MILITARY SPECIFICATION
 MICROCIRCUITS, DIGITAL, BIPOLAR FIELD PROGRAMMABLE LOGIC ARRAY (FPLA) $16 \times 48 \times 8$, MONOLITHIC SILICON

Inactive for new design after 28 July 1995.
This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535.

1. SCOPE
1.1 Scope. This specification covers the detail requirements for monolithic silicon, bipolar, field programmable logic array (FPLA) microcircuits which employ thin film nichrome resistors (NICr) as the fusible link or programming element. Three product assurance classes and a choice of case outline / lead material and finish are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.4).
1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.
1.2.1 Device type. The device types are as follows:

Device type
01
02

Circuit
$16 \times 48 \times 8$ logic array with uncommitted collector $16 \times 48 \times 8$ logic array with active pull-up and a third high-impedance state output.
1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.
1.2.3 Case outline. The case outline is as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals		Package style
	GDIP1-T28, CDIP2-T28	28	Dual in line package	

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43218-3990, or emailed to memory@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.

1.3 Absolute maximum ratings.

Supply voltage range	-0.5 V dc to 7.0 V dc
Input voltage range	0.5 V dc at $-10 . \mathrm{mA}$ to 5.5 V dc
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature (soldering, 10 seconds)	$+260^{\circ} \mathrm{C}$
Thermal resistance, junction-to-case (θ_{Jc})	$27^{\circ} \mathrm{C} / \mathrm{W}$
Output voltage applied	-0.4 V dc to +5.5 V dc
Output sink current.	9.6 mA
Maximum power dissipation, (P_{D}) 2/	2.0 W
Maximum junction temperature (T_{J})	$+175^{\circ} \mathrm{C}$

1.4 Recommended operating conditions.

2.0 APPLICABLE DOCUMENTS

2.1 General. The documents listed in this section are specified in sections 3,4 , or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3,4 , or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 Specifications and standards. The following specifications and standards form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.
DEPARTMENT OF DEFENSE STANDARDS
MIL-STD-883 - Test Method Standard for Microelectronics.
MIL-STD-1835 - Interface Standard Electronic Component Case Outlines
(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 191115094.)
2.3 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

1/ Heat sinking is recommended to reduce the junction temperature.
$\underline{2 /}$ Must withstand the added P_{D} due to short circuit condition (e.g., los) test.

MIL-M-38510/502A

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.2 and 6.3). When manufacturer programmed devices are delivered to the user, an altered item drawing shall be prepared by the procuring activity to specify the required program configuration.
3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
3.3.1 Terminal connections. The terminal connections shall be as specified on figure 1.

3.3.2 Truth tables.

3.3.2.1 Unprogrammed devices. The truth tables for unprogrammed devices for contracts involving no altered item drawing shall be as specified on figure 2 . When required in groups A, B, or C (see 4.4), the devices shall be programmed by the manufacturer prior to test as per table A-I (a minimum of 50% of the total number of gates programmed) or to any altered item drawing pattern which includes at least 25 percent of the total number of gates programmed.
3.3.2.2 Programmed devices. The truth table for programmed devices shall be as specified by the altered item drawing.
3.3.3 Logic diagrams. The logic diagram shall be as specified on figure 3.
3.3.4 Case outlines. Case outlines shall be in accordance with MIL-STD-1835 and 1.2.3 herein.
3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
3.5 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range.
3.6 Electrical test requirements. Electrical test requirements shall be as specified in table III and (where applicable), the altered item drawing for the applicable device type and device class. The subgroups of table III which constitute the minimum electrical test requirements for screening, qualifications, and quality conformance, by device class, are specified in table II.
3.7 Marking. Marking shall be in accordance with MIL-PRF-38535. For programmed devices, the altered item drawing number shall be added to the marking by the programming activity.
3.8 Processing options. Since the FPLA is an unprogrammed device capable of being programmed by either the manufacturer or the user to result in a wide variety of configurations, two processing options are provided for selection in the contract, using an altered item drawing.
3.8.1 Unprogrammed FPLA delivered to the user. All testing shall be verified through group A testing as defined in 3.3.2.1, tables II and III. It is recommended that users perform subgroups 7 and 9 after programming to verify the specific program configuration.
3.8.2 Manufacturer programmed FPLA delivered to the user. All testing requirements and quality assurance provisions herein, including the requirements of the altered item drawing, shall be satisfied by the manufacturer prior to delivery.
3.9 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 14 (see MIL-PRF-38535, appendix A).

TABLE I. Electrical performance characteristics.

Test	Symbol	Test conditions 1/	Device types	Limits		Unit
				Min	Max	
High-level output voltage	$\mathrm{V}_{\text {OH }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \\ & \mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	02	2.4		V
Low-level output voltage	VoL	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} ; \\ & \mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA} \end{aligned}$	01,02		0.5	V
Input clamp voltage	$\mathrm{V}_{\text {IC }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA} \end{aligned}$	01,02		-1.2	V
Maximum collector cut-off current	ICEX	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$	01		100	$\mu \mathrm{A}$
High-impedance (off-state) output high current	$\mathrm{I}_{\text {OHz }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$	02		100	$\mu \mathrm{A}$
High-impedance (off-state) output low current	lolz	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} \end{aligned}$	02		-60	$\mu \mathrm{A}$
High-level input current	I_{H}	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$	01,02		50	$\mu \mathrm{A}$
Low-level input current	$1 / 1$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{1 \mathrm{~N}}=0.45 \mathrm{~V} \end{aligned}$	01,02	-1	-250	$\mu \mathrm{A}$
Short circuit output current	Ios $\underline{2}^{\prime}$	$\begin{aligned} & V_{\mathrm{cC}}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {OUT }}=G N D \end{aligned}$	02	-10	-85	mA
Supply current	$I_{\text {cc }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=0 ; \\ & \text { outputs }=\text { open } \end{aligned}$	01,02		180	mA
Propagation delay time high-to-low level logic, input to output	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \left(\mathrm{t}_{\mathrm{A}}\right) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{and} 5.5 \mathrm{~V} ; \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \text { (See figure 4) } \end{aligned}$	01,02		80	ns
Propagation delay time low-to-high level logic, input to output	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH} 1} \\ & \left(\mathrm{t}_{\mathrm{A}}\right) \end{aligned}$		01,02		80	ns
Propagation delay time high-to-low level logic, enable to output	$\begin{aligned} & \mathrm{t}_{\text {pHL2 }} \\ & \left(\mathrm{t}_{\mathrm{EC}}\right) \end{aligned}$		01,02		50	ns
Propagation delay time low-to-high level logic, enable to output	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH} 2} \\ & \left(\mathrm{t}_{\mathrm{CO}}\right) \end{aligned}$		01,02		50	ns

1/ Complete terminal conditions shall be specified in table III.
2/ Not more than one output shall be grounded at one time. Output shall be at high logic level prior to test.

TABLE II. Electrical test requirements.

MIL-PRF-38535 test requirements	Subgroups (per table III) 2/, 3/	
	Class S devices	Class B devices
Interim electrical parameters (pre burn-in)	1	1
Final electrical test parameters for unprogrammed devices	$1^{*}, 2,3,7^{*}, 8$	$1^{*}, 2,3,7^{*}, 8$
Final electrical test parameters for programmed devices	$1^{*}, 2,3,7^{*}, 8,9,10,11$	$1^{*}, 2,3,7^{*}, 8,9$
Group A test requirements	$1,2,3,7,8,9,10,11$	$1,2,3,7,8,9,10,11$
Group B electrical test parameters When using the method 5005 QCI option	$1,2,3,7,8,9,10,11$	N/A
Group C end-point electrical parameters	$1,2,3,7,8,9,10,11$	$1,2,3,7,8$
Group D end-point electrical parameters	$1,2,3,7,8$	$1,2,3,7,8$

1/ (*) indicates PDA applies to subgroups 1 and 7.
$\underline{\underline{2} /}$ Any or all subgroups may be combined when using high-speed testers.
ㄹ/ Subgroup 7 and 8 shall consist of verifying the pattern specified.

