80V Synchronous 4-Switch Buck-Boost DC/DC Controller with Bidirectional Capability

feATURES

- Single Inductor Allows $\mathrm{V}_{\text {IN }}$ Above, Below, or Equal to $V_{\text {out }}$
- Six Independent Forms of Regulation
- $V_{\mathbb{I N}}$ Current (Forward and Reverse)
- $V_{\text {OUt }}$ Current (Forward and Reverse)
- $V_{\text {IN }}$ and $V_{\text {OUT }}$ Voltage
- Forward and Reverse Discontinuous Conduction Mode Supported
- Supports MODE and DIR Pin Changes While Switching
- $V_{\text {INCHIP }}$ Range 2.8V (Need EXTV ${ }_{\text {cc }}>6.4 \mathrm{~V}$) to 80V
- $\mathrm{V}_{\text {0ut }}$ Range: 1.3 V to 80 V
- Synchronous Rectification: Up to 99\% Efficiency
- Available in 40 -Lead ($5 \mathrm{~mm} \times 8 \mathrm{~mm}$) QFN with High Voltage Pin Spacing and $64-$ Lead ($10 \mathrm{~mm} \times 10 \mathrm{~mm}$) eLQFP
- AEC-Q100 in Progress

APPLICATIONS

- High Voltage Buck-Boost Converters
- Bidirectional Charging System
- Automotive 48V Systems

DESCRIPTIOn

The LT®8708 is a high performance buck-boost switching regulator controller that operates from an input voltage that can be above, below or equal to the output voltage. Features are included to simplify bidirectional power conversion in battery/capacitor backup systems and other applications that may need regulation of $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\text {IN }}$, $\mathrm{I}_{\text {OUT }}$, and/or $\boldsymbol{l}_{\text {N. }}$. Forward and reverse current can be monitored and limited for the input and output sides of the converter. All four current limits (forward input, reverse input, forward output and reverse output) can be set independently using four resistors on the PCB.

The MODE pin can select between discontinuous conduction mode (DCM), continuous conduction mode (CCM), hybrid conduction mode (HCM) and BurstMode ${ }^{\circledR}$ operation. In combination with the DIR (direction) pin, the chip can be configured to process power only from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ or only from $\mathrm{V}_{\text {out }}$ to $\mathrm{V}_{\text {IN }}$. With a wide 2.8 V to 80 V input and 1.3 V to 80 V output range, the LT8708 is compatible with most solar, automotive, telecom and battery-powered systems.

All registered trademarks and trademarks are the property of their respective owners.

TYPICAL APPLICATION

12V Bidirectional Dual Battery System with FHCM and RHCM

tAßLE Of COOTERTS

Features 1
Applications 1
Typical Application 1
Description 1
Absolute Maximum Ratings 3
Pin Configuration 3
Order Information 4
Electrical Characteristics 4
Typical Performance Characteristics 9
Pin Functions 13
Block Diagram 15
Operation 16
Typographical Conventions 16
Start-Up 16
Start-Up: SHDN Pin 16
Start-Up: SWEN Pin 16
Start-Up: Soft-Start of Switching Regulator 17
Control Overview 17
Power Switch Control 18
Switch Control: Buck Region (VIN >> V OUT) 19
Switch Control: Buck-Boost ($\mathrm{V}_{\text {IN }} \cong \mathrm{V}_{\text {OUT }}$) 19
Switch Control: Boost Region ($\mathrm{V}_{\text {IN }} \ll \mathrm{V}_{\text {OUT }}$) 20
Switch Control: Soft-Start 20
Uni and Bidirectional Conduction 20
Bidirectional Conduction: CCM 21
Unidirectional Conduction: DCM 21
Unidirectional Conduction: HCM 22
Unidirectional Conduction: Burst Mode 22
Error Amplifiers 22
$V_{\text {OUT }}$ Regulation and Sensing 23
$V_{\text {OUT: }}$ Regulation 23
$V_{\text {OUT: }}$ Above Regulation 23
$V_{\text {OUT: }}$ Below Regulation and Undervoltage 23
$V_{\text {IN }}$ Regulation and Sensing 24
$V_{\text {IN }}$: Regulation 24
$\mathrm{V}_{\text {IN: }}$: Above Regulation and Overvoltage 24
$V_{\text {IN: }}$ Below Regulation 24
Current Monitoring and Limiting 24
Monitoring and Limiting: IMON Pins 24
Monitoring: ICP and ICN Pins 25
I^{\prime} NTV $_{\text {cc }} /$ EXTV $_{\text {CC }} /$ GATEV $_{\text {CC }} / L D 033$ Power 25
CLKOUT and Temperature Sensing 25
Applications Information 26
Verify the Power Flow Conditions 26
Operating Frequency Selection 26
Internal Oscillator 27
SYNC Pin and Clock Synchronization 27
CLKOUT Pin and Clock Synchronization 27
Inductor Current Sensing and Slope Compensation 27
RSENSE Selection and Maximum Current 28
Rense $^{\text {Selection: Max R RENSE }}$ in the Boost Region 28
$\mathrm{R}_{\text {SENSE }}$ Selection: Max RSENSE in the Buck Region 30
$R_{\text {SENSE }}$ Selection: Final RSENSE Value 31
$\mathrm{R}_{\text {SENSE }}$ Filtering 32
Inductor (L) Selection 32
L Selection: Load Current in Buck and Boost Regions 32
L Selection: Subharmonic Oscillations 33
L Selection: Maximum Current Rating 33
Power MOSFET Selection 34
$\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUT }}$ Selection 37
Schottky Diode (D1, D2, D3, D4) Selection 38
Topside MOSFET Driver Supply
($\mathrm{C}_{\mathrm{B} 1}, \mathrm{D}_{\mathrm{B} 1}, \mathrm{C}_{\mathrm{B} 2}, \mathrm{D}_{\mathrm{B} 2}$) 39
Top Driver: Boost Cap Charge Control Block 39
Top Driver: Boost Diodes $\mathrm{D}_{\mathrm{B} 1}$ and $\mathrm{D}_{\mathrm{B} 2}$ 39
VINHIMON, VOUTLOMON and RVSOFF 39
$I_{\text {IN }}$ and $I_{\text {OUT }}$ Current Monitoring and Limiting 42
Loop Compensation 44
INTV ${ }_{C C}$ Regulators and EXTV ${ }_{\text {CC }}$ Connection 45
LD033 Regulator 45
Voltage Lockouts 46
Junction Temperature Measurement 46
Thermal Shutdown 47
Efficiency Considerations 47
Circuit Board Layout Checklist 47
Hot Plugging Considerations 49
Design Example 49
Typical Applications 55
12V Bidirectional Dual Battery System with FHCM \& RHCM Details 56
48V to 14V Bidirectional Dual Battery System with FHCM \& RHCM Details 58
Package Description 63
Revision History 65
Typical Application 66
Related Parts 66

ABSOLUTE MAXIMUM RATIOGS (Note 1)

VINHIMON Voltage -0.3 V to 30 V
VOUTLOMON Voltage -0.3 V to 5 V
DIR, MODE Voltage -0.3 V to 5 V
CSNIN, CSPIN, CSPOUT, CSNOUT Voltage -0.3 V to 80 V
$\mathrm{V}_{\text {INCHIP }}$ EXTV ${ }_{\text {cc }}$ Voltage -0.3 V to 80 V
SW1, SW2 Voltage 81V (Note 6)
BOOST1, BOOST2 Voltage -0.3 V to 87 V
BG1, BG2, TG1, TG2 (Note 5)
LD033, CLKOUT (Note 8)
Operating Junction Temperature Range
LT8708E (Notes 3, 8) $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8708I (Notes 3, 8) $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8708H (Notes 3, 8) $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

pIn COnfiGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT8708EUHG\#PBF	LT8708EUHG\#TRPBF	8708	$40-$ Lead $(5 \mathrm{~mm} \times 8 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8708IUHG\#PBF	LT8708IUHG\#TRPBF	8708	$40-$ Lead $(5 \mathrm{~mm} \times 8 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8708HUHG\#PBF	LT8708HUHG\#TRPBF	8708	$40-$ Lead $(5 \mathrm{~mm} \times 8 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

AUTOMOTIVE PRODUCTS**

LT8708EUHG\#WPBF	LT8708EUHG\#WTRPBF	8708	$40-$ Lead $(5 \mathrm{~mm} \times 8 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8708IUHG\#WPBF	LT8708IUHG\#WTRPBF	8708	$40-$ Lead $(5 \mathrm{~mm} \times 8 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8708HUHG\#WPBF	LT8708HUHG\#WTRPBF	8708	40 -Lead $(5 \mathrm{~mm} \times 8 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

TRAY	PART MARKING*	PACKAGE DESCRIPTION	MSL RATING	TEMPERATURE RANGE
LT8708ELWE\#TRPBF	LT8708LWE	$64-$ Lead $(10 \mathrm{~mm} \times 10 \mathrm{~mm})$ Plastic eLQFP	3	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8708ILWE\#TRPBF	LT8708LWE	$64-$ Lead $(10 \mathrm{~mm} \times 10 \mathrm{~mm})$ Plastic eLQFP	3	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8708HLWE\#TRPBF	LT8708LWE	$64-$ Lead $(10 \mathrm{~mm} \times 10 \mathrm{~mm})$ Plastic eLQFP	3	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

AUTOMOTIVE PRODUCTS**

LT8708ELWE\#WTRPBF	LT8708LWE	$64-$ Lead $(10 \mathrm{~mm} \times 10 \mathrm{~mm})$ Plastic eLQFP	3	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8708ILWE\#WTRPBF	LT8708LWE	$64-$ Lead $(10 \mathrm{~mm} \times 10 \mathrm{~mm})$ Plastic eLQFP	3	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8708HLWE\#WTRPBF	LT8708LWE	$64-$ Lead $(10 \mathrm{~mm} \times 10 \mathrm{~mm})$ Plastic eLQFP	3	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with \#TRMPBF suffix.
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These models are designated with a \#W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

ELECTRICPL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\text {INCHIP }}=12 \mathrm{~V}, \overline{\text { SHDN }}=3 \mathrm{~V}$, DIR $=3.3 \mathrm{~V}$ unless otherwise noted (Note 3).

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Voltage Supplies and Regulators						
$V_{\text {INCHIP }}$ Operating Voltage Range	$\begin{aligned} & \operatorname{EXTV}_{C C}=0 \mathrm{~V} \\ & \text { EXTV }^{C C}=7.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 5.5 \\ & 2.8 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	V
VINCHIP Quiescent Current	$\begin{aligned} & \text { Not Switching, V VXTVCC }=0 \mathrm{~V} \\ & \text { SWEN }=3.3 \mathrm{~V} \\ & \text { SWEN }=0 \mathrm{~V} \end{aligned}$			$\begin{gathered} 3.9 \\ 2.45 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	mA mA
$V_{\text {InchiP }}$ Quiescent Current in Shutdown	$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$			0	1	$\mu \mathrm{A}$
EXTV ${ }_{\text {CC }}$ Switchover Voltage	$\mathrm{I}_{\text {INTVCC }}=-20 \mathrm{~mA}$, $\mathrm{V}_{\text {EXTVCC }}$ Rising	\bullet	6.15	6.4	6.6	V
EXTV ${ }_{\text {CC }}$ Switchover Hysteresis				0.2		V
INTV ${ }_{\text {CC }}$ Current Limit		\bullet	$\begin{aligned} & 90 \\ & 28 \end{aligned}$	$\begin{gathered} 127 \\ 42 \end{gathered}$	$\begin{aligned} & 165 \\ & 55 \end{aligned}$	mA mA
INTV ${ }_{\text {CC }}$ Voltage	Regulated from $\mathrm{V}_{\text {INCHIP, }} \mathrm{I}_{\text {INTVCC }}=20 \mathrm{~mA}$ Regulated from EXTV ${ }_{\text {CC }}(12 \mathrm{~V}), \mathrm{I}_{\text {INTVCC }}=20 \mathrm{~mA}$	\bullet	$\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	V
INTV ${ }_{\text {CC }}$ Load Regulation	$\mathrm{I}_{\text {INTVCC }}=0 \mathrm{~mA}$ to 50 mA			-0.5	-1.5	\%
INTV ${ }_{\text {CC }}$, GATEV ${ }_{\text {CC }}$ Undervoltage Lockout	INTV $_{\text {CC }}$ Falling, GATEV ${ }_{\text {CC }}$ Connected to INTV ${ }_{\text {CC }}$	\bullet	4.45	4.65	4.85	V

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\text {INCHIP }}=12 \mathrm{~V}, \mathrm{SHDN}=3 \mathrm{~V}, \mathrm{DIR}=3.3 \mathrm{~V}$ unless otherwise noted (Note 3).

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
INTV $_{\text {CC }}$, GATEV $_{\text {CC }}$ Undervoltage Lockout Hysteresis	GATEV $_{\text {CC }}$ Connected to INTV ${ }_{\text {CC }}$			170		mV
INTV ${ }_{\text {CC }}$ Regulator Dropout Voltage	$\mathrm{V}_{\text {INCHIP }}-\mathrm{V}_{\text {INTVCC }}, \mathrm{I}_{\text {INTVCC }}=20 \mathrm{~mA}$			220		mV
LD033 Pin Voltage	5 mA from LD033 Pin	\bullet	3.23	3.295	3.35	V
LD033 Pin Load Regulation	$\mathrm{I}_{\text {LD033 }}=0.1 \mathrm{~mA}$ to 5 mA			-0.25	-1	\%
LD033 Pin Current Limit	SYNC $=3 \mathrm{~V}$	\bullet	12	17.25	22	mA
LD033 Pin Undervoltage Lockout	LD033 Falling		2.96	3.04	3.12	V
LD033 Pin Undervoltage Lockout Hysteresis				35		mV

Switching Regulator Control

ELECTRICAL CHARACTERISTICS The odenotes she sesefifiations witich paply were the tull opeating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\text {INCHIP }}=12 \mathrm{~V}, \overline{\mathrm{SHDN}}=3 \mathrm{~V}$, DIR $=3.3 \mathrm{~V}$ unless otherwise noted (Note 3).

