

Part No. M620720 ISM 868 & 915 MHz Embedded Ceramic Antenna

868 MHz; 915 MHz

Supports: Tracking, Smart Home, Agriculture, Automotive, Healthcare, Digital Signage, Wearables, Industrial Devices

ISM 868 & 915 MHz **Embedded Ceramic Antenna**

868 MHz; 915 MHz

KEY BENEFITS

Stay-in-Tune

IMD antenna technology provides superior RF field containment, resulting in less interaction with surrounding components.

Quicker Time-to-Market

By optimizing antenna size, performance and emissions, customer and regulatory specifications are more easily met.

Reliability

Products are the latest RoHS version compliant.

APPLICATIONS

- Embedded Telematics design
- Tracking
 - Cellular, Healthcare Headsets, • M2M, Industrial Tablets
- Gateway, Access
- devices · Smart Grid OBD-II
- Point
- Handheld

Ethertronics' series of Ceramic Isolated Magnetic Dipole™ (IMD) antennas deliver on the key needs of device designers for higher functionality and performance in smaller/thinner designs. These innovative antennas provide compelling advantages for 868 and 915 MHz ISM enabled handheld devices, media players and other mobile devices.

Real-World Performance and Implementation

Ceramic antennas may look alike on the outside, but the important difference is inside. Other antennas may contain simple PIFA or monopole designs that interact with their surroundings, complicating layout or changing performance with use position. Ethertronics' antennas utilize patented IMD technology to deliver a unique size and performance combination.

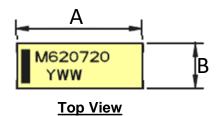
Electrical Specifications

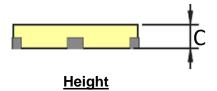
Typical performance on 40 x 100 mm PCB

Frequency	863 - 870 MHz	902 – 928 MHz	
Peak Gain	0.30 dBi	0.75 dBi	
Average Efficiency	58%	60%	
VSWR Match	1.6:1 max	2.5:1 max	
Feed Point Impedance	50 ohms		
Polarization	Linear		
Power Handling	0.5 Watt CW		

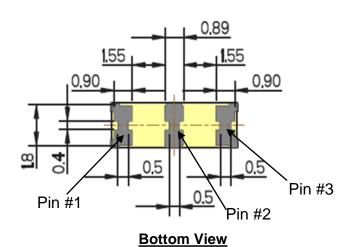
Mechanical Specifications & Ordering Part Number

Ordering Part Number	M620720	
Size (mm)	6.00 x 2.00 x 1.08	
Mounting	SMT	
Weight (grams)	0.1	
Packaging	Tape & Reel, M620720 – 1,000 pieces per reel	
Demo Board	M620720-01	

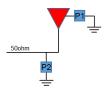


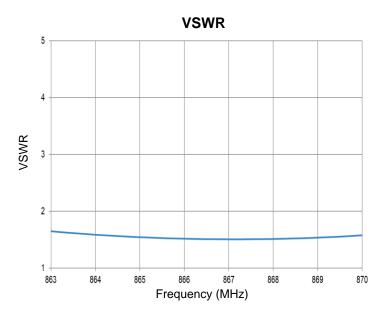

Antenna Dimensions

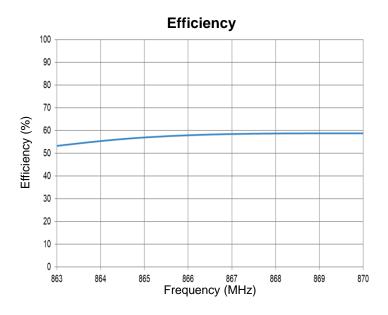
Typical antenna dimensions (mm)


Part Number A (mm)		B (mm)	C (mm)
M620720	6.00 ± 0.2	2.00 ± 0.2	1.08 ± 0.1

Pin	Description
1	Feed
2	Dummy
3	Ground

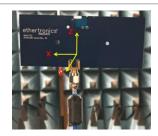


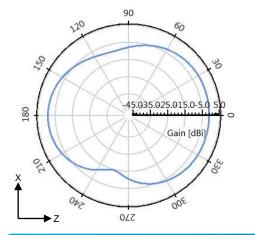


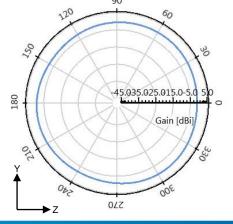

VSWR, Efficiency Plots (Tuned @ 868 MHz)