Pin Number Case X	Device Type 01 and 02
1	FE
2	I_{7}
3	I_{6}
4	I_{5}
5	I_{4}
6	I_{3}
7	I_{2}
8	I_{1}
9	I_{0}
10	$\mathrm{~F}_{6}$
11	$\mathrm{~F}_{5}$
12	$\mathrm{~F}_{4}$
13	GND
14	$\mathrm{~F}_{3}$
15	$\mathrm{~F}_{2}$
16	$\mathrm{~F}_{1}$
17	$\overline{\mathrm{CE}}$
18	I_{15}
19	I_{14}
20	I_{13}
21	I_{12}
22	I_{11}
23	I_{10}
24	I_{9}
25	I_{8}
26	$\mathrm{~V}_{\mathrm{Cc}}$
27	
28	

FIGURE 1. Terminal connections.

Circuit Type	$\overline{C E}$	Address																Output level								Device type
		I_{15}	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
A	L	X	X	X	X	X	X	X ${ }^{1}$	X	X	X	X	XI	XI	X	X	X ${ }^{\text {f }}$	L F	L	L	L	L	L	L	L	01, 02
B	L	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	H	H	H	H	H	H	H	H	01, 02
A, B	H	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$1 /$	1/	$1 /$	$1 /$	$1 /$	$1 /$	$1 /$	1/	01
A, B	H	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\begin{gathered} \overline{\mathrm{Hi}} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \overline{\mathrm{Hi}} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \hline \mathrm{Hi} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \hline \mathrm{Hi} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \hline \mathrm{Hi} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \overline{\mathrm{Hi}} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \hline \mathrm{Hi} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \overline{\mathrm{Hi}} \\ \mathrm{Z} \end{gathered}$	02

[^0]

DEVICE TYPES 01 AND 02 CIRCUIT A

FIGURE 3. Logic diagram.

DEVICE TYPES 01 AND 02
 CIRCUIT B

FIGURE 3. Logic diagram. - Continued.

NOTES:

1. Test table for devices programmed in accordance with an altered item drawing may be replaced by the equivalent tests which apply to the specific program configuration for the resulting FPLA.
2. $C_{L}=30 \mathrm{pF}$ minimum, including jig and probe capacitance; $\mathrm{R} 1=300 \Omega \pm 25 \%$ and $R 2=600 \Omega \pm 20 \%$.
3. Outputs may be under load simultaneously.

FIGURE 4. Switching time test circuit.

FIGURE 5A. Output polarity program - verify sequence.

FIGURE 5B. "AND" matrix program - verify sequence.

FIGURE 5C. "OR" matrix program - verify sequence.
FIGURE 5. Typical program - verify sequence circuit A.

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
4.2 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535. Qualification data for subgroups $7,8,9,10$, and 11 shall be attributes only.
4.3 Screening. Screening shall be in accordance with MIL-PRF-38535, and shall be conducted prior to qualification, and conformance inspection. The following additional criteria shall apply:
a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
c. Additional screening for space level product shall be as specified in MIL-PRF-38535.
d. All devices processed by the manufacturer to an altered item drawing shall be programmed prior to burn in.
4.4 Technology Conformance Inspection (TCI). Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
a. Tests shall be as specified in table II.
b. Subgroups 4,5 , and 6 of table III of MIL-PRF-38535 shall be omitted.
c. For unprogrammed devices, a sample shall be selected to satisfy programmability requirements prior to performing subgroups 9,10 , and 11 . Twelve (12) devices shall be submitted to programming (see 3.3.2.1). If more than two devices fail to program, the lot shall be rejected. At the manufacturers option, the sample may be increased to 24 total devices with no more than 4 total device failures allowable.
d. For unprogrammed devices, ten devices from the programmability sample shall be submitted to the requirements of group A, subgroups 9, 10, and 11. If more than two total devices fail in all three subgroups, the lot shall be rejected. At the manufacturers option, the sample may be increased to 20 total devices with no more than four total device failures allowable.
4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
a. Water drop test. This test shall be added to group B for class S devices. The devices selected for subgroup 2 (b) testing shall be a sealed, electrically good unprogrammed device which has passed the applicable screening and group A electrical test requirements. The device shall be carefully delidded and functionally verified to contain no programmed bits. Power shall be applied (or continually cycled through its test sequence), for the duration of the test. A drop of deionized water (resistivity of 5 megohms minimum at the point of use and at $25^{\circ} \mathrm{C}$) shall be placed on the memory element containing nichrome film resistors so as to completely cover a minimum of 25 percent of the memory bits without touching any bonding pads, wires, or exposed metallization. Examination the water drop at 20 X magnification during placement with a micropipette is sufficient to determine coverage. The water drop shall be allowed to remain with the device under power for a minimum of 3 minutes duration. The power shall be removed, the device dried, and the device functionally verified to contain no programmed bit. Failure of any functional test which results from an open thin nichrome resistor (other than test equipment induced) shall fail the lot.
b. Electrical parameters shall be as specified in table II herein.
4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
a. End-point electrical parameters shall be as specified in table II herein.
b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
c. For qualification, at least 50 percent of the sample selected for life testing shall be programmed (see 3.3.2). For quality conformance inspection, the programmability sample (see 4.4.1c) shall be included in the life test.
4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535; end point electrical parameters shall be as specified in table II herein.
4.5 Methods of inspection. Methods of inspection shall be as specified in the appropriate tables and as follows:
4.5.1 Voltage and current. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.
4.6 Programming procedure for circuit A. The programming specifications in table IV and the following procedures shall be used for programming the device.

4.6.1 Output polarity.

4.6.1.1 Program active low (F_{P} function). Program output polarity before programming "AND" matrix and "OR" matrix. Program 1 output at a time. (S) links of unused outputs are not required to be fused.
a. Set GND (pin 14), and FE (pin 1) to 0 V .
b. Set $\mathrm{V}_{\mathrm{CC}}(\mathrm{pin} 28)$ to $\mathrm{V}_{\mathrm{CCL}}$.
c. Set $\overline{\mathrm{CE}}$ ($\operatorname{pin} 19$), and I_{0} through I_{15} to V_{IH}.
d. Apply $\mathrm{V}_{\mathrm{OPH}}$ to the appropriate output, and remove after a period t_{p}.
e. Repeat step D to program other outputs.