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Voltage Regulation Loops (Refer to Block Diagram to Locate Amplifiers)						
Regulation Voltage for FBOUT	Regulate $\mathrm{V}_{\text {c }}$ to 1.2 V	\bullet	1.193	1.207	1.222	V
Regulation Voltage for FBIN	Regulate V_{C} to 1.2 V	\bullet	1.184	1.205	1.226	V
Line Regulation for FBOUT and FBIN Error Amp Reference Voltage	$\mathrm{V}_{\text {INCHIP }}=12 \mathrm{~V}$ to 80V. Not Switching			0.002	0.005	\%/V
FBOUT Pin Bias Current	Current Out of Pin			15		nA
FBOUT Error Amp EA4 gm_{m}				345		$\mu \mathrm{mho}$
FBOUT Error Amp EA4 Voltage Gain				245		V/V
VOUTLOMON Voltage Activation Threshold	Falling	\bullet	1.185	1.207	1.225	V
VOUTLOMON Threshold Voltage Hysteresis				24		mV
VOUTLOMON Pin Bias Current	$V_{\text {voutlomon }}=1.24 \mathrm{~V}$, Current Into Pin $V_{\text {VOUTLOMON }}=1.17 \mathrm{~V}$, Current Into Pin	\bullet	0.8	$\begin{gathered} 0.01 \\ 1 \end{gathered}$	1.2	$\mu \mathrm{A}$ $\mu \mathrm{A}$
FBIN Pin Bias Current	Current Out of Pin			10		nA
FBIN Error Amp EA3 gm				235		$\mu \mathrm{mho}$
FBIN Error Amp EA3 Voltage Gain				150		V/V
VINHIMON Voltage Activation Threshold	Rising	\bullet	1.185	1.207	1.23	V
VINHIMON Threshold Voltage Hysteresis				24		mV
VINHIMON Pin Bias Current	$\mathrm{V}_{\text {VINHimon }}=1.17 \mathrm{~V}$, Current Out of Pin $V_{\text {VINHIMON }}=1.24 \mathrm{~V}$, Current Out of Pin	\bullet	0.8	$\begin{gathered} 0.03 \\ 1 \end{gathered}$	1.2	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Current Regulation Loops (Refer to Block Diagram to Locate Amplifiers)

Regulation Voltages for IMON_INP and IMON_OP	$V_{C}=1.2 \mathrm{~V}$	\bullet	1.185	1.209	1.231	V
Regulation Voltages for IMON_INN and IMON_ON	$\mathrm{V}_{\mathrm{C}}=1.2 \mathrm{~V}$	\bullet	1.185	1.21	1.24	V
Line Regulation for IMON_INP, IMON_INN, IMON_OP and IMON_ON Error Amp Reference Voltage	$\mathrm{V}_{\text {INCHIP }}=12 \mathrm{~V}$ to 80V			0.002	0.005	\%/V
CSPIN Bias Current	$\begin{array}{\|l\|} \hline V_{\text {CSPIN }}=12 \mathrm{~V} \\ V_{\text {CSPIN }}=1.5 \mathrm{~V} \\ \hline \end{array}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
CSNIN Bias Current	BOOST Capacitor Charge Control Block Not Active $\begin{aligned} & V_{\text {SWEN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CSPIN }}=\mathrm{V}_{\text {CSNIN }}=12 \mathrm{~V} \\ & V_{\text {SWEN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CSPIN }}=\mathrm{V}_{\text {CSNIN }}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {SWEN }}=0 \mathrm{~V} \end{aligned}$			$\begin{gathered} 84 \\ 4.25 \\ 0.01 \end{gathered}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
CSPIN, CSNIN Common Mode Operating Voltage Range		\bullet	0		80	V
CSPIN, CSNIN Differential Mode Operating Voltage Range		\bullet	-100		100	mV
IMON_INP Output Current	$V_{\text {CSPIN }}-V_{\text {CSNIN }}=50 \mathrm{mV}, \mathrm{V}_{\text {CSNIN }}=5 \mathrm{~V}$ $V_{\text {CSPIN }}-V_{\text {CSNIN }}=50 \mathrm{mV}, V_{\text {CSNIN }}=5 \mathrm{~V}$ $V_{\text {CSPIN }}-V_{\text {CSNIN }}=5 \mathrm{mV}, \mathrm{V}_{\text {CSNIN }}=5 \mathrm{~V}$ $V_{\text {CSPIN }}-V_{\text {CSNIN }}=5 \mathrm{mV}, V_{\text {CSNIN }}=5 \mathrm{~V}$	\bullet	$\begin{gathered} \hline 67 \\ 64.5 \\ 22.5 \\ 20 \end{gathered}$	$\begin{aligned} & 70 \\ & 70 \\ & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 73 \\ 75.5 \\ 27.5 \\ 30 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
IMON_INN Output Current	$\begin{aligned} & \hline V_{\text {CSNIN }}-V_{\text {CSPIN }}=50 \mathrm{mV}, V_{\text {CSNIN }}=5 \mathrm{~V} \\ & V_{\text {CSNIN }}-V_{\text {CSPIN }}=50 \mathrm{mV}, V_{\text {CSNIN }}=5 \mathrm{~V} \\ & V_{\text {CSNIN }}-V_{\text {CSPIN }}=5 \mathrm{mV}, V_{\text {CSNIN }}=5 \mathrm{~V} \\ & V_{\text {CSNIN }}-V_{\text {CSPIN }}=5 \mathrm{mV}, V_{\text {CSNIN }}=5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 66 \\ & 65 \\ & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} 74 \\ 75 \\ 30.5 \\ 32 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
IMON_INP and IMON_INN Max Output Current		\bullet	120			$\mu \mathrm{A}$
IMON_INP Error Amp EA5 gm				190		$\mu \mathrm{mho}$
IMON_INP Error Amp EA5 Voltage Gain				130		V/
IMON_INN Error Amp EA1 gm	FBIN $=0 \mathrm{~V}, \mathrm{FBOUT}=3.3 \mathrm{~V}$			190		$\mu \mathrm{mho}$

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\text {INCHIP }}=12 \mathrm{~V}, \overline{\mathrm{SHDN}}=3 \mathrm{~V}$, DIR $=3.3 \mathrm{~V}$ unless otherwise noted (Note 3).| PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IMON_INN Error Amp EA1 Voltage Gain | FBIN $=0 \mathrm{~V}$, FBOUT $=3.3 \mathrm{~V}$ | | | 130 | | V/V |
| CSPOUT Bias Current | $\begin{aligned} & V_{\text {CSPOUT }}=12 \mathrm{~V} \\ & \mathrm{~V}_{\text {CSPOUT }}=1.5 \mathrm{~V} \end{aligned}$ | | | $\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$ | | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| CSNOUT Bias Current | BOOST Capacitor Charge Control Block Not Active $\begin{aligned} & V_{\text {SWEN }}=3.3 \mathrm{~V}, V_{\text {CSPOUT }}=V_{\text {CSNOUT }}=12 \mathrm{~V} \\ & V_{\text {SWEN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CSPOUT }}=V_{\text {CSNOUT }}=1.5 \mathrm{~V} \\ & V_{\text {SWEN }}=0 \mathrm{~V} \end{aligned}$ | | | $\begin{gathered} 83 \\ 4.25 \\ 0.01 \end{gathered}$ | | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| CSPOUT, CSNOUT Common Mode Operating Voltage Range | | \bullet | 0 | | 80 | V |
| CSPOUT, CSNOUT Differential Mode Operating Voltage Range | | \bullet | -100 | | 100 | mV |
| IMON_OP, ICP Output Current | $\begin{aligned} & V_{\text {CSPOUT }}-V_{\text {CSNOUT }}=50 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V} \\ & V_{\text {CSPOUT }}-V_{\text {CSNOUT }}=50 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V} \\ & V_{\text {CSPOUT }}-V_{\text {CSNOUT }}=5 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V} \\ & V_{\text {CSPOUT }}-V_{\text {CSNOUT }}=5 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V}(\text { QFN }) \\ & V_{\text {CSPOUT }}-V_{\text {CSNOUT }}=5 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V}(\text { LWE }) \\ & V_{\text {CSPOUT }}-V_{\text {CSNOUT }}=-5 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V} \\ & V_{\text {CSPOUT }}-V_{\text {CSNOUT }}=-5 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{gathered} \hline 67 \\ 65 \\ 22.5 \\ 20.5 \\ 20.5 \\ 12.5 \\ 10.5 \\ \hline \end{gathered}$ | $\begin{aligned} & 70 \\ & 70 \\ & 25 \\ & 25 \\ & 25 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 73 \\ 76 \\ 27.5 \\ 29 \\ 30 \\ 17.5 \\ 19.5 \\ \hline \end{gathered}$ | $\mu \mathrm{A}$ |
| IMON_ON, ICN Output Current | $V_{\text {CSNOUT }}-V_{\text {CSPOUT }}=50 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V}$
 $V_{\text {CSNOUT }}-V_{\text {CSPOUT }}=50 \mathrm{mV}$, $V_{\text {CSNOUT }}=5 \mathrm{~V}$
 $V_{\text {CSNOUT }}-V_{\text {CSPOUT }}=5 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V}$
 $V_{\text {CSNOUT }}-V_{\text {CSPOUT }}=5 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V}$
 $V_{\text {CSNOUT }}-V_{\text {CSPOUT }}=-5 \mathrm{mV}, V_{\text {CSNOUT }}=5 \mathrm{~V}$
 $V_{\text {CSNOUT }}-V_{\text {CSPOUT }}=-5 m V, V_{\text {CSNOUT }}=5 \mathrm{~V}$ | - | $\begin{gathered} \hline 67 \\ 65 \\ 22.5 \\ 20.5 \\ 12.5 \\ 10.5 \end{gathered}$ | $\begin{aligned} & 70 \\ & 70 \\ & 25 \\ & 25 \\ & 15 \\ & 15 \end{aligned}$ | $\begin{gathered} \hline 73 \\ 75 \\ 27.5 \\ 29 \\ 17.5 \\ 19.5 \end{gathered}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| IMON_OP, IMON_ON, ICP and ICN Max Output Current | | \bullet | 120 | | | $\mu \mathrm{A}$ |
| IMON_OP Error Amp EA6 g_{m} | | | | 190 | | $\mu \mathrm{mho}$ |
| IMON_OP Error Amp EA6 Voltage Gain | | | | 130 | | V/V |
| IMON_ON Error Amp EA2 gm | FBIN $=0 \mathrm{~V}$, FBOUT $=3.3 \mathrm{~V}$ | | | 190 | | $\mu \mathrm{mho}$ |
| IMON_ON Error Amp EA2 Voltage Gain | FBIN $=0 \mathrm{~V}, \mathrm{FBOUT}=3.3 \mathrm{~V}$ | | | 130 | | V/V |

NMOS Gate Drivers

TG1, TG2 Rise Time	$\mathrm{C}_{\text {LOAD }}=3300 \mathrm{pF}$ (Note 4)	20	ns
TG1, TG2 Fall Time	$\mathrm{C}_{\text {LOAD }}=3300 \mathrm{pF}$ (Note 4)	20	ns
BG1, BG2 Rise Time	$\mathrm{C}_{\text {LOAD }}=3300 \mathrm{pF}$ (Note 4)	20	ns
BG1, BG2 Fall Time	$\mathrm{C}_{\text {LOAD }}=3300 \mathrm{pF}$ (Note 4)	20	ns
TG1 Off to BG1 On Delay	$\mathrm{C}_{\text {LOAD }}=3300 \mathrm{pF}$ Each Driver	90	ns
BG1 Off to TG1 On Delay	$\mathrm{C}_{\text {LOAD }}=3300 \mathrm{pF}$ Each Driver	80	ns
TG2 Off to BG2 On Delay	$C_{\text {LOAD }}=3300 \mathrm{pF}$ Each Driver	90	ns
BG2 Off to TG2 On Delay	$C_{\text {LOAD }}=3300 \mathrm{pF}$ Each Driver	80	ns
Minimum On-Time for Main Switch in Boost Operation ($\mathrm{t}_{\mathrm{ON}(\mathrm{M} 3, \mathrm{MIN})}$)	Switch M3, CLOAD $=3300 \mathrm{pF}$	200	ns
Minimum On-Time for Synchronous Switch in Buck Operation ($\mathrm{t}_{\mathrm{ON}(\mathrm{M} 2, \mathrm{MIN})}$)	Switch M2, CLOAD $=3300 \mathrm{pF}$	200	ns
Minimum Off-Time for Main Switch in Steady-State Boost Operation	Switch M3, CLOAD $=3300 \mathrm{pF}$	230	ns
Minimum Off-Time for Synchronous Switch in Steady-State Buck Operation	Switch M2, CLOAD $=3300 \mathrm{pF}$	230	ns

ELECTRICAL CHARACTERISTICS The o denotes the specifications which apply over the tull operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\text {INCHIP }}=12 \mathrm{~V}, \overline{\mathrm{SHDN}}=3 \mathrm{~V}$, DIR $=3.3 \mathrm{~V}$ unless otherwise noted (Note 3).

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Oscillator						
Switch Frequency Range	SYNCing or Free Running		100		400	kHz
Switching Frequency, Fosc	$\begin{aligned} & \mathrm{R}_{\mathrm{T}}=365 \mathrm{k} \\ & \mathrm{R}_{\mathrm{T}}=215 \mathrm{k} \\ & \mathrm{R}_{\mathrm{T}}=124 \mathrm{k} \end{aligned}$	$\begin{array}{\|l\|} \hline \bullet \\ \bullet \\ \hline \end{array}$	$\begin{aligned} & 102 \\ & 170 \\ & 310 \end{aligned}$	$\begin{aligned} & 120 \\ & 202 \\ & 350 \end{aligned}$	$\begin{aligned} & 142 \\ & 235 \\ & 400 \end{aligned}$	kHz kHz kHz
SYNC High Level for Synchronization		\bullet	1.3			V
SYNC Low Level for Synchronization		\bullet			0.5	V
SYNC Clock Pulse Duty Cycle	$\mathrm{V}_{\text {SYNC }}=0 \mathrm{~V}$ to 2 V		20		80	\%
Recommended Min SYNC Ratio FSYNc/Fosc				3/4		
CLKOUT Output Voltage High	$V_{\text {LDO33 }}-V_{\text {CLKOUT }}, 1 m A$ Out of CLKOUT Pin, $\mathrm{I}_{\mathrm{LD} 033}=0 \mu \mathrm{~A}$			100	250	mV
CLKOUT Output Voltage Low	1mA Into CLKOUT Pin			25	100	mV
CLKOUT Duty Cycle	$\begin{aligned} & \mathrm{T}_{J}=-40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 22.7 \\ 44.1 \\ 77 \end{gathered}$		\% $\%$ $\%$

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $V_{\text {INCHIP }}=12 \mathrm{~V}$, SHDN $=3 V$, DIR $=3 \mathrm{~V}$ unless otherwise noted (Note 3).

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CLKOUT Rise Time	CLOAD $=200 \mathrm{pF}$	20	ns		
CLKOUT Fall Time	CLOAD $^{2}=200 \mathrm{pF}$		20	ns	
CLKOUT Phase Delay	SYNC Rising to CLKOUT Rising, fosc $=100 \mathrm{kHz}$	\bullet	160	180	200

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Do not force voltage on the V_{C} pin.
Note 3: The LT8708E is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ junction temperature. Specifications over the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating junction temperature range are assured by design, characterization and correlation with statistical process controls. The LT8708I is guaranteed over the full $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ junction temperature range. The LT 8708 H is guaranteed over the full $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating junction temperature range.
Note 4: Rise and fall times are measured using 10% and 90% levels. Delay times are measured using 50% levels.

Note 5: Do not apply a voltage or current source to these pins. They must be connected to capacitive loads only, otherwise permanent damage may occur.
Note 6: Negative voltages on the SW1 and SW2 pins are limited, in an application, by the body diodes of the external NMOS devices, M2 and M3, or parallel Schottky diodes when present. The SW1 and SW2 pins are tolerant of these negative voltages in excess of one diode drop below ground, guaranteed by design.
Note 7: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperature will exceed the maximum operating junction temperature when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.
Note 8: Do not force voltage or current into these pins.

TYPICAL PERFORMANCE CHARACTERISTICS

8708 G04

Maximum Inductor Current Sense Voltage vs Duty Cycle

Efficiency vs Output Current
(Buck Region - page 59)

Feedback Voltages (Five Parts)

Inductor Current Sense Voltage at Minimum Duty Cycle

Efficiency vs Output Current
(Buck-Boost Region - page 59)

Maximum Inductor Current Sense Voltage at Minimum Duty Cycle

TYPICAL PERFORMANCG CHARACTERISTICS

Maximum and Minimum V_{C} vs $S S$

CLKOUT Duty Cycle

INTV $_{\text {cc }}$ Line Regulation
$\left(\right.$ EXTV $_{\text {CC }}=0 \mathrm{~V}$)

INTV $_{\text {cc }}$ Line Regulation
$\left(V_{I N}=12 V\right)$

LD033 Pin Regulation
($\mathrm{L}_{\mathrm{LDO} 33}=1 \mathrm{~mA}$)

Minimum Inductor Current Sense Voltage at Minimum Duty Cycle

8708 G12

$V_{\text {IN }}$ Supply Current vs Voltage (Not Switching)

TYPICAL PERFORMANCE CHARACTERISTICS

Internal $V_{\text {IN }}$ UVLO

$\overline{\text { SHDN }}$ and SWEN Pin Thresholds
vs Temperature

VINHIMON and VOUTLOMON Pin
Thresholds vs Temperature

VINHIMON and VOUTLOMON Pin
Hysteresis Current vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

Discontinuous Mode (page 59)

$V_{B A T}=38 \mathrm{~V}$
$\mathrm{V}_{\text {LOAD }}=47.4 \mathrm{~V}$

Continuous Mode (page 59)

$V_{B A T}=48 \mathrm{~V}$
$V_{\text {LOAD }}=47.4 \mathrm{~V}$

Continuous Mode (page 59)

$V_{\text {BAT }}=52 \mathrm{~V}$
$\mathrm{V}_{\mathrm{LOAD}}=47.4 \mathrm{~V}$

Continuous Mode (page 59)

$V_{\text {BAT }}=38 \mathrm{~V}$
$V_{\text {LOAD }}=47.4 \mathrm{~V}$

$V_{B A T}=52 \mathrm{~V}$
$V_{\text {LOAD }}=47.4 \mathrm{~V}$
LOAD STEP = 2A TO 4A

Load Step (page 59)

$V_{\text {BAT }}=38 \mathrm{~V}$
$V_{\text {LOAD }}=47.4 \mathrm{~V}$
LOAD STEP = 2A TO 4A

Load Step (page 59)

$V_{B A T}=48 \mathrm{~V}$
$V_{\text {LOAD }}=47.4 \mathrm{~V}$
LOAD STEP $=2 \mathrm{~A}$ TO 4A

PIn FUnCTIOnS (afN/LLOFP)

CLKOUT (Pin 1/Pin 63): Clock Output Pin. Use this pin to synchronize one or more compatible switching regulator ICs to the LT8708. CLKOUT toggles at the same frequency as the internal oscillator or as the SYNC pin, but is approximately 180° out of phase. CLKOUT may also be used as a temperature monitor since the CLKOUT duty cycle varies linearly with the part's junction temperature. The CLKOUT pin can drive capacitive loads up to 200pF.