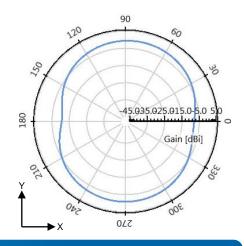
Typical performance on 40 x 100 mm PCB

	863-870 MHz		
Component	Value	Tolerance	
P1	P1 5.0 pF ±0.05		
P2	82 pF ± 5%		

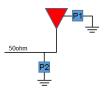


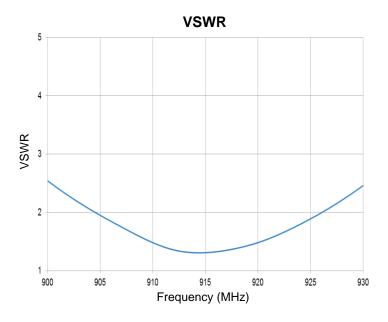


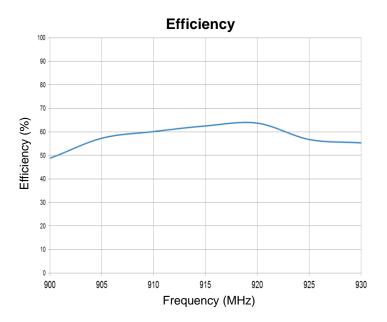



Antenna Radiation Patterns

Typical performance on 40 x 100 mm PCB Measured @ 868 MHz

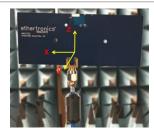

© 2018 Ethertronics

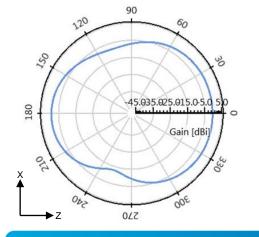


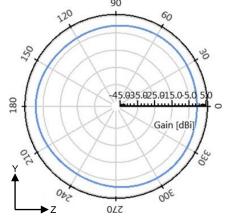

VSWR, Efficiency Plots (Tuned @ 915 MHz)

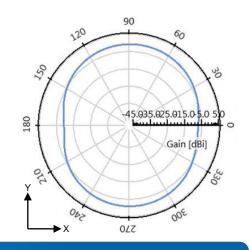
Typical performance on 40 x 100 mm PCB

	902-928 MHz		
Component	Value	Tolerance	
P1	3.6 pF	±0.05 pF	
P2	82 pF ± 5%		

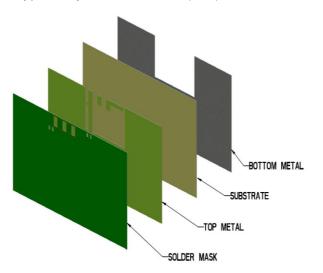


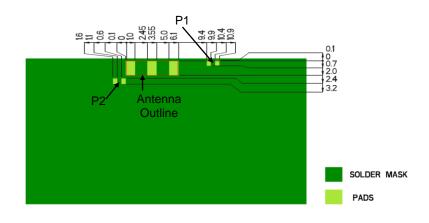





Antenna Radiation Patterns

Typical performance on 40 x 100 mm PCB Measured @ 915 MHz

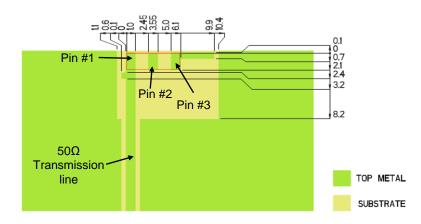




© 2018 Ethertronics

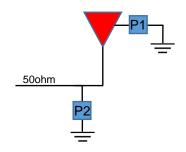
Antenna Layout

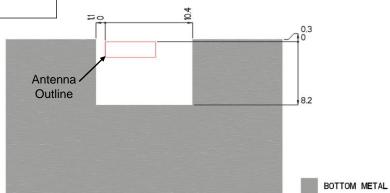
Typical layout dimensions (mm)



- Additional VIAS: Diam. 0.2mm to be placed around antenna, (no vias on transmission lines).
- Via holes must be covered by solder mask

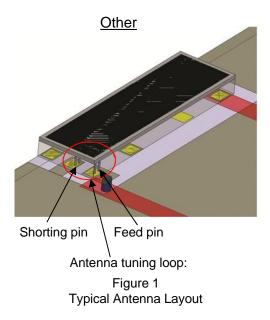
Pin Descriptions


Pin#	Description
1	Feed
2	Dummy
3	Ground



Matching Network (Demo Board)

	863-870 MHz		70 MHz 902-928 M	
Component	Value	Tolerance	Value	Tolerance
P1	5.0 pF	±0.05 pF	3.6 pF	±0.05 pF
P2	82 pF ± 5%			


*Actual matching values depend on customer design

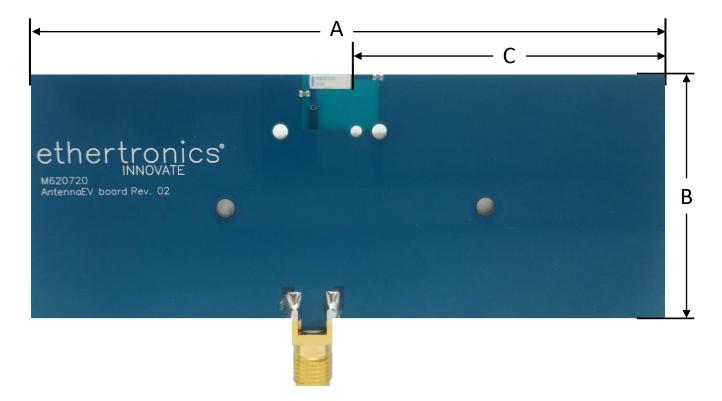
Antenna Layout Tips (General reference)

Important, layout guidelines for correct operation of Ethertronics Ceramic Antennas. Please read guidelines below before laying out the antenna in a device. Figure 1 shows the typical antenna layout. Figure 2 shows Ethertronics' antenna layout.

Ethertronics

Shorting pin and feed pin are shared in Ethertronics ceramic antennas

Figure 2 **Ethertronics Antenna Layout** (Required)


- The antenna tuning loop is formed by the PCB layout.
- The feed pin and shorting pin are combined because it requires very close proximity to achieve more band- width.

Antenna Demo Board

Typical layout dimensions (mm)

Part Number	A (mm)	B (mm)	C (mm)
M620720-01	100.0	40.0	50.0