4.6.1.2 Verify output polarity.

a. Set GND (pin 14) to 0 V , and $\mathrm{V}_{\mathrm{cc}}(\operatorname{pin} 28)$ to $\mathrm{V}_{\mathrm{ccs}}$.
b. Enable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to V_{IL}.
c. Address a non-existent P-term by applying V_{IH} to all inputs I_{0} through I_{15}.
d. Verify output polarity by sensing the logic state of outputs F_{0} through F_{7}. All outputs at a high logic level are programmed active low (F_{P} function), while all outputs at a low logic level are programmed active high (F_{P} function).
e. Return V_{CC} to $\mathrm{V}_{\mathrm{CCP}}$ or $\mathrm{V}_{\mathrm{CCL}}$.
f. For class S and B devices, if any output polarity does not verify as programmed, it shall be considered a programming reject. For class C devices, if any output does not verify as programmed, repeat 4.6.1.1 one time only. Outputs which fail to program the second time shall be considered programming rejects.
"AND" Matrix.
4.6.2.1 Programming input variable. Program one input at a time and one P-term at a time. All input variable links of unused P-terms are not required to be fused. However, unused input variables must be programmed as Don't Care for all programmed P-terms.
a. Set GND (pin 14) to 0 V , and $\mathrm{V}_{\mathrm{Cc}}(\mathrm{pin} 28)$ to $\mathrm{V}_{\mathrm{CcP}}$.
b. Disable all device outputs by setting $\overline{\mathrm{CE}}$ (pin 19) to V_{IH}.
c. Disable all input variables by applying $V_{I X}$ to inputs I_{0} through I_{15}.
d. Address the P-term to be programmed (No. 0 through 47) by forcing the corresponding binary code on outputs F_{0} through F_{5} with F_{0} as LSE. Use standard TTL logic levels $V_{\text {OHF }}$ and $V_{\text {olf. }}$.
e. If the P-term contains neither I_{0} or \bar{I}_{0} (input is a Don't care), fuse both I_{0} and \bar{I}_{0} links by executing both steps f and g, before continuing with step k.
f. If the P-term contains I_{0}, set to fuse the \bar{T}_{0} link by lowering the input voltage at I_{0} from $V_{\text {IX }}$ to $V_{\text {IL }}$. Execute steps h, i, and j .
g. If the P-term contains $\overline{\mathrm{I}}_{0}$, set to fuse the I_{0} link by lowering the input voltage at I_{0} from V_{IX} to V_{IL}. Execute steps h, i, and j .
h. After t_{D} delay, raise $F E$ (pin 1) from $V_{\text {FEL }}$ to $V_{\text {FEH }}$.
i. After t_{D} delay, pulse the $\overline{C E}$ input from $V_{I H}$ to $V_{I X}$ for a period of t_{P}.
j. After t_{D} delay, return FE input to $V_{\text {FEL }}$.
k. Disable programmed input by returning I_{0} to V_{IX}.
I. Repeat steps e through k for all other input variables.
m. Repeat steps d through e for all other P-terms.
n. Remove $V_{I X}$ from all input variables.

4.6.2.2 Verify input variable.

a. Set GND (pin 14) to $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(\mathrm{pin} 28)$ to $\mathrm{V}_{\mathrm{CCP}}$, and $\mathrm{FE}(\mathrm{pin} 1)$ to $\mathrm{V}_{\mathrm{FEL}}$.
b. Enable F_{7} output by setting $C E$ to $V_{I X}$.
c. Disable all input variables by applying $V_{I X}$ to inputs I_{0} through I_{15}.
d. Address the P-term to be verified (No. 0 through 47) by forcing the corresponding binary code on outputs F_{0} through F_{5}.
e. Interrogate input variable I_{0} as follows:

1. Lower the input voltage to I_{0} from V_{IX} to V_{IH}, and sense the logic state of output F_{7}.
2. Lower the input voltage to I_{0} from V_{IH} to V_{IL}, and sense the logic state of output F_{7}.

MIL-M-38510/502A

f. The state of I_{0} contained in the P-term is determined in accordance with the following truth table:

I_{0}	F_{7}	Input variable state contained in P-term 1/
0	1	To
1	0	
0	0	10
1	1	
0	1	Don't Care
1	1	
0	0	(l_{0}), (\bar{I}_{0})
1	0	

1/ Two tests are required to uniquely determine the state of the input variable contained in the P-term.
g. Disable verified input by returning to I_{0} to V_{IX}.
h. Repeat steps e and g for all other input variables.
i. Repeat steps d through h for all other P-terms.
j. Remove V_{IX} from all input variables.
k. For class S and B devices, if any gate does not verify as programmed, it shall be considered a programming reject.

4.6.3 "OR" (Sum) Matrix.

4.6.3.1 Program product term. Program one output at a time for a P-term at the time. All P_{n} links in the "OR" matrix corresponding to unused outputs and unused P-terms are not required to be fused.
a. Set GND (pin 14) to 0 V , and $\mathrm{V}_{\mathrm{CC}}(\operatorname{pin} 28)$ to $\mathrm{V}_{\mathrm{Ccs}}$.
b. Disable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to V_{IH}.
c. Set inputs I_{6} through I_{15} to V_{IH} or $\mathrm{V}_{\text {IL }}$.
d. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to input variables I_{0} through I_{5}, with I_{0} as LSB.
e. If the P-term is contained in output functions $F_{0}\left(F_{0}=1\right.$ or $\left.F_{0}=0\right)$, go to step g , (fusing cycle not required).
f. If the P-term is not contained in output function $F_{0}\left(F_{0}=0\right.$ or $\left.F_{0}=1\right)$, set to fuse the P_{n} link by forcing output F_{0} to $V_{\text {OPF }}$.
g. After t_{D} delay, raise $F E(\operatorname{pin} 1)$ from $V_{\text {FEL }}$ to $V_{\text {FEH }}$.
h. After t_{D} delay, pulse the CE input from $V_{I H}$ to $V_{I X}$ for a period t_{P}.
i. After t_{D} delay, return FE input to $\mathrm{V}_{\mathrm{FEL}}$.
j. After t_{D} delay, remove $V_{\text {OPF }}$ from output F_{0}.
k. Repeat steps e through j for all other output functions.
I. Repeat steps d through k for all other P-terms.
m. Remove $\mathrm{V}_{\mathrm{ccs}}$ from V_{cc}.
4.6.3.2 Verify product term.
a. Set GND (pin 14) to 0 V , and $\mathrm{V}_{\mathrm{CC}}(\operatorname{pin} 28)$ to $\mathrm{V}_{\mathrm{CCs}}$.
b. Enable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to V_{IL}.
c. Set inputs I_{0} through I_{15} to $V_{I H}$ and V_{IL}.
d. Address the P-term to be verified (No. 0 through 47) by applying the corresponding binary code to input variables I_{0} through I_{5}.
e. To determine the status of the P_{n} link in the "OR" matrix for each output function F_{P} or F_{P} sense, the state of outputs F_{0} through F_{7}. The status of the link is given by the following truth table:

Output		
Active high $\left(\mathrm{F}_{\mathrm{P}}\right)$	Active low $\left(\mathrm{F}_{\mathrm{P}}{ }^{\circ}\right)$	P-term link
0	1	Fused
1	0	Present

f. Repeat steps d and e for all other P-terms.
g. Remove $\mathrm{V}_{\mathrm{ccs}}$ from V_{cc}.
h. For class S and B devices, if any bit does not verify as programmed it shall be considered a programming reject.
4.7 Programming procedure for circuit B . The programmed specifications on table V and the following procedures shall be used for programming the device.