SS (Pin 2/Pin 2): Soft-Start Pin. Place at least 220nF of capacitance here. Upon start-up, this pin will be charged by an internal resistor to 3.3V.
SHDN (Pin 3/Pin 3): Shutdown Pin. Tie high to enable chip. Ground to shut down and reduce quiescent current to a minimum. Don't float this pin.
CSN (Pin 4/Pin 4): The (-) Input to the Inductor Current Sense and DCM Detect Comparator.

CSP (Pin 5/Pin 5): The (+) Input to the Inductor Current Sense and DCM Detect Comparator. The V_{C} pin voltage and built-in offsets between CSP and CSN pins, in conjunction with the RSENSE value, set the inductor current trip threshold.

ICN (Pin 6/Pin 6): Negative $\mathrm{V}_{\text {OUT }}$ Current Monitor. The current out of this pin is $20 \mu \mathrm{~A}$ plus a current proportional to the negative average $\mathrm{V}_{\text {OUT }}$ current. See the Applications Information section for more information.

DIR (Pin 7/Pin 7): Direction pin when MODE is set for DCM (discontinuous conduction mode) or HCM (hybrid conduction mode) operation. Otherwise this pin is ignored. Connect the pin to GND to process power from the $V_{\text {OUT }}$ to V_{IN}. Connect the pin to LD033 to process power from the $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$.
FBIN (Pin 8/Pin 8): VIN Feedback Pin. This pin is connected to the input of error amplifier EA3 and is used to detect and/or regulate low $\mathrm{V}_{\text {IN }}$ voltage.
FBOUT (Pin 9/Pin 9): V V $_{\text {OUT }}$ Feedback Pin. This pin is connected to the input of error amplifier EA4 and is used to detect and/or regulate high $\mathrm{V}_{\text {OUT }}$ voltage.
$\mathbf{V}_{\mathbf{C}}$ (Pin 10/Pin 10): ErrorAmplifier Output Pin. Tie external compensation network to this pin.

IMON_INP (Pin 11/Pin 11): Positive VIN Current Monitor and Limit Pin. The current out of this pin is $20 \mu \mathrm{~A}$ plus a current proportional to the positive average $\mathrm{V}_{\text {IN }}$ current. IMON_INP also connects to error amplifier EA5 and can be used to limit the maximum positive $\mathrm{V}_{\text {IN }}$ current. See the Applications Information section for more information.
IMON_INN (Pin 12/Pin 12): Negative VIN Current Monitor and Limit Pin. The current out of this pin is $20 \mu \mathrm{~A}$ plus a current proportional to the negative average $\mathrm{V}_{\text {IN }}$ current. IMON_INN also connects to error amplifier EA1 and can be used to limit the maximum negative $V_{I N}$ current. See the Applications Information section for more information.
RT (Pin 13/Pin 13): Timing ResistorPin. Adjusts the switching frequency. Place a resistor from this pin to ground to set the frequency. Do not float this pin.

SYNC (Pin 14/Pin 14): To synchronize the switching frequency to an outside clock, simply drive this pin with a clock. The high voltage level of the clock needs to exceed 1.3 V , and the low level should be less than 0.5 V . Drive this pin to less than 0.5 V to revert to the internal free-running clock. See the Applications Information section for more information.

BG1, BG2 (Pin 16/Pin 20, Pin 18/Pin 22): Bottom Gate Drive. Drives the gate of the bottom N-channel MOSFETs between ground and GATEV ${ }_{\text {cc }}$.

GATEV ${ }_{\text {cC }}$ (Pin 17/Pin 21): Power supply for bottom gate drivers. Must be connected to the INTV ${ }_{C C}$ pin. Do not power from any other supply. Locally bypass to GND.
BOOST1, BOOST2 (Pin 24/Pin 35, Pin 19/Pin 24): Boosted Floating Driver Supply. The (+) terminal of the bootstrap capacitor connects here. The BOOST1 pin swings from a diode voltage below GATEV $_{C C}$ up to $V_{I N}+$ GATEV $_{\text {CC }}$. The BOOST2 pin swings from a diode voltage below GATEV ${ }_{C C}$ up to $V_{\text {OUT }}+$ GATEV $_{\text {CC }}$.

TG1, TG2 (Pin 23/Pin 34, Pin 20/Pin 25): Top Gate Drive. Drives the top N-channel MOSFETs with voltage swings equal to GATEV ${ }_{\text {CC }}$ superimposed on the switch node voltages.
SW1, SW2 (Pin 22/Pin 33, Pin 21/Pin 26): Switch Nodes. The (-) terminals of the bootstrap capacitors connect here.

PIn functions (afvelofp)

RVSOFF (Pin 25/Pin 37): ReverseConduction Disable Pin. This is an input/output open-drain pin that requires a pull up resistor. Pulling this pin low disables reverse current operation. See the Uni and Bidirectional Conduction section for more information.

VOUTLOMON (Pin 26/Pin 38): VOUT Low Voltage Monitor Pin. Connect $\pm 1 \%$ resistor divider between $\mathrm{V}_{\text {OUT }}$, VOUTLOMON and GND to set an undervoltage level on Vout. When $\mathrm{V}_{\text {OUT }}$ is lower than this level, reverse conduction is disabled to prevent drawing current from $V_{\text {OUT }}$. See the Applications Information section for more information.
VINHIMON (Pin 27/Pin 39): VIN High Voltage Monitor Pin. Connect a $\pm 1 \%$ resistor divider between V_{IN}, VINHIMON and GND in order to set an overvoltage level on $\mathrm{V}_{\text {IN }}$. When $V_{\text {IN }}$ is higher than this level, reverse conduction is disabled to prevent current flow into $\mathrm{V}_{\text {IN }}$. See the Applications Information section for more information.

ICP (Pin28/Pin 40): Positive V ${ }_{\text {OUT }}$ Current Monitor Pin. The current out of this pin is $20 \mu \mathrm{~A}$ plus a current proportional to the positive average $\mathrm{V}_{\text {OUT }}$ current. See the Applications Information section for more information.

EXTV ${ }_{\text {CC }}$ (Pin 29/Pin 42): External $V_{C C}$ Input. When EXTV ${ }_{C C}$ exceeds 6.4 V (typical), INTV ${ }_{\text {CC }}$ will be powered from this pin. When EXTV ${ }_{\text {CC }}$ is lower than 6.4 V , the $\mathrm{INTV}_{\text {CC }}$ will be powered from VINCHIP.

CSPOUT (Pin 30/Pin 46): The (+) Input to the $\mathrm{V}_{\text {OUT }}$ Current Monitor Amplifier. This pin and the CSNOUT pin measure the voltage across the sense resistor, $\mathrm{R}_{\text {SENSE2, }}$, to provide the $\mathrm{V}_{\text {OUT }}$ current signals. Connect this pin to $\mathrm{V}_{\text {OUT }}$ when not in use. See Applications Information section for proper use of this pin.

CSNOUT (Pin 31/Pin 47): The (-) Input to the $\mathrm{V}_{\text {OUT }}$ Current Monitor Amplifier. Connect this pin to $\mathrm{V}_{\text {out }}$ when not in use. See Applications Information section for proper use of this pin.
CSNIN (Pin 32/Pin 52): The (-) Input to the $\mathrm{V}_{\text {IN }}$ Current Monitor Amplifier. This pin and the CSPIN pin measure the voltage across the sense resistor, R RENSE1, to provide the $\mathrm{V}_{\text {IN }}$ current signals. Connect this pin to $\mathrm{V}_{\text {IN }}$ when not in use. See Applications Information section for proper use of this pin.

CSPIN (Pin 33/Pin 53): The (+) Input to the $\mathrm{V}_{\text {IN }}$ Current Monitor Amplifier. Connect this pin to $V_{\text {IN }}$ when not in use. See Applications Information section for proper use of this pin.
$V_{\text {INCHIP }}$ (Pin 34/Pin 55): Main Input Supply Pin for the LT8708. It must be locally bypassed to ground.

INTV ${ }_{\text {CC }}$ (Pin 35/Pin 57): 6.3V Regulator Output. Must be connected to the GATEV ${ }_{\text {CC }}$ pin. INTV ${ }_{\text {CC }}$ is powered from $E^{2} T_{\text {CC }}$ when the EXTV ${ }_{C C}$ voltage is higher than 6.4 V , otherwise INTV ${ }_{\text {CC }}$ is powered from $V_{\text {INCHIP. }}$ Bypass this pin to ground with a minimum $4.7 \mu \mathrm{~F}$ ceramic capacitor.

SWEN (Pin36/Pin58): Switching Regulator Enable Pin. Tie high through a resistor to enable the switching. Ground to disable switching. This pin is pulled down during shutdown, a thermal lockout or when an internal UVLO (undervoltage lockout) is detected. Don't float this pin. See the Start-Up: SWEN Pin section for more details.

MODE (Pin 37/Pin 59): Conduction Mode Select Pin. The voltage applied to this pin sets the conduction mode of the controller. Apply less than 0.4 V to enable continuous conduction mode (CCM). Apply 0.8 V to 1.2 V to enable the hybrid conduction mode (HCM). Apply 1.6 V to 2.0 V to enable the discontinuous conduction mode (DCM). Apply more than 2.4 V to enable Burst Mode operation.
IMON_OP (Pin 38/Pin 60): Positive VouT Current Monitor and Limit Pin. The current out of this pin is $20 \mu \mathrm{~A}$ plus a current proportional to the positive average $\mathrm{V}_{\text {OUT }}$ current. IMON_OP also connects to error amplifier EA6 and can be used to limit the maximum positive $\mathrm{V}_{\text {Out }}$ current. See the Applications Information section for more information.
IMON_ON (Pin 39/Pin 61): Negative V VUT Current Monitor and Limit Pin. The current out of this pin is $20 \mu \mathrm{~A}$ plus a current proportional to the negative average $\mathrm{V}_{\text {Out }}$ current. IMON_ON also connects to error amplifier EA2 and can be used to limit the maximum negative $\mathrm{V}_{\text {OUT }}$ current. See the Applications Information section for more information.
LD033 (Pin 40/Pin 62):3.3V Regulator Output. Bypassthis pin to ground with a minimum $0.1 \mu \mathrm{~F}$ ceramic capacitor.
GND (Pin 15/Pin 19, Exposed Pad Pin 41/Pin65):Ground. Tie directly to local ground plane.

BLOCK DIAGRAM

Figure 1. Block Diagram

operation

TYPOGRAPHICAL CONVENTIONS

The LT8708 is a high performance 4-switch buck-boost controller that includes features to facilitate bidirectional current and power flow. Using the LT8708, an application can command power to be delivered from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ or from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$ as needed. Some terms, listed below, are used throughoutthis data sheet in reference to the direction of currentand power flow. In orderto clarify these directionbased concepts, these terms are defined as follows:
$\mathbf{V}_{\mathbb{I N}}$ and $\mathrm{I}_{\mathbb{N}}:$ The V_{IN} side of circuits drawn in this data sheet will always be on the left. $\mathrm{V}_{\text {IN }}$ is connected to the SW1 side of the buck-boost inductor through M1. I_{IN} is the V_{IN} current.
$V_{\text {OUT }}$ and \quad The $V_{\text {OUT }}$ side of circuits drawn in this data $I_{\text {OUT: }} \quad$ sheet will always be on the right. $V_{\text {OUT }}$ is connected to the SW2 side of the buck-boost inductor through M4. I IUT is the $\mathrm{V}_{\text {OUT }}$ current.
Supply Power Source. The power source is most (Input): commonly applied to $\mathrm{V}_{\text {IN }}$. However, $\mathrm{V}_{\text {OUT }}$ can be a Supply (or Input) when power is being delivered from $V_{\text {OUT }}$ to $V_{\text {IN }}$.
Load Devices that are consuming the power. The (Output): Load is most commonly connected to $\mathrm{V}_{\text {OUT }}$. However, $\mathrm{V}_{\text {IN }}$ can connect to the Load (or Output) when power is being delivered from $V_{\text {OUt }}$ to $\mathrm{V}_{\text {In. }}$.
Forward Current or power flowing from the V_{IN} or
Conduction: SW1 node (or side) to the $\mathrm{V}_{\text {OUT }}$ Or SW2 node (or side) of the circuit. This is generally left to right on schematics.
Reverse Current or power flowing from the $\mathrm{V}_{\text {OUT }}$ or Conduction: SW2 node (or side) to the $\mathrm{V}_{\mathbb{I N}}$ or SW 1 node (or side) of the circuit. This is general right to left on schematics.
Positive Current that flows from the SW1 side of the Current: buck-boost inductor to the SW2 side. Also refers to current that flows from $\mathrm{V}_{\text {IN }}$ and/ or into $\mathrm{V}_{\text {OUT. }}$
Reverse Current that flows from the SW2 side of the Current: buck-boost inductor to the SW1 side. Also refers to current that flows from $\mathrm{V}_{\text {OUT }}$ and/ or into $\mathrm{V}_{\text {IN }}$.

Refer to the Block Diagram (Figure 1) when reading the following sections about the operation of the LT8708.

START-UP

Figure 2 illustrates the start-up sequence for the LT8708.

Start-Up: SHDN Pin

The master shutdown pin for the chip is $\overline{\text { SHDN. When driven }}$ below 0.35V (LT8708E, LT8708I) or 0.3 V (LT8708H), the chip is disabled (CHIP OFF state) and quiescent current is minimal. Increasing the SHDN voltage can increase quiescent current but will not enable the chip until SHDN is driven above 1.221 V (typical) after which the INTV ${ }_{\text {CC }}$ and LDO33 regulators are enabled (SWITCHER OFF 1 state). External devices powered by LD033 can become active at this time if enough voltage is available on $\mathrm{V}_{\text {INCHIP }}$ or EXTV $_{\text {CC }}$ to raise $\mathrm{INTV}_{\mathrm{CC}}$, and thus LDO33, to an adequate voltage.

Start-Up: SWEN Pin

The SWEN pin is used to enable the switching regulator after the chip has also been enabled by driving SHDN high. SWEN must be pulled high through a resistor to enable the switching regulator. The typical activation threshold is 1.208 V as shown in the Electrical Characteristics section. When the SWEN pin voltage is below the activation threshold, the CSP-CSN, CSPIN-CSNIN and CSPOUT-CSNOUT current sense circuits on the chip are disabled.

