed pin are shared in Ethertronics ceramic antennas

Figure 2 Ethertronics Antenna Layout (Required)

- The antenna tuning loop is formed by the PCB layout.
- The feed pin and shorting pin are combined because it requires very close proximity to achieve more band- width.

© 2018 Ethertronics

Downloaded from Arrow.com.