4.7.1 Program "PRODUCT (AND)" matrix.

4.7.1.1 All 48 AND gates of the product matrix are fuse linked to both the true and false lines of every input buffer in the initial unprogrammed state. The initial logic expression for the 48 unprogrammed AND gates is $I_{0}{ }^{\circ} I_{0}{ }^{\circ} I_{1}$ ${ }^{\circ} I_{1}{ }^{\circ} I_{15}{ }^{\circ} I_{15}$ (where I_{n} or I_{n} is defined to be an input term). Programming the fuse located by the selection of an input line, " i_{n} " and the mth AND gate replaces the input term I_{n} with " 1 " in the logic expression for the mth AND gate.
a. Connect pin $28\left(\mathrm{~V}_{\mathrm{cc}}\right)$ to 5.0 V .
b. Connect pin 14 (GND) to ground.
c. Connect pin $19(\overline{\mathrm{CE}})$ to a TTL HIGH level.
d. Apply TTL levels to pins 10 through 13,15 , and $16\left(F_{7}\right.$ through $\left.F_{2}\right)$ to address an on chip one of forty eight decoder to select the AND gate to be programmed ($F_{7}=L S B$ and $F_{2}=M S B$).
e. Apply 12.0 V to all input pins (I_{0} through I_{15}).
f. Apply the proper TTL level to an Ix input pin as follows (program one input at a time):

1. If the product term to be programmed contains the input term Ix (where $x=0$ through 15), lower the Ix pin to a TTL HIGH level.
2. If the product term to be programmed contains the input term $\mid x$, lower the $\bar{I} x$ to a TTL LOW level.
3. If the product term does not contain the input terms $\bar{I} x$ or $I x$ (i.e., $I x$ is a DON'T CARE input), perform steps $\mathrm{f} 1, \mathrm{~g}, \mathrm{f} 2$, and g .
g. Apply a 15 V programming pulse to pin 1 (FE) according to the programming specification table.

MIL-M-38510/502A

h. Repeat steps e through g for each input of the selected product term.
i. Repeat steps d through h for all other product terms to be programmed.
j. Program one input at a time.
k. All unused inputs of programmed product terms must be programmed as DON'T CARES.
I. Inputs of unused product lines are not required to be programmed.
m. Pin $18\left(\mathrm{~F}_{0}\right)$ is in the read mode (open collector). Care must be taken so that this pin is either left open, grounded, or loaded such that the current flowing into the pin does not exceed 16 mA .

4.7.1.2 Verify "PRODUCT (AND)" matrix.

a. Connect pin $28\left(\mathrm{~V}_{\mathrm{cc}}\right)$ to 5.0 V .
b. Connect pin 14 (GND) to ground.
c. Connect pin $19(\overline{\mathrm{CE}})$ to a TTL HIGH level.
d. Apply TTL levels to pins 10 through 13, 15, and $16\left(F_{7}\right.$ through $\left.F_{2}\right)$ to address an on chip one of fortyeight decoder to select the AND gate to be verified ($F_{7}=L S B$ and $F_{2}=M S B$).
e. Apply 10.8 V to all input pins (l_{0} through I_{15}).
f. Test the state of the Ix input as follows:

1. Lower the Ix pin to a TTL HIGH level and sense the voltage on pin $18\left(F_{0}\right)$.
2. Lower the Ix pin to a TTL LOW and sense the voltage on pin $18\left(\mathrm{~F}_{0}\right)$.
g. The state of the Ix input is determined as follows:

	Ix = TTL HIGH	Ix = TTL LOW	Condition of Ix for selected product term.
Level at output F_{0}	H	H	Don't Care
	H	L	Ix IN P-term
	L	H	Ix IN P-term unprogrammed
	L	L	

NOTES:

1. F_{0} in this mode functions as an open collector output, $\mathrm{H}=\geq 2.0 \mathrm{~V}, \mathrm{~L} \leq 0.8 \mathrm{~V}$.
2. The table above is valid regardless of the polarity (active HIGH or active LOW) of F_{0}.
3. Pin 1 (FE) should be either floating or grounded.

4.7.2 Program summing matrix.

4.7.2.1 All 8 OR gates of the summing matrix are fuse linked to the outputs of the AND gates in the initial unprogrammed state. The initial logic expressions (sum of products) of the eight unprogrammed OR gates is $\mathrm{P} 0+\mathrm{P} 1+\mathrm{P} 2+000+\mathrm{P} 47$ where Pm is the product term programmed into the mth AND gate.
Programming the fuse located by the selection of the mth AND gate and the nth summing line replaces the product term Pm with ' 0 ' in the logic expression of the nth OR gate. The nth summing line is selected by the selection of the nth output buffer where $\mathrm{n}=1$ through 8 .
a. Connect pin $28\left(\mathrm{~V}_{\mathrm{cc}}\right)$ to 5.0 V .
b. Connect pin 14 (GND) to ground.
c. Connect pin $19(\overline{\mathrm{CE}})$ to a TTL HIGH level.
d. Apply TTL levels to pins 4 through $9\left(I_{5}\right.$ through $\left.I_{0}\right)$ to address an on chip one of forty-eight decoder to select the AND gate to be programmed ($\mathrm{I}_{0}=\mathrm{LSB}$ and $\mathrm{I}_{5}=\mathrm{MSB}$).
e. Apply a TTL HIGH level to pins 20 and 21 (I_{15} and I_{14}).
f. Connect the remaining input pins to 12.0 V .
g. Apply an 18 V programming pulse (see programming specification table) at the pin of the output to be programmed. Other output pins should be either left open or tied to a TTL HIGH level.
h. Progran one output pin at a time.
i. All unused product lines are not required to be programmed.
4.7.2.2 Verify summing matrix.
a. Connect pin $28\left(\mathrm{~V}_{\mathrm{cc}}\right)$ to 5.0 V .
b. Connect pin 14 (GND) to ground.
c. Connect pin $19(\overline{\mathrm{CE}})$ to a TTL LOW level.
d. Apply TTL levels to pins 4 through $9\left(I_{5}\right.$ through $\left.I_{0}\right)$ to address an on chip one of forty eight decoder to select the AND gate to be verified ($\mathrm{l}_{0}=\mathrm{LSB}$ and $\mathrm{I}_{5}=\mathrm{MSB}$).
e. Apply a TTL HIGH level to pins 20 and 22 (I_{15} and I_{13}).
f. Connect the remaining input pins to 12.0 V .
g. Sense the voltage on the output pin to be verified. The programming of the selected product line to the output line can be determined as follows:

Output Reads	Fuse Link
L	Blown (inactive) H

h. Repeat steps d through g with V_{cc} at 4.4 V (LOW V_{cc} read).
i. The condition of the fuse link can be determined from the table above regardless of the polarity (active HIGH or active LOW) of the output buffer being verified.

4.7.3 Program output polarity.

4.7.3.1 The initial unprogrammed state of all eight output buffers is active LOW or inverting. To program an output buffer into the active HIGH or non-inverting state, proceed as follows:
a. Connect pin $28\left(\mathrm{~V}_{\mathrm{Cc}}\right)$ to 5.0 V .
b. Connect pin 14 (GND) to ground.
c. Connect pin $19(\overline{\mathrm{CE}})$ to a TTL HIGH level.
d. Apply a TTL HIGH level to pins 4 through $9\left(I_{5}\right.$ through $\left.I_{0}\right)$.
e. Apply a TTL HIGH level to pin $20\left(l_{15}\right)$.
f. Connect the remaining input pins to 12.0 V .
g. Apply an 18 V programming pulse (see programming specifications table) to the pin of the output to be programmed. Other output pins should be either left open or tied to a TTL HIGH level.
h. Program one output at a time.