SWEN has an internal pull-down that is activated when the switching regulator is unable to operate (see CHIP OFF and SWITCHER OFF 1 states in Figure 2). After the chip is able to operate and SWEN is internally pulled down below 0.8 V (typical), the internal SWEN pull-down is disabled and start-up can proceed past the SWITCHER OFF1 state.

LD033 or INTV CC are convenient nodes to pull SWEN up to. Choose a pull-up resistor value that limits the current to less than $200 \mu A$ when SWEN is pulled low. The SWEN pin can also be digitally driven through a current limiting resistor. Note in the Electrical Characteristics section, the SWEN output low voltage is 0.9 V (typical) when SHDN is low and/or $\mathrm{V}_{\text {INCHIP }}$ is unpowered. The SWEN output low is 0.2 V when SHDN is 3 V and $\mathrm{V}_{\text {INCHIP }}$ is powered.

OPERATION

Figure 2. Start-Up Sequence (All Values are Typical)

Start-Up: Soft-Start of Switching Regulator

In the INITIALIZE state, the SS (soft-start) pin is pulled low to prepare for soft-starting the switching regulator. After SS has been discharged to less than 50 mV , the SOFT-START state begins. In this state, as SS gradually rises, the soft-start circuitry provides a gradual ramp of V_{C} and the inductor current in the appropriate direction (refer to the V_{C} vs SS Voltage graph in the Typical Performance Characteristics section). This prevents abrupt surges of inductor current and helps the output voltage ramp smoothly into regulation. See the Switch Control: Soft-Start section for information about the power switch control during soft-start.
During soft-start, an integrated 180k (typical) resistor pulls SS up to 3.3 V . The rising ramp rate of the SS pin voltage is set by this 180k resistor and the external capacitor
connected to this pin. When SS reaches 1.8 V (typical), the LT8708 exits soft-start and enters normal operation. Typical values for the external soft-start capacitor range from $220 \mathrm{nFto} 2 \mu \mathrm{~F}$. A minimum of 220 nF is recommended.

CONTROL OVERVIEW

The LT8708 is a current mode controller that provides an output voltage above, below or equal to the input voltage. It also provides bidirectional current monitoring and regulation capabilities at both the input and the output.
The ADI proprietary control architecture employs an inductor current-sensing resistor ($\mathrm{R}_{\text {SENSE }}$) in buck, boost or buckboostregions of operation. The inductor current is controlled by the voltage on the V_{C} pin, which is the combined output of six internal error amplifiers EA1 - EA6. These amplifiers

OPERATION

can be used to limit or regulate their respective voltages or currents as shown in Table 1.

Table 1. Error Amplifiers (EA1 - EA6)

AMPLIFIER NAME	PIN NAME	USED TO LIMIT OR REGULATE
EA1	IMON_INN	Negative I IN
EA2	IMON_ON	Negative I OUT
EA3	FBIN	$V_{\text {IN }}$ Voltage
EA4	FBOUT	V OUT Voltage $^{\text {EA5 }}$
IMON_INP	Positive I IN	
EA6	IMON_OP	Positive I IOUT

The V_{C} voltage typically has a min-max range of about 1.2 V . The maximum V_{C} voltage commands the most positive inductor current and, thus, commands the most power flow from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT. }}$ The minimum V_{C} voltage commands the most negative inductor current and, thus, commands the most power flow from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$.

In a simple example of $\mathrm{V}_{\text {OUT }}$ regulation, the FBOUT pin receives the $V_{\text {OUT }}$ voltage feedback signal which is compared to the internal reference voltage using EA4. Low $V_{\text {OUT }}$ voltage raises V_{C} and, thus, more current flows into $V_{\text {OUT }}$. Conversely, higher $\mathrm{V}_{\text {OUT }}$ reduces V_{C}, thus, reducing the current into $\mathrm{V}_{\text {OUT }}$ or even drawing current and power from $V_{\text {OUT }}$.
Note that the current and power flow can also be restricted to one direction, as needed, by the selected conduction mode discussed in the Uni and Bidirectional Conduction section.

As mentioned previously, the LT8708 also provides bidirectional current regulation capabilities at both the input and the output. The Vout current can be regulated or limited in the forward and reverse directions (EA6 and $E A 2$, respectively). The $V_{I N}$ current can also be regulated or limited in the forward direction and reverse directions (EA5 and EA1, respectively).

In a common application, $V_{\text {OUT }}$ might be regulated using EA4, while the remaining error amplifiers are monitoring for excessive input or output current or an input undervoltage condition. In other applications, such as a battery backup system, a battery connected to $\mathrm{V}_{\text {OUT }}$ might be charged
with constant current (EA6) to a maximum voltage (EA4) and also reversed, at times, to supply power back to V_{IN} using the other error amplifiers to regulate V_{IN} and limit the maximum current.

POWER SWITCH CONTROL

The following discussions about the power switch control assume that the LT8708 is operating in the continuous conduction mode (see Bidirectional Conduction: CCM). Other conduction modes have slight differences that are discussed later in their respective Conduction sections.
Figure 3 shows a simplified diagram of how the four power switches are connected to the inductor, $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUt }}$ and ground. Figure 4 shows the regions of operation for the LT8708 as a function of $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}$ or switch duty cycle (DC). The power switches are properly controlled so the transfer between modes is continuous.

Figure 3. Simplified Diagram of the Buck-Boost Switches

Figure 4. Operating Regions vs $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{IN}}$

OPERATION

Switch Control: Buck Region ($\mathrm{V}_{\text {IN }} \gg \mathrm{V}_{\text {OUT }}$)

When $\mathrm{V}_{\text {IN }}$ is significantly higher than $\mathrm{V}_{\text {OUT }}$, the part will run in the buck region. In this region M3 is always off and switch M4 is always on. At the start of every cycle, synchronous switch M2 is turned on first. Inductor current is sensed by amplifier A4 while switch M2 is on. A slope compensation ramp is added to the sensed voltage which is then compared by A 5 to a reference that is proportional to V_{C}. After the sensed inductor current falls below the reference, switch M2 is turned off and switch M1 is turned on for the remainder of the cycle. Switches M1 and M2 will alternate, behaving like a typical synchronous buck regulator. Figure 5 shows the switching waveforms in the buck region.

Figure 5. Buck Region ($V_{\text {IN }} \gg V_{\text {OUT }}$)
The part will continue operating in the buck region over a range of switch M2 duty cycles. The duty cycle of switch M2 in the buck region is given by:

$$
D C_{(M 2, B U C K)}=\left(1-\frac{V_{O U T}}{V_{I N}}\right) \cdot 100 \%
$$

As $V_{\text {IN }}$ and $V_{\text {OUT }}$ get closer to each other, the duty cycle decreases until the minimum duty cycle of the converter, in the buck region, reaches DC (ABSMIN,M2,BUCK). If the duty cycle becomes lower than DC (ABSMIN,M2,BUCK) the part will move to the buck-boost region.

$$
\mathrm{DC}_{(\mathrm{ABSMIN}, \mathrm{M} 2, \mathrm{BUCK})} \cong \mathrm{t}_{\mathrm{ON}(\mathrm{M} 2, \mathrm{MIN})} \bullet f \bullet 100 \%
$$

where:
$\mathrm{t}_{\mathrm{ON}(\mathrm{M} 2, \mathrm{MIN})}$ is the minimum on-time for the synchronous switch in buck operation (200ns typical, see Electrical Characteristics).
f is the switching frequency.

When $\mathrm{V}_{\text {IN }}$ is much higher than $\mathrm{V}_{\text {OUT }}$, the duty cycle of switch M2 will increase, causing the M2 switch off-time to decrease. The M2 switch off-time should be kept above 230ns (typical, see Electrical Characteristics) to maintain steady-state operation and avoid duty cycle jitter, increased output ripple and reduction in maximum output current.

Switch Control: Buck-Boost ($\mathrm{V}_{\mathrm{IN}} \cong \mathrm{V}_{\mathrm{OUT}}$)

When $V_{\text {IN }}$ is close to $V_{\text {OUT }}$, the controller operates in the buck-boost region. Figure 6 shows typical waveforms in this region. Every cycle, if the controller starts with switches M2 and M4 turned on, the controller first operates as if in the buck region. When A5 trips, switch M2 is turned off and M 1 is turned on until the middle of the clock cycle. Next, switch M4 turns off and M3 turns on. The LT8708 then operates as if in boost mode until A2 trips. Finally, switch M3 turns off and M4 turns on until the end of the cycle.

If the controller starts with switches M1 and M3 turned on, the controller first operates as if in the boost region. When A2 trips, switch M3 is turned off and M4 is turned on until the middle of the clock cycle. Next, switch M1

Figure 6. Buck-Boost Region

operation

turns off and M2 turns on. The LT8708 then operates as if in buck mode until A5 trips. Finally, switch M2 turns off and M1 turns on until the end of the cycle.

Switch Control: Boost Region ($\mathrm{V}_{\text {IN }} \ll \mathrm{V}_{\text {OUT }}$)

When $\mathrm{V}_{\text {OUT }}$ is significantly higher than $\mathrm{V}_{\text {IN }}$, the part operates in the boost region. In this region switch M1 is always on and switch M2 is always off. At the start of every cycle, switch M3 is turned on first. Inductor current is sensed by amplifier A4 while switch M3 is on. A slope compensation ramp is added to the sensed voltage which is then compared (A2) to a reference that is proportional to V_{C}. After the sensed inductor current rises above the reference voltage, switch M3 is turned off and switch M4 is turned on for the remainder of the cycle. Switches M3 and M4 will alternate, behaving like a typical synchronous boost regulator.
The part will continue operating in the boost region over a range of switch M3 duty cycles. The duty cycle of switch M3 in the boost region is given by:

$$
D C_{(M 3, B 0 O S T)}=\left(1-\frac{V_{I N}}{V_{\text {OUT }}}\right) \cdot 100 \%
$$

As $V_{\text {IN }}$ and $V_{\text {OUT }}$ get closer to each other, the duty cycle decreases until the minimum duty cycle of the converter, in the boost region, reaches $\mathrm{DC}_{(\mathrm{ABSMIN}, \mathrm{M} 3, \mathrm{BOOST})}$. If the duty cycle becomes lower than $\mathrm{DC}_{(\text {ABSMIN,M3,BOOST) }}$, the part will move to the buck-boost region.

$$
\mathrm{DC}_{(\mathrm{ABSMIN}, \mathrm{M} 3, \mathrm{BOOST})} \cong \mathrm{t}_{\mathrm{ON}(\mathrm{M} 3, \mathrm{MIN})} \bullet f \bullet 100 \%
$$

where:
$\mathrm{t}_{\mathrm{ON}(\mathrm{M} 3, \mathrm{MIN})}$ is the minimum on-time for the main switch in boost operation (200ns typical, see Electrical Characteristics).
f is the switching frequency.
When $V_{\text {OUT }}$ is much higher than $V_{\text {IN }}$, the duty cycle of switch M3 will increase, causing the M3 switch off-time to decrease. The M3 switch off-time should be kept above 230ns (typical, see Electrical Characteristics) to maintain steady-state operation and avoid duty cycle jitter, increased output ripple and reduction in maximum output current.

Figure 7. Boost Region ($V_{I N} \ll V_{O U T}$)

Switch Control: Soft-Start

During soft-start, the LT8708 operates in the same three regions discussed above (buck, buck-boost and boost). However, a few differences in switch control happen during soft-start.
First, M1 and M4 are not turned on simultaneously while SS ramps up to 0.8 V (typical). When M1 and M4 would normally both be on, they are instead turned off, leaving all four switches off. After SS rises above 0.8 V , during the time when M1 and M4 would normally both be on, they are turned on briefly instead. This brief amount of time increases as SS rises until M1 \& M4 are allowed to remain on as long as the normal switching sequence requires.
Second, M2 and M3 will occasionally turn on together for one cycle to refresh both boost capacitors. This refresh cycle happens because M1 and M4 switch more frequently during soft-start than in normal operation. As such, the Boost Capacitor Charge Control block (see Figure 1) cannot always keep the boost capacitors charged. M2 and M3 are turned on when either BOOSTx-SWx voltage drops below 5 V (typical). Note that during the refresh cycle, the inductor current slope is nearly zero, thus the boost capacitors can be refreshed without much disturbance to the ongoing switching operations.

UNI AND BIDIRECTIONAL CONDUCTION

The LT8708 has one bidirectional and three unidirectional current conduction modes, primarily selected by the MODE pin. The bidirectional mode (CCM: continuous conduction mode) allows current and power to flow from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$, or vice versa, under control of the V_{C} pin. The unidirectional

operation

modes (DCM: discontinuous conduction mode, HCM: hybrid current mode and Burst Mode operation) only allow current and power to flow in one direction. Unidirectional settings override the V_{C} pin's attempt to direct current and power opposite to the selected direction.
The DIR pin selects the allowed power direction when using the DCM and HCM unidirectional modes. The Burst Mode operation only operates in the forward direction and is not affected by the DIR pin. In DCM and HCM modes, driving $\mathrm{DIR}>1.6 \mathrm{~V}$ (typical) selects forward operation which only allows power flow from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUt }}$. Driving DIR < 1.2V (typical) selects reverse operation which only allows power flow from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$.
Next, a low state on the RVSOFF pin inhibits reverse current and power flow. $\overline{\text { RVSOFF }}$ is an open-drain pin that requires a pull-up resistor. LDO33 or INTV ${ }_{C C}$ are convenient nodes to pull RVSOFF up to. Normally, RVSOFF is only pulled low in response to a low VOUT voltage (via the VOUTLOMON comparator) or a high $\mathrm{V}_{\text {IN }}$ voltage (via the VINHIMON comparator). However, external devices are permitted to pull RVSOFF Iow as needed. More information is available in the VINHIMON, VOUTLOMON and RVSOFF section.

Table 2 summarizes selection of the various conduction modes. See the Electrical Characteristics for the voltage thresholds of the DIR, VINHIMON, VOUTLOMON and RVSOFF pins.

Table 2. Conduction Configurations

MODE PIN	$\begin{aligned} & \hline \text { DIR PIN } \\ & \text { STATE } \end{aligned}$	$\begin{gathered} \hline \overline{\text { RVSOFF }} \\ \text { PIN STATE } \end{gathered}$	CONDUCTION MODE	POSSIBLE DIRECTION
<0.4V	-	Hi	CCM	Forward and Reverse
		Lo	DCM	Forward
$\begin{gathered} 0.8 \mathrm{~V} \text { to } \\ 1.2 \mathrm{~V} \end{gathered}$	Hi	-	HCM	Forward
	Lo	Hi		Reverse
		Lo	-	None
$\begin{gathered} 1.6 \mathrm{~V} \text { to } \\ 2.0 \mathrm{~V} \end{gathered}$	Hi	-	DCM	Forward
	Lo	Hi		Reverse
		Lo	-	None
>2.4V	-	Hi	Burst Mode Operation	Forward
		Lo	-	None

The conduction configuration can be changed during operation, as needed, with the following restrictions:

1. Before transitioning from MODE = Burst Mode operation to MODE = CCM, the DIR pin must be driven to the Hi (Forward) state.
2. Avoid control pulses on the MODE and DIR pins narrower than 15 LT8708 clock cycles.

Note: The V_{C} pin may be railed at the moment the DIR pin or MODE pin changes state. The railed V_{C} voltage corresponds to zero current in one direction and maximum current in the other. Therefore, if a small value RSENSE resistor is used, the chip may momentarily command high inductor current immediately after the DIR or MODE pin change. An undersized inductor may become saturated in this case. An edge detector on the DIR and/or MODE pin can be used to reset the chip, forcing a soft-start and limiting the initial current. See the 48V to 14V Bidirectional Dual Battery System with FHCM \& RHCM in the Typical Applications section as an example.
More details about each of the four conduction modes are provided in the following sub-sections.

Bidirectional Conduction: CCM

The continuous conduction mode allows the inductor current to flow in the forward or reverse direction, depending on the V_{C} voltage. When CCM is selected, high V_{C} voltage causes current and power to flow from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ and low V_{C} voltage causes current and power to flow from $V_{\text {OUT }}$ to $V_{\text {IN }}$. At very light load currents the inductor current may ripple positive and negative as the appropriate average current is delivered to the appropriate output.

Unidirectional Conduction: DCM

The discontinuous conduction mode restricts the inductor current so that it can only flow in one direction, positive towards $V_{\text {OUT }}$ (Forward DCM) or negative towards $V_{\text {IN }}$ (Reverse DCM). The forward/reverse selection is made by driving the DIR pin as desired.
When FDCM is selected, higher V_{C} voltage increases the power flowing from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$. Lower V_{C} voltage reduces or stops the flow. When RDCM is selected, Iower V_{C} voltage

operation

increases the power flowing from $\mathrm{V}_{\text {OUT }}$ into $\mathrm{V}_{\text {IN }}$. Higher V_{C} voltage reduces or stops the flow.
Forward (or reverse) DCM affects the power switches as follows. Under light loading conditions, in FDCM (or RDCM), synchronous switch M4 (or M1) is turned off whenever instantaneous reverse (or forward) current in the inductor is detected. This is to prevent drawing current from $\mathrm{V}_{\text {OUT }}\left(\right.$ or $\mathrm{V}_{\text {IN }}$) and feeding current into $\mathrm{V}_{\text {IN }}$ (or $\mathrm{V}_{\text {OUT }}$). Under very light loads, the current comparator may also remain tripped for several cycles and force switches M1 (or M2) and M3 (or M4) to stay off for the same number of cycles i.e., skipping pulses. Synchronous switch M2 (or M3) will remain on during the skipped cycles, but since switch M4 (or M1) is off, the inductor current will not reverse directions.

Unidirectional Conduction: HCM

Large inductor current ripple can sometimes result in high power dissipation of the M4 (or M1) junction diode during the FDCM (or RDCM) operation described above. This can happen, for example, when $V_{\text {IN }} \gg V_{\text {OUT }}$ and the average $\mathrm{V}_{\text {OUT }}$ current is relatively high, but M4 is turned off to block negative components of the AC inductor current. The hybrid current mode (or HCM) is an alternative to DCM that often reduces the maximum M4 (or M1) heating in such cases.
The hybrid current mode is a mixture of the light load DCM operation and CCM operation, but only allows average current flow in one direction. As such, it is possible to have the lower portions of the inductor current ripple flow opposite to the selected direction while the average current remains in the selected direction. The DIR pin is used to select the desired forward (or FHCM) or reverse (or RHCM) direction of average current flow.
HCM works by measuring the average forward $\mathrm{V}_{\text {OUT }}$ current and the average reverse $\mathrm{V}_{\text {IN }}$ current indicated on ICN and IMON_INP, respectively. In FHCM (or RHCM), light load is detected when ICN (or IMON_INP) is above 255 mV (typical). As a result, M4 (or M1) is turned off to prevent average current flow opposite to the desired direction. Heavy load is detected when ICN (or IMON_INP) is below 205 mV (typical). As a result, CCM operation is enabled,
allowing M4 (or M1) to turn on and reduce the diode's power dissipation.

> NOTE: In FHCM operation connecta 17.4 k resistor from ground to the ICN pin, and in RHCM operation, connect a 17.4 k resistor from ground to the IMON_INP pin.

Unidirectional Conduction: Burst Mode

In Burst Mode operation, a V_{C} voltage is set, with about 25 mV of hysteresis, below which switching activity is inhibited and above which switching activity is re-enabled. A typical example is when, at light output currents, $V_{\text {OUT }}$ rises and forces the V_{C} pin below the threshold that temporarily inhibits switching. After $V_{\text {OUT }}$ drops slightly and V_{C} rises $\sim 25 \mathrm{mV}$, the switching is resumed, initially in the buck-boost region. Burst Mode operation can increase efficiency at light load currents by eliminating unnecessary switching activity and related power losses. In Burst Mode operation, inductor current is only allowed in the forward direction, regardless of the voltage on the DIR pin. Burst Mode operation handles reverse-current detection similar to forward DCM. The M4 switch is turned off when reverse inductor current is detected.

ERROR AMPLIFIERS

The six internal error amplifiers combine to drive V_{C} according to Table 3, with the highest priority being atthe top.

Table 3. Error Amp Priorities

TYPICAL CONDITION			PURPOSE
if	IMON_INN > 1.21V or	then V_{C} Rises	to Reduce Negative I_{N}
	IMON_ON > 1.21V		to Reduce Negative IOUT
$\begin{aligned} & \text { else } \\ & \text { if } \end{aligned}$	FBIN $<1.205 \mathrm{~V}$ or	then V_{C} Falls	to Reduce Positive I_{N} or Increase Negative I_{IN}
	FBOUT $>1.207 \mathrm{~V}$ or		to Reduce Positive Iout or Increase Negative I IOUT
	IMON_INP > 1.209V or		to Reduce Positive I_{IN}
	IMON_OP > 1.209V		to Reduce Positive I ${ }_{\text {OUT }}$
else		V_{C} Rises	Default

Note that certain error amplifiers are disabled under the conditions shown in Table 4. A disabled error amplifier is unable to affect V_{C} and can be treated as if its associated row is removed from Table 3.

OPERATION

Table 4. Automatically Disabled Error Amp Conditions

ERRORAMP	PIN NAME	VOUTLOMON ASSERTED	VINHIMON ASSERTED	RDCM or RHCM	
				-	$\begin{aligned} & \hline \overline{\text { RVSOFF }} \\ & <1.207 V \end{aligned}$
EA1	IMON_INN				4*
EA2	IMON_ON				4*
EA3	FBIN		2*		4*
EA4	FBOUT	1*		3*	4*
EA5	IMON_INP				4*
EA6	IMON_OP				4*

A 1* 4* indicates that the error amplifier listed for that row is disabled $^{\text {a }}$ under that column's condition. The purposes of disabling the respective amplifiers are listed below.
1* This improves transient response when VOUTLOMON deasserts.
2* This improves transient response when VINHIMON deasserts.
3* Since power can only transfer from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$, this prevents higher FBOUT $N_{\text {OUT }}$ voltages from interfering with the $\mathrm{FBIN} / \mathrm{V}_{\text {IN }}$ voltage regulation.
4* No switching occurs in this condition. Disabling the error amplifiers improves transient response when resuming switching operation.

Some applications don't require the use of all six error amplifiers. When unused, the respective inputpin(s) should be driven so that they don't interfere with the operation of the remaining amplifiers. Use Table 5 as a guide.

Table 5. Disabling Unused Amplifiers

AMPLIFIER NAME	PIN NAME	TIE TO DISABLE	EXAMPLE DISABLED PIN CONNECTION
EA1	IMON_INN	$<0.9 \mathrm{~V}$	GND
EA2	IMON_ON		
EA3	FBIN	$>1.5 \mathrm{~V}$	LDO33
EA4	FBOUT		GND
EA5	IMON_INP	$<0.9 \mathrm{~V}$	
EA6	IMON_OP		

$V_{\text {OUt }}$ REGULATION AND SENSING

Two pins, FBOUT and VOUTLOMON, are provided to sense the $V_{\text {OUT }}$ voltage and issue the appropriate response to the switching regulator.

$V_{\text {OUT: }}$ Regulation

$V_{\text {OUT }}$ is regulated, subject to the priorities in Table 3, using a resistor divider between $\mathrm{V}_{\text {OUT }}$, FBOUT and ground. FBOUT connects to the EA4 amplifier to drive V_{C}. When FBOUT rises near or above the EA4 reference (1.207V typical), V_{C} typically falls, commanding less current into $\mathrm{V}_{\text {OUT }}$. The $\mathrm{V}_{\text {OUT }}$ regulation voltage is given by the equation:

$$
V_{\text {OUT }}=1.207 \mathrm{~V} \cdot\left(1+\frac{R_{\text {FBOUT1 }}}{R_{\text {FBOUT2 }}}\right)
$$

where:
$\mathrm{R}_{\text {FBOUT1 }}$ and $\mathrm{R}_{\text {FBOUT2 }}$ are shown in Figure 1.

$V_{\text {OUT: }}$ Above Regulation

When the FBOUT pin and EA4 detect that $\mathrm{V}_{\text {OUT }}$ is significantly above regulation, V_{C} typically falls to its minimum voltage. The LT8708 responds to the minimum V_{C} voltage according to the conduction mode enabled by MODE, DIR and $\overline{\text { RVSOFF. If reverse conduction is not allowed (FDCM, }}$ FHCM and Burst Mode operation) then switching will stop and current won't be delivered to V_{IN}. If reverse conduction is allowed (CCM, RDCM and RHCM), then current and power will flow from $\mathrm{V}_{\text {OUT }}$ to V_{IN}.

$V_{\text {OUT: }}$ Below Regulation and Undervoltage

When the FBOUT pin and EA4 detect $\mathrm{V}_{\text {OUT }}$ is below regulation, V_{C} typically rises. If forward conduction is enabled (CCM, FDCM, FHCM and Burst mode), then current and power will flow from $V_{\text {IN }}$ to $V_{\text {OUT }}$.
A resistor divider between $\mathrm{V}_{\text {OUT }}$ VOUTLOMON and ground is used to detect $\mathrm{V}_{\text {OUT }}$ undervoltage. This function prevents reverse conduction, from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$, from drawing $\mathrm{V}_{\text {OUT }}$ down lower than desired. When undervoltage is detected by VOUTLOMON, $\overline{\text { RVSOFF }}$ is pulled low to disable reverse current and power. This function can be used as a UVLO (undervoltage lockout), for example, when a battery or supercapacitor, connected to $\mathrm{V}_{\text {OUT }}$, is supplying power to $\mathrm{V}_{\text {IN }}$. See the VINHIMON, VOUTLOMON and RVSOFF section for more detailed information.

OPERATION

$V_{\text {IN }}$ REGULATION AND SENSING

Two pins, FBIN and VINHIMON, are provided to sense the $\mathrm{V}_{\text {IN }}$ voltage and issue the appropriate response to the switching regulator.

$V_{\text {IN: }}$: Regulation

Subject to the priorities in Table 3, a resistor divider between $\mathrm{V}_{\text {IN }}$, FBIN and ground can be used to regulate $\mathrm{V}_{\text {IN }}$ or serve an undervoltage lockout function. A few application examples are as follows:

- For $V_{\text {IN }}$ supplies with high source impedance (i.e., a solar panel), $V_{\text {IN }}$ regulation can prevent the supply voltage from dropping too low under high $\mathrm{V}_{\text {OUT }}$ load conditions.
- For V_{IN} supplies with low source impedance (i.e., batteries and voltage supplies), the FBIN pin can be used to stop switching activity when the $V_{\text {IN }}$ supply voltage gets too low for proper system operation.
- $\quad \mathrm{V}_{\text {IN }}$ can also be regulated to a maximum voltage when power is flowing from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$, such as in a battery backup application.
When FBIN falls near or below the EA3 reference (1.205V typical), the V_{C} voltage falls and reduces current draw from $\mathrm{V}_{\text {IN }}$. The $\mathrm{V}_{\text {IN }}$ regulation voltage is given by the equation:

$$
V_{I N}=1.205 \mathrm{~V} \cdot\left(1+\frac{\mathrm{R}_{\mathrm{FBIN} 1}}{\mathrm{R}_{\mathrm{FBIN} 2}}\right)
$$

where:
$\mathrm{R}_{\text {FBIN1 }}$ and $\mathrm{R}_{\text {FBIN2 }}$ are shown in Figure 1.

V_{IN} : Above Regulation and Overvoltage

When the FBIN pin and EA3 detect $V_{\text {IN }}$ is above regulation, V_{C} is allowed to rise. Ifforward conduction is enabled (CCM, FDCM, FHCM and Burst Mode operation), then current and power can flow from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$. If only reverse conduction is enabled (RDCM and RHCM), then switching will stop and current won't be delivered into $\mathrm{V}_{\text {IN }}$. NOTE: This above-regulation condition is required to allow forward conduction in an application.

A resistor divider between $\mathrm{V}_{\text {IN }}$, VINHIMON and ground is used to detect $V_{\text {IN }}$ overvoltage. This function prevents reverse conduction, from $V_{\text {OUT }}$ to $V_{I N}$, from forcing $V_{\text {IN }}$ higher than desired. When overvoltage is detected by VINHIMON, $\overline{\text { RVSOFF }}$ is pulled low to disable reverse current and power. This function can be used as an OVLO (over voltage lockout), for example, when a battery, connected to $\mathrm{V}_{\text {IN }}$, is being charged from $\mathrm{V}_{\text {OUT }}$. See the VINHIMON, VOUTLOMON and RVSOFF section for more detailed information.

$V_{\mathbb{N}}$: Below Regulation

When the FBIN pin and EA3 detect that $V_{\text {IN }}$ is significantly below regulation, V_{C} may fall to its minimum voltage. The LT8708 responds to the minimum V_{C} voltage according to the conduction mode enabled by MODE, DIR and RVSOFF. If only forward conduction is allowed (FDCM, FHCM and Burst Mode operation) then switching will stop and current won't be drawn from $V_{\text {OUT. }}$. If reverse conduction is allowed (CCM, RDCM and RHCM), then current and power will flow from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$.
UVLO functions are available to detect low $\mathrm{V}_{\text {IN }}$ voltage. These functions are discussed in the Voltage Lockouts section.

CURRENT MONITORING AND LIMITING

Monitoring and Limiting: IMON Pins

The LT8708 can monitor $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ current ($\mathrm{I}_{\text {IN }}$ and $l_{\text {OUt }}$ in both the positive and negative directions. The CSPIN and CSNIN pins connect across a current sense resistor to monitor I_{IN}. External resistors are connected from the IMON_INP and IMON_INN pins to GND. Their resulting voltages are linearly proportional to positive I_{IN} and negative I_{IN} respectively. See amplifier A3 in the Block Diagram.
Similarly, an IOUT sense resistor, measured by CSPOUT and CSNOUT, is used to monitor the $\mathrm{V}_{\text {OUT }}$ current. External resistors are connected from the IMON_OP and IMON_ON pins to GND. Their resulting voltages are linearly proportional to positive $I_{\text {OUT }}$ and negative $I_{\text {OUT }}$ respectively. See amplifier A1 in the Block Diagram.

operation

The $I_{\text {IN }}$ and $I_{\text {OUT }}$ currents can be limited and regulated to independent maximum positive values. When I IN causes IMON_INP to rise near or above 1.209 V (typical), EA5 typically causes V_{C} to pull down and limit/regulate the maximum current. Similarly, when I OUT causes IMON_OP to rise near or above 1.209V (typical), EA6 typically causes V_{C} to pull down and limit/regulate the maximum current. See Table 3 for error amplifier priorities.

The I_{IN} and $\mathrm{I}_{\text {OUT }}$ currents can also be limited and regulated to independent maximum negative values. When I_{N} causes IMON_INN to rise near or above 1.21V (typical), EA1 causes V_{C} to pull up and limit the maximum current. Similarly, when I IOU causes IMON_ON to rise near or above 1.21 V (typical), EA2 causes V_{C} to pull up and limit the maximum current.

The $\mathrm{I}_{\text {IN }}$ and $\mathrm{I}_{\text {OUT }}$ current limits can provide many benefits. They can be used to prevent overloading the input supply, allow for constant-current battery and supercapacitor charging and can also serve as short-circuit protection for constant-voltage regulators. See the Applications Information section for more information about the current monitors and the current regulation and limiting.

Monitoring: ICP and ICN Pins

ICP and ICN are additional current monitor pins with output currents typically equal to those of IMON_OP and IMON_ON, respectively.
In contrast to IMON_OP, ICP is internally pulled to $\sim 0.6 \mathrm{~V}$ (typical) when V_{C} is at its minimum and the conduction mode is either RDCM or RHCM. Also, in contrast to IMON_ON, ICN is internally pulled to $\sim 0.6 \mathrm{~V}$ (typical) when V_{C} is at its maximum and the conduction mode is FDCM, FHCM or Burst Mode operation.

Always connect a 17.4 k resistor from ICP to ground and from ICN to ground.