4.7.3.2 Verify output polarity.

a. Connect pin $28\left(\mathrm{~V}_{\mathrm{Cc}}\right)$ to 5.0 V .
b. Connect pin 14 (GND) to ground.
c. Connect pin $19(\overline{\mathrm{CE}})$ to a TTL LOW level.
d. Apply a TTL HIGH level to pins 4 through $9\left(I_{5}\right.$ through $\left.I_{0}\right)$.
e. Apply a TTL HIGH level to pins 21 and 22 (I_{14} and I_{13}).
f. Connect the remaining input pins to 12.0 V .
g. Sense the voltage on the pin of the output buffer to be verified. The condition of the output can be determined as follows:

Output reads	Output state
H	Active LOW
L	Active HIGH

h. Repeat with V_{Cc} at 4.4 V (LOW V_{Cc} read).
4.7.4 Summary of pin voltage - circuit B. In addition to verifying the Product (AND) Matrix, Summing Matrix, and Output Polarity separately after programming, a complete logic verification (normal read) with V_{cc} at 5.0 V is recommended after a device has been fully programmed. Table VI summarizes the full programming and verifying procedures.
TABLE III．Group A inspection for device type 01.

5	＞：	＝：＝：＝：	｜S ．．．．．．．．．．．．．．	
	¢ָ．	足．．．．．．	骨：．．．．．．．．．．．．	＂：$\cdot \cdots \cdots \cdots$
				\％
	○この		Oこの	Oこの
\％\square_{\sim}^{8}		层：．．．．．	＝	：：：：：＝：＝：
へ \propto	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$		亭	$\stackrel{3}{0}$
® ๑	¢	才1 $=\cdots \cdots$	亭	$\stackrel{3}{6}$
$\stackrel{\sim}{\sim}$	$\xrightarrow[\text { ¢ }]{\substack{\text { ¢ }}}$	\％${ }^{\circ}$	哭	$\stackrel{3}{0}$
\＃E	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	キ1＝	产	雨
\cong	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	F1：	产	$\stackrel{3}{0}$
～	$\stackrel{\text { § }}{\substack{\text { ¢ }}}$		$\stackrel{3}{6}$	雨
$\bar{\sim}$	$\stackrel{\text { § }}{\substack{\text { ¢ }}}$		恕	$\stackrel{7}{0}$
$\bigcirc \stackrel{\text { ® }}{\sim}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$		产	亭
$\stackrel{\text { ® }}{\sim}$			宕	宕
\bigcirc				
ㄷ		¢		
\because N		¢		
$\stackrel{\text { ® }}{\sim}$		¢		
\pm	毎：．．．．．．．．．．．．．．．．．		＂：m＝＝＝：	：
$\stackrel{\text { T }}{\sim}$		¢		
\sim		¢		
$=0$		䁉		
ㅇ त		比｜		
$\bigcirc \bigcirc$	T	F1：$\times \cdots \cdots$	宕	家
$\infty=$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$		亭	雨
－	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	\％	产	宕
$\bigcirc \cong$	$\stackrel{\text { § }}{\substack{\text { ¢ }}}$	す｜＝＝＝＝		$\stackrel{3}{6}$
$\bigcirc \pm$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	7	产	霅
－๕	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	¢1：	亭	号
$\infty \bigcirc$	$\stackrel{\text { § }}{\substack{\text { ¢ }}}$		㤎	岩
\sim	$\xrightarrow[\text { ¢ }]{\substack{\text { ¢ }}}$	\bigcirc	亭	$\stackrel{7}{0}$
－山		＋		
		－のスうオヘさん		
		㪣：${ }^{\text {a }}$	扁 $=.$.	
彦	\bigcirc	$\stackrel{\rightharpoonup}{\circ}$	\lrcorner	$\underline{\underline{1}}$
年亳	－			

TABLE III. Group A inspection for device type 01 - Continued.

> 1/The functional tests shall verify that no fuses are blown for unprogrammed devices or that the altered item drawing pattern exists for programmed devices (see table II). The functional tests shall be accomplished as defined in Appendix A for unprogrammed devices.

> 2/ (Programmed device) The test will check all inputs, gates, and outputs that have been programmed. Propagation test for tpHL1, $t_{\text {PLH1 }}$, 3./The outputs are loaded per figure 4.
> 4./ For programmed devices, select an appropriate set of inputs to acquire the desired output state.
TABLE III．Group A inspection for device type 02.

5	＞：．．．．．．．．	\＃．．．．．	｜$\quad . . .$.	主：．．．．．．．．．．
		足 $=\cdots \cdots . .$.	$\cdots \cdots$	弟：
年菏			¢i $=\cdots=\cdots=$	「：＝＝＝＝＝＝＝＝
$\stackrel{\circ}{\circ}$	聋：	莌：．．．．．	予：．．．．．	宫：${ }_{\text {a }}$
へ \propto	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	Fi	$=:=:=$.	吋
$\because \sim$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	Fi	：：．．：	京
® 을	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	\％${ }^{\circ}$	\＃：：$:=$	吋
̇ E	$\stackrel{\text { E／}}{\substack{\text { ¢ }}}$	キ	$\because \because . .$.	怼
$\underset{\sim}{\sim}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	キ1：$=:=:=$	\＃：：$: \cdot$	亭
$\approx \stackrel{\cong}{\square}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	F1＊	\＃：：$: ~=$	
$\bar{\sim}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	71	＝：：$:=$	哭
$\bigcirc \stackrel{セ}{\square}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	F1	$\cdots \cdots$	亭
\bigcirc	$\begin{aligned} & \hline \stackrel{\text { Wen }}{1} \end{aligned}$			亭
\bigcirc			$$	
$\hat{\sim}$		¢	¢	
\because ²		¢	¢	
\because		眞	¢	
\pm 0 0	或．．．．．．．．．．．．．．．．	：＝：＝	：＝：＝	
은		$\stackrel{\text { E゙ }}{\substack{\text { ¢ }}}$	¢	
$\because 8$		長	¢	
F \％		眞	¢	
ㅇ		愧		
$\bigcirc \bigcirc$	－	¢1	：	景
$\infty=$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	み1 $=:=:=$		宴
～				就
$\bigcirc \bigcirc$	¢	チ1	：＝：：：：	屚
$\bigcirc \pm$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	み1		亭
\checkmark ®	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	キ1		产
$\infty \cong$	$\stackrel{\text { Ex }}{\text { ¢ }}$	み1		亭
$\sim \sim$	¢	－18：	：$:=\cdots$	就
－${ }_{-}$		＋	＊	
－			がへべペめらलハ	
		容：．．．．	㖵＝．．．．	扁：．．．．．．．．．．．．．．．．．．
产	\bigcirc	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\text { ¢ }}{\substack{\text { a }}}$	$\stackrel{ }{-}$
年旁	－			