INTV $_{\text {cc }} /$ EXTV $_{\text {cC }} /$ GATEV $_{\text {CC }} /$ LDO33 POWER

Power for the top and bottom MOSFET drivers, the LD033 pin and most internal circuitry is derived from the INTV ${ }_{C C}$ pin. INTV ${ }_{\text {CC }}$ is regulated to 6.3 V (typical) from either the $V_{\text {InCHIP }}$ or EXTV $_{\text {CC }}$ pin. When the EXTV ${ }_{\text {CC }}$ pin is left open or tied to a voltage less than 6.2 V (typical), an internal low dropout regulator regulates INTV ${ }_{\text {CC }}$ from $\mathrm{V}_{\text {INCHIP. }}$ If $E X T V_{\text {CC }}$ is taken above 6.4 V (typical), another low dropout regulator will instead regulate INTV ${ }_{C C}$ from EXTV ${ }_{\text {CC. }}$. Regulating I^{\prime} NV $_{\text {CC }}$ from EXTV ${ }_{C C}$ allows the power to be derived from the lowest supply voltage (highest efficiency) such as the LT8708 switching regulator output (see INTV CC Regulators and EXTV ${ }_{\text {CC }}$ Connection in the Applications Information section for more details).
The GATEV ${ }_{\text {CC }}$ pin directly powers the bottom MOSFET drivers for switches M2 and M3 (see Figure 3). GATEV ${ }_{c C}$ should always be connected to INTV ${ }_{C C}$ and should not be powered or connected to any other source. Undervoltage lockouts (UVLOs) monitoring INTV ${ }_{C C}$ and GATEV $_{\text {CC }}$ disable the switching regulator when the pins are below 4.65V (typical).

The LD033 pin can provide power to external components such as a microcontroller and/or can provide an accurate bias voltage. Load current is limited to 17.25 mA (typical). As long as SHDN is high, the LDO33 output is linearly regulated from the INTV ${ }_{\text {CC }}$ pin and is not affected by the I^{\prime} NTV $_{\text {CC }}$ or GATEV ${ }_{C C}$ UVLOs or the SWEN pin voltage. LDO33 remains regulated as long as SHDN is high and sufficient voltage is available on INTV ${ }_{C C}$ (typically > 4.0V). An undervoltage lockout monitoring LD033 will disable the switching regulator when LD033 is below 3.04 V (typical).

CLKOUT AND TEMPERATURE SENSING

The CLKOUT pin toggles at the LT8708's internal clock frequency whether the internal clock is synchronized to an external source or is free-running based on the external R_{T} resistor. The CLKOUT pin can be used to synchronize other devices to the LT8708's switching frequency. Also, the duty cycle of CLKOUT is proportional to the die temperature and can be used to monitor the die for thermal issues.

APPLICATIONS INFORMATION

This Applications Information section provides additional details for setting up an application using the LT8708. Topics include verifying the power flow conditions, selection of various external components including the switching MOSFETs, sensing resistors, filter capacitors, diodes and the primary inductor among others. In addition, more information is provided about voltage lockouts, current monitoring, PCB layout and efficiency considerations. This section wraps up with a design example to illustrate the use of the various design equations presented here.

VERIFY THE POWER FLOW CONDITIONS

Due to the configurability of the LT8708, a methodical approach should be used to verify that power will flow, as intended, under all relevant conditions. Table 6(a) and $6(b)$ are provided to help with this verification.
First, using Table 6(a), note which $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ combinations are used in the application. For example, print a copy of Table 6(a) and highlight or circle the applicable cells.
In Table 6(a):

- $V_{\text {IN_FBIN }}$ is the $\mathrm{V}_{\text {IN }}$ voltage when FBIN is at 1.205 V (typ)
- $V_{\text {OUt fBout }}$ is the $\mathrm{V}_{\text {OUt }}$ voltage when FBOUT is at 1.207 V (typ)
- $V_{\text {In_vinhimon }}$ is the $V_{\text {IN }}$ voltage when $V_{\text {inhimon }}$ at 1.207 V (typ)
- $V_{\text {OUT_VOUTLOMON }}$ is the $\mathrm{V}_{\text {OUT }}$ voltage when $\mathrm{V}_{\text {OUTLOMON }}$ is at 1.207 V (typ)

If one or more of the FBIN, FBOUT, VINHIMON and VOUTLOMON pins are tied to their inactive states (see Table 5 and the VINHIMON, VOUTLOMON and RVSOFF section), the associated row(s) or column(s) will not apply to the application. For example, if FBIN is tied to LDO33 to deactivate that pin function, then the $\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IN_FBIN }}$ row of Table 6(a) is not applicable and no cells in that row should be circled.

Next, for each cell identified in Table 6(a), check that the operating condition described in Table 6(b) meets the application's requirements.

Table 6. Power Flow Verification Table
6(a)

$\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$	$\begin{gathered} V_{\text {OUT }}< \\ \mathrm{V}_{\text {OUT_VOUTLOMON }} \end{gathered}$	$V_{\text {OUT }}>$ $\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {OUT_FBOUT }}$	$V_{\text {OUT }}>$ $V_{\text {OUT_FBOUT }}$
$\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IN_FBIN }}$	No Power Transfer	B	B
$\begin{gathered} \hline V_{\text {IN }}>V_{\text {IN_FBIN }} \& \\ V_{\text {IN }}< \\ V_{\text {IN_VINHIMON }} \end{gathered}$	A	D	C
$\overline{V_{I N}>}$ VIN_VINHIMON	A	D	No Power Transfer

6(b)

	MODE = BURST	MODE = CCM	$\begin{gathered} \text { MODE = } \\ \text { DCM/HCM, } \\ \text { DIR = FWD } \end{gathered}$	$\begin{gathered} \text { MODE = DCM/ } \\ \text { HCM, DIR }=\text { RVS } \end{gathered}$
A	Power Flows from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$			No Power Flow
B	No Power Flow	Power Flows from $V_{\text {OUT }}$ to $V_{\text {IN }}$	No Power Flow	Power Flows from $V_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$
D	Power Flows from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUt }}$			No Power Flow

Note: Table 6(a) and Table 6(b) assume that the $\overline{\text { RVSOFF }}$ pin is not driven low by an external device.
See the Design Example section for a further example of using these tables.

OPERATING FREQUENCY SELECTION

The LT8708 uses a constantfrequency architecture between 100 kHz and 400 kHz . The frequency can be set using the internal oscillator or can be synchronized to an external clock source. Selection of the switching frequency is a trade-off between efficiency and component size. Low frequency operation increases efficiency by reducing MOSFET switching losses, but requires more inductance and/or capacitance to maintain low output ripple voltage. For high power applications, consider operating at lower frequencies to minimize MOSFET heating from switching losses. The switching frequency can be set by placing an appropriate resistor from the RT pin to ground and tying the SYNC pin low. The frequency can also be synchronized to an external clock source driven into the SYNC pin. The following sections provide more details.

APPLICATIONS INFORMATION

INTERNAL OSCILLATOR

The operating frequency of the LT8708 can be set using the internal free-running oscillator. When the SYNC pin is driven low ($<0.5 \mathrm{~V}$), the operating frequency is set by the value of the resistor from the RT pin to ground. An internally trimmed timing capacitor resides inside the IC. The oscillator frequency is calculated using the following formula:

$$
\mathrm{f}_{\mathrm{OSC}}=\left(\frac{43,750}{\mathrm{R}_{\mathrm{T}}+1}\right) \mathrm{kHz}
$$

where:
$f_{0 S C}$ is in $k H z$ and R_{T} is in $k \Omega$.
Conversely, R_{T} (in $\mathrm{k} \Omega$) can be calculated from the desired frequency (in kHz) using:

$$
\mathrm{R}_{\mathrm{T}}=\left(\frac{43,750}{\mathrm{f}_{\mathrm{OSC}}}-1\right) \mathrm{k} \Omega
$$

SYNC PIN AND CLOCK SYNCHRONIZATION

The operating frequency of the LT8708 can be synchronized to an external clock source. To synchronize to the external source, simply provide a digital clock signal into the SYNC pin. The LT8708 will operate at the SYNC clock frequency.

The duty cycle of the SYNC signal must be between 20\% and 80% for proper operation. Also, the frequency of the SYNC signal must meet the following two criteria:

1. SYNC may not toggle outside the frequency range of 100 kHz to 400 kHz unless it is stopped low to enable the free-running oscillator.
2. The SYNC pin frequency can always be higher than the free-running oscillator set frequency, fosc, but should not be less than 25% below fosc.

After SYNC begins toggling, it is recommended that switching activity is stopped before the SYNC pin stops toggling. Excess inductor current can result when SYNC stops toggling as the LT8708 transitions from the external SYNC clock source to the internal free-running oscillator clock. Switching activity can be stopped by driving either the SWEN or SHDN pin low.

CLKOUT PIN AND CLOCK SYNCHRONIZATION

The CLKOUT pin can drive up to 200 pF and toggles at the LT8708's internal clock frequency whether the internal clock is synchronized to the SYNC pin or is free-running based on the external R_{T} resistor. The rising edge of CLKOUT is approximately 180° out of phase from the internal clock's rising edge or the SYNC pin's rising edge if it is toggling. CLKOUT starts toggling when the INITIALIZE state is entered (see Figure 2).
The CLKOUT pin can be used to synchronize other devices to the LT8708's switching frequency. For example, the CLKOUT pin can be tied to the SYNC pin of another LT8708 regulator which will operate approximately 180° out of phase of the master LT8708. The frequency of the master LT8708 can be set by the external R_{T} resistor or by toggling the SYNC pin. Note that the R_{T} pin of the slave LT8708 must have a resistor tied to ground. In general, use the same value R_{\top} resistor for all of the synchronized LT8708s.
The duty cycle of CLKOUT is proportional to the die temperature and can be used to monitor the die for thermal issues. See the Junction Temperature Measurementsection for more information.

INDUCTOR CURRENT SENSING AND SLOPE COMPENSATION

The LT8708 operates using inductor current mode control. As described previously in the Power Switch Control section, the LT8708 measures the peak of the inductor current waveform in the boost region and the valley of the inductor current waveform in the buck region. The inductor current is sensed across the R RENSE resistor with pins CSP and CSN. During any given cycle, the peak (boost region) or valley (buck region) of the inductor current is controlled by the V_{C} pin voltage.

Slope compensation provides stability in constant-frequency current mode control architectures by preventing subharmonic oscillations at high duty cycles. This is accomplished internally by adding a compensating ramp to the inductor current signal in the boost region, or subtracting a ramp from the inductor currentsignal in the buck region. At higher duty cycles, this results in a reduction of maximum inductor current in the boost region, and an increase of the maximum

APPLICATIONS INFORMATION

inductor current in the buck region. For example, refer to the Maximum Inductor CurrentSense Voltage vs Duty Cycle graph in the Typical Performance Characteristics section. The graph shows that, with V_{C} at its maximum voltage, the maximum peak inductor sense voltage $\mathrm{V}_{\text {RSENSE }}$ is between 47 mV and 93 mV depending on the duty cycle. It also shows that the maximum inductor valley current in the buck region is 82 mV increasing to $\sim 130 \mathrm{mV}$ at higher duty cycles.

RsENSE SELECTION AND MAXIMUM CURRENT

The RSENSE resistance must be chosen properly to achieve the desired amount of output current (forward conduction) and input current (reverse conduction). Too much resistance can limit the input/output current below the application requirements. Start by determining the maximum allowed $\mathrm{R}_{\text {SENSE }}$ resistances in the forward and reverse boost regions ($\mathrm{R}_{\text {SENSE(MAX,BOOST,FWD) }}$ and $R_{\text {SENSE(MAX,BOOST,RVS) })}$). Follow this by finding the maximum allowed $R_{\text {SENSE }}$ resistances in the forward and reverse buck regions ($\mathrm{R}_{\text {SENSE(MAX,BUCK,FWD) }}$ and $R_{\text {SENSE(MAX,BUCK,RVS) }) \text {). The selected RSENSE }}$ resistance must be less than all four values.

ReENSE Selection: Max R Rense in the Boost Region

Forward Conduction: Inthis section R RENSE(MAX,BOOST,FWD) is calculated which is the maximum allowed $\mathrm{R}_{\text {SENSE }}$ resistance when operating in the boost region with forward conduction ($\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$). Skip this section and assume $R_{\text {SENSE }(M A X, B O O S T, F W D)}=\infty$ when this operating condition does not apply to the application.

In the boost region, the maximum positive $V_{\text {OUT }}$ current capability is the lowest when $V_{I N}$ is at its minimum and $V_{\text {OUt }}$ is at its maximum. Therefore, $\mathrm{R}_{\text {SENSE }}$ must be chosen to meet the output current requirements under these conditions.

Startby finding the maximum boostregion duty cycle which occurs when $\mathrm{V}_{\text {IN }}$ is minimum and $\mathrm{V}_{\text {OUT }}$ is maximum using:

$$
\begin{aligned}
& D C_{(M A X, M 3, B O O S T)} \cong \\
& \quad\left(1-\frac{V_{\text {IN(MIN,BOOST) }}}{V_{\text {OUT(MAX,BOOST) }}}\right) \cdot 100 \%
\end{aligned}
$$

For example, an application with a V_{IN} range of 12 V to 48 V and $\mathrm{V}_{\text {OUt }}$ set to 36 V will have:

$$
\begin{aligned}
& D C_{(M A X, M 3, B O O S T)} \cong \\
& \quad\left(1-\frac{12 \mathrm{~V}}{36 \mathrm{~V}}\right) \cdot 100 \%=67 \%
\end{aligned}
$$

Referring to the Maximum Inductor Current Sense Voltage graph in the Typical Performance Characteristics section, the maximum $\mathrm{R}_{\text {SENSE }}$ voltage at 67% duty cycle is 68 mV , or:

$$
V_{\text {RSENSE(MAX,BOOST,MAXDC) }} \cong 68 \mathrm{mV}
$$

for $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=36 \mathrm{~V}$.
Next, the inductor ripple current in the boost region must be determined. If the main inductor L is not known, the maximum ripple current $\Delta L_{L(M A X, B O O S T)}$ can be estimated by choosing $\Delta \mathrm{L}_{\mathrm{L}(M A X, B O O S T)}$ to be 30% to 50% of the maximum peak inductor current in the boost region as follows:

$$
\begin{aligned}
& \Delta \Delta_{\text {L(MAX,BOOST })} \cong \\
& \frac{V_{\text {OUT(MAX,BOOST) }} \cdot \operatorname{l}_{\text {OUT(MAX,FWD) }}}{V_{\text {IN(MIN,BOOST) })} \cdot\left(\frac{100 \%}{\% \text { Ripple }}-0.5\right)} \mathrm{A}
\end{aligned}
$$

where:
$I_{\text {OUT(MAX,FwD) }}$ is the maximum $\mathrm{V}_{\text {OUt }}$ load current required in the boost region.
$\%$ Ripple is 30% to 50%
For example, using $\mathrm{V}_{\text {OUt(MAX) }}=36 \mathrm{~V}, \mathrm{~V}_{\operatorname{IN}(\mathrm{MII})}=12 \mathrm{~V}$, $I_{\text {OUT }}(\mathrm{MAX}$, FwD $)=2 \mathrm{~A}$ and $\%$ Ripple $=40 \%$ we can calculate:

$$
\begin{aligned}
& \Delta \mathrm{I}_{\mathrm{L}(\mathrm{MAX}, \mathrm{BOOST})} \cong \\
& \frac{36 \mathrm{~V} \cdot 2 \mathrm{~A}}{12 \mathrm{~V} \cdot\left(\frac{100 \%}{40 \%}-0.5\right)}=3 \mathrm{~A}
\end{aligned}
$$

APPLICATIONS INFORMATION

Otherwise, if the inductance is already known then $\Delta l_{L(M A X, B O O S T, F W D)}$ can be more accurately calculated as follows:

$$
\begin{aligned}
& \Delta \mathrm{L}_{\mathrm{L}(\mathrm{MAX}, \mathrm{BOOST})}= \\
& \left.\quad \frac{\left(\frac{\mathrm{DC}}{(\text { MAX,M3,BOOST })}\right.}{100 \%}\right) \cdot \mathrm{V}_{\operatorname{IN}(\text { MIN,BOOST })}
\end{aligned} \mathrm{f} \mathrm{~A} \text { L }
$$

where:
$D C_{(\text {MAX,M3,BOOST })}$ is the maximum duty cycle percentage in the boost region as calculated previously
f is the switching frequency
L is the inductance of the main inductor
After the maximum ripple current is known, the maximum allowed $\mathrm{R}_{\text {SENSE }}$ in the boost region while in forward conduction ($\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$) can be calculated as follows:
$R_{\text {SENSE(MAX,BOOST,FWD })}=$

$$
\frac{2 \cdot \mathrm{~V}_{\text {RSENSE }(\mathrm{MAX}, \mathrm{BOOST}, \mathrm{MAXDC})} \bullet \mathrm{V}_{\text {IN(MIN,BOOST })}}{\left(2 \bullet \mathrm{I}_{\text {OUT }(\mathrm{MAX}, \mathrm{FWD})} \cdot \mathrm{V}_{\text {OUT }(\mathrm{MAX}, \mathrm{BOOST})}\right)+\left(\Delta \mathrm{I}_{\mathrm{L}(\mathrm{MAX}, \mathrm{BOOST})} \bullet \mathrm{V}_{\mathrm{IN}(\mathrm{MIN}, \mathrm{BOOST})}\right)} \Omega
$$

where:
$V_{\text {RSENSE(MAX,BOOST,MAXDC) }}$ is the maximum inductor current sense voltage as discussed in the previous section.