See footnotes at end of table．

MIL-M-38510/502A

TABLE IV. Programming characteristics - Circuit A. 4/

Symbol	Parameter	Test Conditions	Limits			Unit
			Min	Type	Max	
Vccs 1/ 2/	$V_{C C}$ supply (program/verify "OR" verify output program)	$\mathrm{I}_{\mathrm{ccs}}=550 \mathrm{~mA}$, min (Transient or steady state)	8.25	8.5	8.75	V
$\mathrm{V}_{\mathrm{CCL}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { supply } \\ & \text { (Program output polarity) } \end{aligned}$		0.	0.4	0.8	V
$\mathrm{I}_{\text {ccs }}$	ICC limit (Program "OR")	$\mathrm{V}_{\text {ccs }}=+8.50 \pm .25 \mathrm{~V}$	550		1000.	mA
V ${ }_{\text {OPH }} \underline{\text { 2/ }}$	Output voltage (Program output polarity)	$\mathrm{l}_{\mathrm{OPH}}=300 \pm 25 \mathrm{~mA}$	16.0	17.0	18.0	V
Vop1	Output voltage (Idle)		0.	0.4	0.8	V
Ioph	Output current limit (Program output polarity)	$\mathrm{V}_{\text {OPH }}=+17 \pm 1.0 \mathrm{~V}$	275	300	325	mA
$\mathrm{V}_{\text {IH }}$	Input voltage (Logic "1")		2.4		5.5	V
VIL	Input voltage (Logic "0")		0.	0.4	0.8	V
I_{H}	Input current (Logic "1")	$\mathrm{V}_{\mathrm{IH}}=+5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
IIL	Input current (Logic "0")	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$			-500	$\mu \mathrm{A}$
VohF	Forced output (Logic "1")		2.4		5.5	V
Volf	Forced output (Logic "0")		0.	0.4	0.8	V
IohF	Output current (Logic "1")	$\mathrm{V}_{\text {OHF }}=+5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
IoLF	Output current (Logic "0")	$\mathrm{V}_{\text {OLF }}=0 \mathrm{~V}$			-1	mA
VIX	CE program enable level		9.5	10	10.5	V
$\mathrm{I}_{1 \times 1}$	Input variables current	$\mathrm{V}_{\text {IX }}=+10 \mathrm{~V}$			2.5	mA
$\mathrm{I}_{1 \times 2}$	CE input current	$\mathrm{V}_{\mathrm{IX}}=+10 \mathrm{~V}$			5.0	mA
$V_{\text {FEH }}$ 2/	FE supply (Program)	$\begin{aligned} & \mathrm{I}_{\text {FEH }}=300 \pm 25 \mathrm{~mA} \\ & \text { (Transient or steady state) } \end{aligned}$	16.0	17.0	18.0	V
$\mathrm{V}_{\text {FEL }}$	FE supply (Idle)		1.25	1.5	1.75	V
$\mathrm{I}_{\text {FEH }}$	FE supply current limit	$\mathrm{V}_{\text {FEH }}=+17 \pm 1.0 \mathrm{~V}$	275	300	325	mA
$\mathrm{V}_{\text {CCP }}$ 1/	V ${ }_{\text {cc }}$ supply (Program "AND")	$\mathrm{I}_{\mathrm{CCP}}=550 \mathrm{~mA}$, min (Transient or steady state)	4.75	5.0	5.25	V
$I_{\text {CCP }}$	Icc limit (Program "AND")	$\mathrm{V}_{\mathrm{CCP}}=+5.0 \pm .25 \mathrm{~V}$	550		1000	mA
VopF	Forced output (Program)		9.5	10	10.5	V
IopF	Output current (Program)				10	mA
T_{R}	Output pulse rise time		10		50	$\mu \mathrm{s}$
t_{P}	CE programming pulse width		1		1.5	ms
t_{D}	Pulse sequence delay		10			$\mu \mathrm{s}$
TPR	Programming time			. 6		ms
$\begin{gathered} \mathrm{T}_{\mathrm{PR}} \\ \mathrm{~T}_{\mathrm{PR}}+\mathrm{T}_{\mathrm{PS}} \end{gathered}$	Programming duty cycle				50	\%
F_{L}	Fusing attempts per link				2	cycle
Vs 3/	Verify threshold		1.4	1.5	1.6	V

1/ Bypass V_{Cc} to GND with a $0.01 \mu \mathrm{f}$ capacitor to reduce voltage spikes.
2/ Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
3/ V_{S} is the sensing threshold of the FPLA output voltage for a programmed link. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
4/ These are specifications which a programming system must satisfy.
5/ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.

MIL-M-38510/502A

TABLE V. Programming specifications - Circuit B.

Symbol	Characteristic	Recommended 1/				Comments
		Min	Value	Max	Units	
V_{IH}	TTL levels	2.4	5.0	5.0	V	Apply to appropriate address and output pins. Do not leave pins open.
VIL		0	0	0.4	V	
$\overline{\mathrm{CE}}$	Chip select	2.4	5.0	5.0	V	
Vop	Programming voltage pulse	17.5	18.0	18.5	V	Apply to the appropriate output pin.
$t_{\text {PW }}$	Programming pulse width Duty cycle, programming pulse		0.18	50	ms	
			20		\%	Maximum duty cycle to maintain $\mathrm{T}_{\mathrm{C}}<85^{\circ} \mathrm{C}$
tr_{r}	Programming pulse rise time	0.5	1.0	3.0	$\mu \mathrm{s}$	
	Number of pulses required	1	4	8		
V_{CC}	Power supply voltage	4.9	5.0	5.1	V	
t_{c}	Case temperature		25	85	${ }^{\circ} \mathrm{C}$	
I_{vP}	Programming pulse current $\max \left(V_{P} \operatorname{pin}\right)$			200	mA	If pulse generator is used, set current limit to this max value.
Iop	Programming pulse current max (any output pin)			100	mA	If pulse generator is used, set current limit to this max value.
V_{Cc}	Low V ${ }_{\text {cc }}$ read		4.4	5.0	V	Programming read verify.
V_{P}	Programming voltage	14.5	15.0	15.5	V	Pin 1

1/ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.

TABLE VI. Summary of pin voltages - Circuit B.

	Read	Program product "AND" matrix	Verify product "AND" matrix	Program summing matrix	Verify summing matrix	Program output polarity	Verify output polarity
Pin 1 (FE)	***	18	***	***	***	***	***
Pin $2\left(1_{7}\right)$	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin $3\left(\mathrm{I}_{6}\right)$	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin $4\left(I_{5}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $5\left(\mathrm{I}_{4}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $6\left(\mathrm{l}_{3}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $7\left(\mathrm{I}_{2}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $8\left(\mathrm{I}_{1}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $9\left(\mathrm{I}_{0}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $10\left(\mathrm{~F}_{7}\right)$	Read	TTL	TTL	****	Read	****	Read
Pin $11\left(\mathrm{~F}_{6}\right)$	Read	TTL	TTL	****	Read	****	Read
Pin 12 (F_{5})	Read	TTL	TTL	****	Read	****	Read
Pin $13\left(\mathrm{~F}_{4}\right)$	Read	TTL	TTL	****	Read	****	Read
Pin 14 (GND)	GND						
Pin 15 (F_{3})	Read	TTL	TTL	****	Read	****	Read
Pin $16\left(F_{2}\right)$	Read	TTL	TTL	****	Read	****	Read
Pin $17\left(\mathrm{~F}_{1}\right)$	Read	**	**	****	Read	****	Read
Pin 18 (F_{0})	Read	Read	Read	****	Read	****	Read
Pin $19(\overline{\mathrm{CE}})$	TTL LOW	TTL HIGH	TTL HIGH	TTL HIGH	TTL LOW	TTL HIGH	TTL LOW
Pin 20 (l_{15})	TTL	12.0*	12.0*	TTL HIGH	TTL HIGH	TTL HIGH	12.0
Pin $21\left(l_{14}\right)$	TTL	12.0*	12.0*	TTL HIGH	12.0	12.0	TTL HIGH
Pin $22\left(\mathrm{l}_{13}\right)$	TTL	12.0*	12.0*	12.0	TTL HIGH	12.0	TTL HIGH
Pin $23\left(l_{12}\right)$	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin $24\left(l_{11}\right)$	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin $25\left(l_{10}\right)$	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 26 (l_{9})	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 27 (l_{8})	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 28 (V_{Cc})	5.0	5.0	5.0	5.0	12.0	5.0	5.0

* For selection of input apply TTL HIGH or TTL LOW
** Left open or TTL HIGH.
*** Left open or grounded.
**** Left open, TTL HIGH, or programming pulse.
The program table is used for coding FPLAs.

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but it is not mandatory)
6.1 Intended use. Microcircuits conforming to this specification are intended for logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a. Title, number, and date of the specification.
b. PIN and compliance identifier, if applicable (see 1.2).
c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
d. Requirement for certificate of compliance, if applicable.
e. Requirements for notification of change of product or process to the acquiring activity in addition to notification to the qualifying activity, if applicable.
f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
g. Requirement for product assurance options.
h. Requirements for carriers, special lead lengths or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
i. Requirement for programming the device, including processing option.
j. Requirements for "JAN" marking.
k. Packaging requirements (see 5.1).
6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.
6.4 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

MIL-M-38510/502A

6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331, and as follows:

GND	Electrical ground (common terminal)
$V_{\text {IN }}$	Voltage level at an input terminal.
V IC	. Input clamp voltage.
	Current flowing into an input terminal.

6.6 Logistic support. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2) and lead material and finish A (see 3.4). Longer length leads and lead forming shall not affect the part number. It is intended that spare devices for logistic support be acquired in the unprogrammed condition (see 3.8.1) and programmed by the maintenance activity, except where use quantities for devices with a specific program or pattern justify stocking of preprogrammed devices.
6.7 Substitutability. The cross-reference information below is presented for the convenience of users.

Microcircuits covered by this specification will functionally replace the listed generic industry type. Generic industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Device type	Commercial type
	Circuit A, Signetics Corp 82S101
01	Circuit B, Fairchild 93458
02	Circuit A, Signetics Corp 82S100
02	Circuit B, Fairchild 93459

6.8 Manufacturers' designations. Manufacturers' circuits included in this specification are designated as shown in table VII

Table VII. Manufacturers' designations		
Device type	Signetics Corp	Fairchild
	Circuits	
01	A	B
02	X	X

6.9 Changes from previous issue. Marginal notations are not used in this revision to identify changes with respect to the previous issue, due to the extent of the changes.

MIL-M-38510/502A

APPENDIX A

GATE TEST PROGRAM AND FUNCTIONAL TESTS

A. 1 SCOPE

A.1.1 This Appendix A covers the fuse test program to be used for unprogrammed devices, and defines the requirements for functional tests of unprogrammed devices. This Appendix is a mandatory part of this standard. The information contained herein is intended for compliance.

A. 2 GATE TEST PROGRAM.

A.2.1 When required, as in paragraph 3.3.2.1, the device may be programmed as shown in table A-I. This program will allow for testing all of the available gates.

A. 3 FUSE TESTS FOR DEVICE TYPES 01 AND 02.

A.3.1 Unprogrammed devices - Circuit A.

A.3.1.1 Output polarity fuse check.

Terminal conditions:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=8.5 \mathrm{~V} \\
& \mathrm{FE}=1.5 \mathrm{~V} \\
& \mathrm{CE}=\mathrm{GND} \\
& \text { All inputs }=3.0 \mathrm{~V}
\end{aligned}
$$

a. Sense all outputs for logic low, any high is a failure.

A.3.1.2 "AND" matrix fuse check.

Terminal condition:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\
& \mathrm{FE}=1.5 \mathrm{~V} \\
& \mathrm{CE}=10 \mathrm{~V} \\
& \text { All inputs }=10 \mathrm{~V} \text { (except for input being checked) }
\end{aligned}
$$

a. Address all " P " terms with a binary count $0-47$, put into F_{0} to F_{5} with $F_{0}=L S B$ and $F_{5}=M S B$.
b. Sense output F_{7} for each " P " term. F_{7} should also be low and if it goes high, then it means a failure since a fuse is open. The input being checked should be set first to V_{IH} and then V_{IL}. F_{7} should remain low in both cases.
c. Repeat b for all inputs, one at a time.
d. Repeat a and then b for all " P " terms and their inputs.

A.3.1.3 "OR" (Sum) matrix fuse check.

Terminal condition:

$$
\begin{aligned}
& \mathrm{VCC}=8.5 \mathrm{~V} \\
& \mathrm{FE}=1.5 \mathrm{~V} \\
& \mathrm{I}_{6}-\mathrm{I}_{15}=\text { Open } \\
& \mathrm{I}_{0}-\mathrm{I}_{15}=\text { Binary Count Input for address } \\
& \overline{\mathrm{CE}}=\mathrm{GND}
\end{aligned}
$$

a. Sense each output for logic high. Any low is a failure, indicating a fuse open.
b. Sense all output low when binary input count goes to 48 . Any high is a failure.

MIL-M-38510/502A
 APPENDIX A

A.3.2 Unprogrammed devices - Circuit B.

A.3.2.1 "AND" (Product) matrix input fuse check.

Terminal conditions:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\
& \overline{\mathrm{CE}}=\mathrm{TTL} \mathrm{HIGH}
\end{aligned}
$$

a. Select the product term to be tested by applying a binary address of TTL levels to pins 10 through 13, 15, $16\left(F_{7}\right.$ through $\left.F_{2}\right)\left(F_{7}=L S B, F_{2}=M S B\right)$.
b. Apply 12.0 V to all input pins (I_{0} through I_{15}) except for input Ix being tested.
c. The state of the Ix input fuse will be checked if the truth table below holds. Vary input Ix while monitoring pin $18\left(\mathrm{~F}_{0}\right)$.

Ix	F_{0}
L	L
H	L

If F_{0} is HIGH, then fuse is open indicating a failure.
d. Repeat steps b and c for each input of the selected product term.
e. Repeat steps a through c for all other product items and input fuse tests.

A.3.2.2 "OR" (Sum) matrix fuse check.

$$
\begin{array}{ll}
\text { Terminal conditions: } & \frac{\mathrm{V}_{\mathrm{CC}}}{}=5.0 \mathrm{~V} \\
& \overline{\mathrm{CE}}=\mathrm{TTL} \mathrm{LOW}
\end{array}
$$

a. Apply TTL levels to pins 4 through $9\left(I_{5}\right.$ through $\left.I_{0}\right)$ to select the AND gate to be verified ($I_{0}=L S B$ and, $\left.I_{5}=M S B\right)$.
b. Apply TTL HIGH level to pins 20 and 22 (I_{15} and I_{13}).
c. Connect the remaining input pins to 12.0 V .
d. Sense the voltage on the output pin to be verified. All unblown fuse links will indicate a high on the output pin.

A.3.2.3 Output polarity fuse check.

Terminal conditions:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\
& \overline{\mathrm{CE}}=\mathrm{TTL} \mathrm{LOW}
\end{aligned}
$$

a. Apply TTL HIGH level to pins 4 through 9 (I_{5} through I_{0}), 21 and $22\left(\mathrm{I}_{14}\right.$ and $\left.\mathrm{I}_{13}\right)$.
b. Connect remaining pins to 12.0 V .
c. Sense the voltage on the pins of the output buffer to be verified. All output levels should read TTL HIGH.

A.3.3 Programmed devices - Circuits A and B.

Program the device according to the program shown in table A-I.

TABLE A-I. Program tables for test device.

Program table entries						
Input variable			Output function		Output active level	
$\mathrm{Im}_{\text {m }}$	\bar{I}_{m}	Don't Care	Prod. Term Present in F_{P}	$\begin{gathered} \text { Prod. Term } \\ \text { not } \\ \text { Present in } F_{P} \\ \hline \end{gathered}$	Active High	Active Low
H	L	- (dash)	A	- (period)	H	L
Note: Enter (-) for unused inputs of used P-terms			Notes: 1. Entries independent of output polarity. 2. Enter (A) for unused outputs of used P-terms.		Notes: 1. Polarity programmed once only. 2. Enter (H) for all unused outputs.	