Using values from the previous examples:

$$
\begin{aligned}
& \mathrm{R}_{\text {SENSE }(\mathrm{MAX}, \mathrm{BOOST}, \mathrm{FWD})}= \\
& \quad \frac{2 \cdot 68 \mathrm{mV} \cdot 12 \mathrm{~V}}{(2 \cdot 2 \mathrm{~A} \cdot 36 \mathrm{~V})+(3 \mathrm{~A} \cdot 12 \mathrm{~V})}=9.1 \mathrm{~m} \Omega
\end{aligned}
$$

Reverse Conduction: Inthis section RSENSE(MAX,BOOST,RVS) is calculated which is the maximum allowed ReNSE resistance when operating in the boost region with reverse conduction ($\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$). Skip this section and assume $R_{\text {SENSE(MAX,BOOST,RVS) }}=\infty$ when this operating condition does not apply to the application.

In the boost region, the maximum reverse V_{IN} current capability is the lowest when operating at the minimum
duty cycle. See Switch Control: Boost Region (VIN \ll $V_{\text {OUT }}$) section for the equation to calculate the minimum duty cycle $\mathrm{DC}_{\text {(ABSMIN, M3, BOOST) }}$.
Before calculating the maximum $\mathrm{R}_{\text {SENSE }}$ resistance allowed during reverse operation, however, the inductor ripple current must be determined. If the main inductor L is not known, the ripple current $\Delta L_{\text {L(MIN,BOOST) }}$ can be estimated by choosing $\Delta \mathrm{L}_{\mathrm{L}(\mathrm{MIN}, \mathrm{BOOST})}$ to be 10% of the minimum peak inductor current in the boost region as follows:

$$
\Delta \mathrm{L}_{\mathrm{L}(\mathrm{MIN}, \mathrm{BOOST})} \cong \frac{\mathrm{I}_{\mathrm{IN}(\mathrm{MAX}, \mathrm{RVS})}}{\left(\frac{100 \%}{10 \%}-0.5\right)} \mathrm{A}
$$

where:
$I_{\text {IN(MAX,RVS) }}$ is the maximum $\mathrm{V}_{\text {IN }}$ load current required in the boost region in the reverse direction

If the inductance is already known then $\Delta I_{\mathrm{L}(\mathrm{MIN}, \mathrm{BOOST})}$ can be calculated as follows:

$$
\Delta \mathrm{I}_{\mathrm{L}(\mathrm{MIN}, \mathrm{BOOST})}=
$$

where:
$\mathrm{DC}_{\text {(ABSMIN,M3,BOOST) }}$ is the minimum duty cycle percentage in the boost region (see Switch Control: Boost Region ($\mathrm{V}_{\text {IN }} \ll \mathrm{V}_{\text {OUT }}$) section)
f is the switching frequency
L is the inductance of the main inductor
Now that the inductor ripple current is known, the maximum allowed $\mathrm{R}_{\text {SENSE }}$ in the boost region while in reverse conduction can be calculated as follows:

$$
\begin{aligned}
& \mathrm{R}_{\text {SENSE(MAX,BOOST,RVS })}= \\
& \frac{2 \bullet\left|\mathrm{~V}_{\text {RSENSE(MIN,BOOST,MINDC) }}\right|}{\left(\left.2 \cdot\right|_{\mathrm{IN(MAX,RVS)}}\right)-\Delta \mathrm{I}_{\mathrm{L}(\text { MIN,BOOST })}} \Omega
\end{aligned}
$$

APPLICATIONS INFORMATION

where:
$\mathrm{V}_{\text {RSENSE(MIN,BOOST,MINDC) }}$ is the minimum inductor current sense voltage in the boost region at the minimum duty cycle. Typical value is -93 mV .
Negative result from the above equation indicates that any $R_{\text {SENSE }}$ value can meet the requirement. Substitute the calculated result with ∞ and move onto the next section.

Rense Selection: Max Rense in the Buck Region

Forward Conduction: Inthis section RSENSE(MAX,BUCK,FWD) is calculated which is the maximum allowed R RENSE resistance when operating in the buck region with forward conduction ($\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$).

In the buck region, the maximum $V_{\text {OUT }}$ current capability is the lowest when operating at the minimum duty cycle. See Switch Control: Boost Region ($\mathrm{V}_{\text {IN }} \ll \mathrm{V}_{\text {OUT }}$) section for the equation to calculate the minimum duty cycle DC (ABSMIN, M2,BUCK).
Before calculating the maximum $\mathrm{R}_{\text {SENSE }}$ resistance, however, the inductor ripple current must be determined. If the main inductor L is not known, the ripple current $\Delta L_{\text {L(MIN,BUCK) }}$ can be estimated by choosing $\Delta L_{\text {L(MIN,BUCK) }}$ to be 10% of the maximum peak inductor current in the buck region as follows:

$$
\Delta \mathrm{L}_{\mathrm{L}(\mathrm{MIN}, \mathrm{BUCK})} \cong \frac{\mathrm{I}_{\text {OUT(MAX,FWD) }}}{\left(\frac{100 \%}{10 \%}-0.5\right)} \mathrm{A}
$$

where:
$I_{\text {OUT(MAX,FWD }}$ is the maximum $V_{\text {OUT }}$ load current required in the buck region in the forward direction.
If the inductance is already known then $\Delta \mathrm{L}_{\mathrm{L}(\mathrm{MIN}, \mathrm{BUCK})}$ can be calculated as follows:
where:
$D C_{(\text {ABSMIN,M2,BUCK })}$ is the minimum duty cycle percentage in the buck region as calculated previously

f is the switching frequency

L is the inductance of the main inductor
After the inductor ripple current is known, the maximum allowed RSENSE in the buck region while in forward conduction can be calculated as follows:
$\mathrm{R}_{\text {SENSE(MAX,BUCK,FWD) }}=$
$\frac{2 \cdot V_{\text {RSENSE(MAX,BUCK,MINDC })}}{\left(2 \bullet I_{\text {OUT(MAX,FWD) }}\right)-\Delta I_{\text {L(MIN,BUCK })}} \Omega$
where:
$V_{\text {RSENSE(MAX,BUCK,MINDC) }}$ is the maximum inductor current sense voltage at the minimum duty cycle. Typical value is 82 mV .

Negative result from the above equation indicates that any $R_{\text {SENSE }}$ value can meet the requirement. Substitute the calculated result with ∞ and move onto the next section.

Reverse Conduction: In this section $R_{\text {SENSE(MAX, BUCK, }}$ RVS) is calculated which is the maximum allowed RSENSE resistance when operating in the buck region with reverse conduction ($\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$). Skip this section and assume $R_{\text {SENSE }}$ (MAX, BUCK, RVS) $=\infty$ when this operating condition does not apply to the application.

In the buck region, the maximum reverse $\mathrm{V}_{\text {IN }}$ current capability is the least when $\mathrm{V}_{\text {IN }}$ is at its maximum and $\mathrm{V}_{\text {OUT }}$ is at its minimum for buck operation. Therefore $R_{\text {SENSE }}$ must be chosen to meet the V_{IN} current requirements under these conditions.

Start by finding the buck region duty cycle when V_{IN} is minimum and $\mathrm{V}_{\text {OUT }}$ is maximum using:

$$
\begin{aligned}
& D C_{(M A X, M 2, B U C K)} \cong \\
& \quad\left(1-\frac{V_{\text {OUT(MIN,BUCK) }}}{V_{\text {IN(MAX,BUCK) }}}\right) \cdot 100 \%
\end{aligned}
$$

APPLICATIONS INFORMATION

Next, the inductor ripple current in the buck region must be determined. If the main inductor L is not known, the maximum ripple current $\Delta l_{\text {L(MAX,BUCK) }}$ can be estimated by choosing $\Delta L_{L(M A X, B U C K)}$ to be 30% to 50% of the maximum peak inductor current in the buck region as follows:

$$
\begin{aligned}
& \Delta L_{\text {L(MAX,BUCK })} \cong \\
& \frac{V_{\text {IN(MAX,BUCK })} \cdot \operatorname{l}_{\text {IN(MAX,RVS })}}{V_{\text {OUT(MIN,BUCK })} \cdot\left(\frac{100 \%}{\% \text { Ripple }}-0.5\right)} \mathrm{A}
\end{aligned}
$$

where:
$I_{\text {IN(MAX,RVS) }}$ is the maximum $\mathrm{V}_{\text {IN }}$ load current in the reverse direction required in the buck region.
\%Ripple is 30% to 50%
Otherwise, if the inductance is already known then $\Delta l_{\text {L(MAX,BUCK) }}$ can be more accurately calculated as follows:

$$
\begin{aligned}
& \Delta \mathrm{L}_{\mathrm{L}(\mathrm{MAX}, \mathrm{BUCK})} \cong \\
& \quad\left(\frac{\mathrm{DC}_{(\mathrm{MAX}, \mathrm{M} 2, \mathrm{BUCK})}}{100 \%}\right) \cdot \mathrm{V}_{\text {OUT(MIN,BUCK) }} \\
& f \cdot \mathrm{~L}
\end{aligned}
$$

where:
$D C_{(\text {MAX,M2,BUCK })}$ is the maximum duty cycle percentage in the buck region as calculated previously
f is the switching frequency
L is the inductance of the main inductor
After the maximum ripple current is known, the maximum allowed $\mathrm{R}_{\text {SENSE }}$ in the buck region while in reverse conduction can be calculated as follows:

[^0]where
$V_{\text {RSENSE(MIN,BUCK,MAXDC) }}$ is the minimum inductor current sense voltage at the maximum duty cycle. This value is determined in a similar manner to $V_{\text {RSENSE(MAX,BOOST,MAXDC) }}$ discussed previously in the $R_{\text {SENSE }}$ Selection: Max R RENSE in the Boost Region (Forward Conduction) section.

$\mathbf{R}_{\text {SENSE }}$ Selection: Final $R_{\text {SENSE }}$ Value

The final $R_{\text {SENSE }}$ value should be lower than all four maximum $R_{\text {SENSE }}$ values, $R_{\text {SENSE(MAX,BOOST,FWD), }}$ $R_{\text {SENSE(MAX,BOOST,RVS) }}$, R RENSE(MAX,BUCK,FWD) and RSENSE(MAX,BUCK,RVS). A margin of 20% to 30% is recommended.

Figure 8 shows approximately how the maximum positive $\mathrm{I}_{\text {OUT }}$ and inductor currents would vary with $\mathrm{V}_{\text {IN }} / V_{\text {OUT }}$ while all other operating parameters remain constant (frequency $=120 \mathrm{kHz}$, inductance $=10 \mu \mathrm{H}, \mathrm{R}_{\text {SENSE }}=1 \mathrm{~m} \Omega$). This graph is normalized and accounts for changes in maximum current due to the slope compensation ramps and the effects of changing ripple current. The curve is theoretical but can be used as a guide to predict relative changes in maximum currents over a range of $\mathrm{V}_{\text {IN }} / V_{\text {OUT }}$ voltages. Similarly, when in reverse conduction, Figure 9 shows approximately how the maximum negative I_{IN} and inductor currents would vary with $\mathrm{V}_{\text {IN }} / V_{\text {OUT }}$.

Figure 8. Currents vs $\mathrm{V}_{\text {IN }} / V_{\text {OUT }}$ Ratio in Forward Conduction

APPLICATIONS InFORMATION

Figure 9. Currents vs $V_{\text {IN }} / V_{\text {OUT }}$ Ratio in Reverse Conduction

Rense FILTERING

Certain applications may require filtering of the inductor current sense signals due to excessive switching noise that can appear across RSENSE. Higher operating voltages, higher values of R RENSE , and more capacitive MOSFETs will all contribute additional noise across R RENSE when the SW pins transition. The CSP/CSN sense signals can be filtered by adding one of the RC networks shown in Figure 10. Most PC board layouts can be drawn to accommodate either network on the same board. The network should be placed as close as possible to the IC. The network in Figure 10b can reduce common mode noise seen by the CSP/CSN pins of the LT8708 at the expense of some increased ground trace noise as current passes through the capacitors. A short direct path from the capacitor grounds to the IC ground should be used on the PC board. Resistors greater than 10Ω should be avoided as these can increase offset voltages at the CSP/CSN pins. The RC product should be kept to less than 30ns.

10(a)

Figure 10. Inductor Current Sense Filter

INDUCTOR (L) SELECTION

For high efficiency, choose an inductor with low core loss, such as ferrite. Also, the inductor should have low DC resistance to reduce the $I^{2} R$ losses, and must be able to handle the peak inductor current without saturating. To minimize radiated noise, use a toroid, pot core or shielded bobbin inductor.

The operating frequency and inductor selection are interrelated in that higher operating frequencies allow the use of smaller inductor and capacitor values. The following sections discuss several criteriato consider when choosing an inductor value. For optimal performance, choose an inductor that meets all of the following criteria.

L Selection: Load Current in Buck and Boost Regions

Small inductances result in increased ripple currents and thus, due to the positive and negative inductor current limits, decrease the maximum average forward $\mathrm{I}_{\text {OUt }}$ in the boost region and the maximum average reverse I_{IN} in the buck region.
In order to provide adequate forward $\mathrm{I}_{\text {OUT }}$ at low $\mathrm{V}_{\text {IN }}$ voltages in the boost region, L should be at least:

where:
$\mathrm{DC}_{(\text {MAX,M3,BOOST })}$ is the maximum duty cycle percentage of the M3 switch (see RSENSE Selection: Max $\mathrm{R}_{\text {SENSE }}$ in the Boost Region section)
f is the switching frequency
$V_{\text {RSENSE(MAX,BOOST,MAXDC) }}$ is the maximum current sense voltage in the boost region at maximum duty cycle (see R SENSE Selection: Max $R_{\text {SENSE }}$ in the Boost Region section)
$I_{\text {OUT(MAX,FWD) }}$ is the maximum forward $\mathrm{V}_{\text {OUT }}$ current in boost region

APPLICATIONS INFORMATION

To provide adequate reverse $\mathrm{I}_{\text {IN }}$ current at low $\mathrm{V}_{\text {OUT }}$ voltages in the buck region, L should be at least:
$\mathrm{L}_{\text {(MIN1,BUCK) }} \cong$
$\frac{V_{\text {OUT(MIIN,BUCK })} \cdot\left(\frac{\mathrm{DC}_{(\text {MAX,M2,BUCK })}}{100 \%}\right)}{2 \cdot f \cdot\left(\frac{\mid V_{\text {RSENSE(MIN,BUCK,MAXDC) })}}{}-\frac{I_{\text {IN(MAXX,RUS })} \bullet \vee_{\text {IN(MAX,BUCK })}}{\mathrm{V}_{\text {SUT(MIN,BUKK })}}\right)} \Omega$
where:
$\mathrm{DC}_{\text {(MAX,M2,BUCK) }}$ is the maximum duty cycle percentage of the M2 switch (see R Rense Selection: Max RSENSE in the Buck Region section)
f is the switching frequency
$V_{\text {RSENSE(MIN,BUCK,MAXDC) }}$ is the minimum current sense voltage in the buck region at maximum duty cycle (see R RENSE Selection: Max RSENSE in the Buck Region section)
$I_{\operatorname{IN}(M A X, R V S)}$ is the maximum reverse $\mathrm{V}_{\text {IN }}$ current in buck region
Negative values of $L_{\text {(MIN1,BOOST) }}$ or $L_{\text {(MIN1,BUCK) }}$ indicate that the load current can't be delivered because the inductor current limit is too low. If $\mathrm{L}_{\text {(MIN1, BOOST) }}$ or $\mathrm{L}_{\text {(MIN1,BUCK) }}$ is too large or is negative, consider reducing the RSENSE resistor value to increase the inductor current limit.