TABLE A-I. Program tables for test device - Continued.

Product Term																
No.	Input variable															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	-	-	-	-	-	L	-	H	-	-	-	-	-	-	-	H
1	-	-	-	-	-	L	L	H	-	-	-	H	-	-	-	-
2	-	-	-	-	-	L	-	H	-	-	-	-	-	-	H	-
3	-	-	-	-	-	L	L	H	-	-	H	-	-	-	-	-
4	-	-	-	-	-	L	-	H	-	-	-	-	-	H	-	-
5	-	-	-	-	-	L	L	H	-	H	-	-	-	-	-	-
6	-	-	-	-	-	L	-	H	-	-	-	-	H	-	-	-
7	-	-	-	-	-	L	L	H	H	-	-	-	-	-	-	-
8	-	-	-	-	-	L	L	L	-	-	-	H	-	-	-	H
9	-	-	-	-	-	L	L	L	-	-	H	-	-	-	H	-
10	-	-	-	-	-	L	L	L	-	H	-	-	-	H	-	-
11	-	-	-	-	-	L	L	L	H	-	-	-	H	-	-	-
12	-	-	-	-	-	H	H	H	-	-	-	H	-	-	-	-
13	-	-	-	-	-	H	H	H	-	-	H	-	-	-	-	-
14	-	-	-	-	-	H	H	H	-	H	-	-	-	-	-	-
15	-	-	-	-	-	H	H	H	H	-	-	-	-	-	-	-
16	-	-	-	-	L	H	L	L	-	-	-	L	-	-	-	H
17	-	-	-	-	L	H	L	L	-	-	-	H	-	-	-	L
18	-	-	-	-	H	H	L	L	-	-	-	L	-	-	-	L
19	-	-	-	-	H	H	L	L	-	-	-	H	-	-	-	H
20	-	-	-	H	-	H	L	L	-	-	L	-	-	-	H	-
21	-	-	-	H	-	H	L	L	-	-	H	-	-	-	L	-
22	-	-	-	L	-	H	L	L	-	-	L	-	-	-	L	-
23	-	-	-	L	-	H	L	L	-	-	H	-	-	-	H	-
24	-	-	H	-	-	H	L	L	-	L	-	-	-	H	-	-
25	-	-	H	-	-	H	L	L	-	H	-	-	-	L	-	-
26	-	-	L	-	-	H	L	L	-	L	-	-	-	L	-	-
27	-	-	L	-	-	H	L	L	-	H	-	-	-	H	-	-
28	-	H	-	-	-	H	L	L	L	-	-	-	H	-	-	-
29	-	H	-	-	-	H	L	L	H	-	-	-	L	-	-	-
30	-	L	-	-	-	H	L	L	L	-	-	-	L	-	-	-
31	-	L	-	-	-	H	L	L	H	-	-	-	H	-	-	-
32	-	L	-	-	-	H	L	L		-	-	-	H	-	-	-
33	-	L	-	-	-	H	L	L	H	-	-	-	-	-	-	-
34	-	-	-	-	H	H	L	L	-	-	-	-	-	-	-	H
35	-	-	-	-	H	H	L	L	-	-		H	-	-	-	-
36	-	-	-	L	-	H	L	L	-	-		-	-	-	H	-
37	-	-	-	L	-	H	L	L	-	-	H	-	-	-	-	-
38	-	-	L	-	-	H	L	L	-	-	-	-	-	H	-	-
39	-	-	L	-	-	H	L	L	-	H	-	-	-	-	-	-
40	-	-	-	-	-	H	L	L	H	-	-	-	H	-	-	-
41	-	-	-	-	-	H	L	L	-	-	-	H	-	-	-	H
42	-	-	-	-	-	H	L	L	-	-	H	-	-	-	H	-
43	-	-	-	-	-	H	L	L	-	H		-	-	H	-	-
44	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
45	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
46	L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H
47	H	H	H	H	H	H	H	H	L	L	L	L	L	L	L	L

```
MIL-M-38510/502A
    APPENDIX A
```

TABLE A-I. Program tables for test device - Continued.

Active Level								
No.	L	L	L	L	H	H	H	H
	Output Function							
	7	6	5	4	3	2	1	0
0	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet	A
1	\bullet	\bullet	\bullet	A	-	\bullet	\bullet	A
2	\bullet	\bullet	A	\bullet	\bullet	\bullet	A	\bullet
3	\bullet	\bullet	A	\bullet	\bullet	\bullet	A	\bullet
4	\bullet	A	\bullet	\bullet	\bullet	A	\bullet	\bullet
5	\bullet	A	-	\bullet	-	A	\bullet	\bullet
6	A	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet
7	A	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet
8	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet	A
9	\bullet	\bullet	A	\bullet	\bullet	\bullet	A	\bullet
10	\bullet	A	\bullet	\bullet	\bullet	A	\bullet	\bullet
11	A	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet
12	\bullet	\bullet		A	\bullet	\bullet	\bullet	A
13	\bullet	\bullet	A	\bullet	\bullet	\bullet	A	-
14	\bullet	A	\bullet	\bullet	-	A	\bullet	\bullet
15	A	\bullet	\bullet	\bullet	A	-	\bullet	\bullet
16	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet	A
17	\bullet	A						
18	\bullet	A						
19	\bullet	A						
20	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	A	\bullet
21	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	A	\bullet
22	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	A	\bullet
23	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	A	\bullet
24	\bullet	\bullet	\bullet	\bullet	\bullet	A	\bullet	\bullet
25	\bullet	\bullet	\bullet	\bullet	\bullet	A	\bullet	\bullet
26	\bullet	\bullet	\bullet	\bullet	\bullet	A	\bullet	\bullet
27	\bullet	\bullet	\bullet	\bullet	\bullet	A	\bullet	\bullet
28	\bullet	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet
29	\bullet	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet
30	\bullet	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet
31	\bullet	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet
32	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet	\bullet
33	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet	\bullet
34	\bullet	\bullet	A	\bullet	\bullet	\bullet	\bullet	\bullet
35	\bullet	\bullet	A	\bullet	\bullet	\bullet	\bullet	\bullet
36	\bullet	A	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
37	\bullet	A	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
38	A	\bullet						
39	A	\bullet						
40	\bullet	\bullet	\bullet	A	\bullet	\bullet	\bullet	\bullet
41	\bullet	\bullet	A		\bullet	\bullet	\bullet	\bullet
42	\bullet	A	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
43	A	\bullet						
44	A	A	A	A	A	A	A	A
45	A	A	A	A	A	A	A	A
46	A	A	A	A	A	A	A	A
47	A	A	A	A	A	A	A	A

MIL-M-38510/502A

```
Custodians:
    Army - CR Preparing activity:
    Navy - EC
    Air Force - 11
    DLA - CC
Review activities:
    Army - MI, SM
    Navy - AS, CG, MC, SH, TD
    Air Force - 03, 19,99
```

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil .

[^0]: NOTES:

 1. Output disabled.
 $X=$ Input may be high, low level, open circuit or as defined in Appendix A.
 L = Low
 $H=$ High
 2. $\mathrm{H}=$ High
 3. $\mathrm{Hi} \mathrm{Z}=$ High impedance.