L Selection: Subharmonic Oscillations

The LT8708's internal slope compensation circuits will prevent subharmonic oscillations that can otherwise occur when $\mathrm{V}_{\text {IN }} / V_{\text {OUT }}$ is less than 0.5 or greater than 2. The slope compensation circuits will prevent these oscillations provided that the inductance exceeds a minimum value (see the earlier section Inductor Current Sensing and Slope Compensation for more information). Choose an inductance greater than all of the relevant $\mathrm{L}_{\text {(MIN })}$ limits discussed below. Negative calculation results can be interpreted as zero.

In the boost region, if $\mathrm{V}_{\text {OUT }}$ can be greater than twice $\mathrm{V}_{\text {IN }}$, calculate $\mathrm{L}_{\text {(MIN2,BOOST) }}$ as follows:

In the buck region, if $\mathrm{V}_{\text {IN }}$ can be greater than twice $\mathrm{V}_{\text {OUT }}$, calculate $\mathrm{L}_{\text {(MIN2,BUCK) }}$ as follows:
$\mathrm{L}_{\text {(MIN2,BUCK) }}=$
$\frac{\left[V_{\text {IN(MAX,BUCK) }} \cdot\left(1-\frac{V_{\text {OUT(MIN,BUCK })}}{V_{\text {IN(MAX,BUCK) }}-V_{\text {OUT(MIN,BUCK })}}\right)\right] \cdot R_{\text {SENSE }}}{0.08 \bullet f}$

L Selection: Maximum Current Rating

The inductor must have a rating greater than its maximum operating current to prevent inductor saturation resulting in efficiency loss. The maximum forward inductor current in the boost region is:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}(\mathrm{MAX}, \mathrm{BOOST}, \mathrm{FWD})} \cong \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX}, \mathrm{FWD})} \bullet \frac{\mathrm{V}_{\text {OUT(MAX,BOOST) }}}{\mathrm{V}_{\text {IN(MIN,BOOST) })}} \\
& +\left(\frac{\mathrm{V}_{\text {IN(MIN,BOOST })} \cdot\left(\frac{\left.\mathrm{DC}_{\left(\text {MAX }_{1, \mathrm{M} 3, \mathrm{BOOST})}\right.}^{100 \%}\right)}{}\right)}{2 \cdot \mathrm{~L} \cdot f}\right) \mathrm{A}
\end{aligned}
$$

where:
$D C_{(M A X, M 3, B O O S T)}$ is the maximum duty cycle percentage of the M3 switch (see RSENSE Selection and Maximum Current section).

APPLICATIONS INFORMATION

The maximum reverse inductor current in the boost region for applications in which $\mathrm{V}_{\text {OUT(MAX) }} \geq 2 \bullet \mathrm{~V}_{\text {IN(MAX) }}$ is:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}(\mathrm{MAX}, \mathrm{BOOST}, \mathrm{RVS})} \cong \mathrm{I}_{\mathrm{IN}(\mathrm{MAX}, \mathrm{RVS})} \\
& +\left(\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MAX}, \mathrm{BOOST})}}{4 \cdot \mathrm{~L} \cdot f}\right) \mathrm{A}
\end{aligned}
$$

For applications in which $\mathrm{V}_{0 U T(M A X)}<2 \cdot \mathrm{~V}_{\operatorname{IN}(\operatorname{MAX})}$, the maximum reverse inductor current is smaller than the value given by the above equation. The following equation can be used to calculate the reverse inductor current for given combinations of $V_{\text {IN }}$ and $V_{\text {OUT }}$.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}(\mathrm{MAX}, \mathrm{BOOST}, \mathrm{RVS})} \cong \mathrm{I}_{\mathrm{IN}(\text { MAX,RVS })} \\
& \quad+\left(\frac{\mathrm{V}_{\text {IN }} \bullet\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right)}{2 \bullet \mathrm{~L} \cdot f \cdot \mathrm{~V}_{\text {OUT }}}\right) \mathrm{A}
\end{aligned}
$$

where:

$$
V_{\text {OUT }}>V_{\text {IN }}
$$

The maximum positive inductor current in the buck region for applications in which $\mathrm{V}_{\operatorname{IN}(\operatorname{MAX})} \geq 2 \cdot \mathrm{~V}_{\text {OUT(MAX) }}$ is:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}(\mathrm{MAX}, \mathrm{BUCK}, \mathrm{FWD})} \cong \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX}, \mathrm{FWD})} \\
& \quad+\left(\frac{\mathrm{V}_{\text {OUT(MAX,BUCK) }}}{4 \cdot \mathrm{~L} \cdot f}\right) \mathrm{A}
\end{aligned}
$$

For applications with $\mathrm{V}_{\text {IN(MAX) }}<2 \cdot \mathrm{~V}_{\text {OUT(MAX) }}$, the maximum forward inductor current is smaller than the value given by the above equation. The following equation can be used to calculate the forward inductor current for given combinations of $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}(\mathrm{BUCK}, \mathrm{FWD})} \cong \mathrm{I}_{\text {OUT(MAX,FWD })} \\
& +\left(\frac{\mathrm{V}_{\text {OUT }} \bullet\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}{2 \cdot \mathrm{~L} \cdot f \cdot \mathrm{~V}_{\text {IN }}}\right) \mathrm{A}
\end{aligned}
$$

where:
$V_{\text {IN }}>V_{\text {OUT }}$

The maximum reverse inductor current when operating in the buck region is:
$\mathrm{I}_{\mathrm{L}(\mathrm{MAX}, \mathrm{BUCK}, \mathrm{RVS})} \cong \mathrm{I}_{\operatorname{IN}(\mathrm{MAX}, \mathrm{RVS})} \cdot \frac{\mathrm{V}_{\operatorname{IN}(\mathrm{MAX}, \mathrm{BUCK})}}{\mathrm{V}_{\text {OUT(MIN,BUCK) }}}$
$+\left(\frac{V_{\text {OUT(MIN,BUCK) }} \cdot \frac{D C_{(\text {MAX,M2,BUCK })}}{100 \%}}{2 \cdot L \cdot f}\right) A$
where:
$D C_{(M A X, M 2, B U C K)}$ is the maximum duty cycle percentage of the M2 switch in the buck region (see RSENSE Selection: Max RSENSE in the Buck Region section).
Note that the inductor current can be higher when there are load transients or the load current exceeds the expected maximum amount. It can also be higher during start-up if inadequate soft-start capacitance is used, or during output shorts. Consider using the I_{IN} and/or I IOUT current limiting to help prevent the inductor current from becoming excessive. I_{IN} and $\mathrm{I}_{\text {OUT }}$ current limiting are discussed later in the I_{IN} and $\mathrm{I}_{\text {OUT }}$ Current Monitoring and Limiting section. Careful board evaluation of the maximum inductor current is recommended.

POWER MOSFET SELECTION

The LT8708 requires four external N-channel power MOSFETs, two for the top switches (switches M1 and M4, shown in Figure 3) and two for the bottom switches (switches M2 and M3, shown in Figure 3). Important parameters for the power MOSFETs are the breakdown voltage $\mathrm{V}_{\mathrm{BR}, \mathrm{DSS}}$, threshold voltage $\mathrm{V}_{\mathrm{GS}, \mathrm{TH}}$, on-resistance $R_{D S(O N)}$, output capacitance $C_{O S S}$, and maximum current $I_{D S}(\mathrm{MAX})$. The gate drive voltage is set by the 6.3 V GATEV CC supply. Consequently, logic-levelthreshold MOSFETs must be used in LT8708 applications.

APPLICATIONS InFORMATION

It is very important to consider power dissipation when selecting power MOSFETs. The most efficient circuit will use MOSFETs that dissipate the least amount of power. Power dissipation must be limited to avoid overheating that might damage the devices. In forward conduction, the M1 and M3 switches will have the highest power dissipation, while M2 and M4 will have the highest power dissipation in reverse conduction. In some cases it can be helpful to use two or more MOSFETs in parallel to reduce power dissipation in each device. This is most helpful when power is dominated by $I^{2} \mathrm{R}$ losses while the MOSFET is "on". The additional capacitance of connecting MOSFETs in parallel can sometimes slow down switching edge rates and consequently increase total switching power losses.

The following sections provide guidelines for calculating power consumption of the individual MOSFETs. From a known power dissipation, the MOSFET junction temperature can be obtained using the following formula:

$$
T_{J}=T_{A}+P \cdot R_{T H(J A)}
$$

where:
T_{J} is the junction temperature of the MOSFET
T_{A} is the ambient air temperature
P is the power dissipated in the MOSFET
$\mathrm{R}_{\mathrm{TH}(\mathrm{JA})}$ is the MOSFET's thermal resistance from the junction to the ambient air. Refer to the manufacturer's data sheet.
$R_{T H(J A)}$ normally includes the $R_{T H(J C)}$ for the device plus the thermal resistance from the case to the ambient temperature $R_{T H(C A)}$. Compare the calculated value of T_{J} to the manufacturer's data sheets to help choose MOSFETs that will not overheat.
The power dissipation of the external N-channel MOSFETs comes from two primary components: (1) $I^{2} R$ power when the switch is fully "on" and inductor current is flowing between the drain and source connections and (2) power dissipated while the switch is turning "on" and "off". The MOSFET switching power consists of (A) a combination of high current and high voltage as the switch turns "on" and "off" and (B) charging and discharging the SW1 or

SW2 node capacitance, which is dominated by the output capacitance of the external MOSFETs. Use Table 7 to determine which power components are applicable in the various regions of operation.
Table 7. NMOS Power in Various Operating Regions

OPERATING REGION		M1	M2	M3	M4
Pos. I_{L}	Buck	$\mathrm{P}^{2}{ }^{2}{ }_{\mathrm{R}}+\mathrm{P}_{\text {SW }}$	$P_{1}{ }^{2} \mathrm{R}$	0	$P_{1}{ }^{2} \mathrm{R}$
	Boost	$P_{1}{ }^{2} \mathrm{R}$	0	$P_{1}{ }^{2}{ }_{R}+P_{S W}$	
	Buck-Boost	$\mathrm{P}_{1}{ }^{2}{ }_{\mathrm{R}}+\mathrm{P}_{\text {SW }}$	$P_{1}{ }^{2} \mathrm{R}$	$P_{1}{ }^{2} R+P_{S W}$	
Neg.I_{L}	Buck	$\mathrm{P}_{1}{ }^{2} \mathrm{R}$	$P_{1}{ }^{2}{ }_{R}+P_{S W}$	0	$\mathrm{P}_{1}{ }^{2} \mathrm{R}$
	Boost		0	$P_{1}{ }^{2}$ R	$P_{1}{ }^{2}{ }^{2}+P_{\text {SW }}$
	Buck-Boost		$P_{1}{ }^{2}{ }_{R}+P_{S W}$	$P_{1}{ }^{2} \mathrm{R}$	$P_{1}{ }^{2}{ }_{R}+P_{S W}$

The MOSFET power components listed above can be approximated using the following equations. Note that I_{IN} can be substituted for Iout using:

$$
I_{I N} \cong \frac{V_{\text {OUT }}}{V_{\text {IN }}} \cdot I_{\text {OUT }} \text { where necessary. }
$$

I^{2} R Component Equations:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{I}^{2} \mathrm{R}[\mathrm{M} 1, \mathrm{BUCK}]} \text { or } \mathrm{P}_{\mathrm{I}}{ }^{2} \mathrm{R}[\mathrm{M} 4, \mathrm{BOOST}] \\
& \cong \frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}} \cdot \operatorname{I}_{\mathrm{OUT}}{ }^{2} \cdot \mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \cdot \rho_{\tau} \mathrm{W} \\
& \left.\mathrm{P}_{I^{2}} \mathrm{R}_{[M 1, B O O S T}\right]
\end{aligned}
$$

$$
\cong\left(\frac{V_{\text {OUT }}}{V_{\text {IN }}} \cdot I_{\text {OUT }}\right)^{2} \cdot R_{\text {DS(ON })} \cdot \rho_{\tau}
$$

$$
\mathrm{P}_{1}{ }^{2} \mathrm{R}[\mathrm{M} 2, \mathrm{BUCK}]
$$

$$
\cong \frac{V_{I N}-V_{O U T}}{V_{I N}} \cdot I_{O U T}{ }^{2} \cdot R_{D S(O N)} \cdot \rho_{\tau} W
$$

$$
\mathrm{P}_{1}{ }^{2} \mathrm{R}[\mathrm{M} 3, \mathrm{BOOST}]
$$

$$
\cong \frac{V_{O U T}-V_{I N}}{V_{I N}{ }^{2}} \cdot V_{O U T} \cdot I_{O U T}{ }^{2} \cdot R_{D S(O N)} \cdot \rho_{\tau} W
$$

$$
\mathrm{P}_{1}{ }^{2} \mathrm{R}[\mathrm{M} 4, \mathrm{BUCK}]
$$

$$
\cong I_{O U T}{ }^{2} \cdot R_{D S(O N)} \bullet \rho_{\tau} W
$$

APPLICATIONS InFORMATION

Switching Component Equations for M1 and M2:

```
\(\mathrm{P}_{\text {SW[M1,BUCK] }}\) or \(\mathrm{P}_{\text {SW[M2,BUCK }]}\)
    \(\cong P_{S W A}+P_{\text {SWB }}\)
    \(\cong\left(V_{I N} \bullet \|_{O U T} \mid \cdot f \bullet t_{R F 1}\right)\)
    \(+\left(0.5 \cdot \mathrm{C}_{\text {OSS }}^{(\mathrm{M} 1+\mathrm{M} 2)}{ }^{\bullet} \mathrm{V}_{\text {IN }}{ }^{2} \cdot f\right) \mathrm{W}\)
```

Switching Component Equations for M3 and M4:
$\mathrm{P}_{\text {SW[M3,BOOST }]}$ or $\left.\mathrm{P}_{\text {SW[M4,BOOST }}\right]$

$$
\begin{aligned}
& \cong \mathrm{P}_{\text {SWA }}+\mathrm{P}_{\text {SWB }} \\
& \cong\left(V_{\text {OUT }}{ }^{2} \cdot \|_{\text {OUT }} \left\lvert\, \cdot f \cdot \frac{t_{\text {RF2 }}}{V_{\text {IN }}}\right.\right) \\
& +\left(0.5 \cdot \mathrm{C}_{\text {OSS }}(\mathrm{M} 3+\mathrm{M} 4) \cdot \mathrm{V}_{\text {OUT }}{ }^{2} \cdot f\right) \mathrm{W}
\end{aligned}
$$

where:
$t_{\text {RF1 }}$ is the average of the SW1 pin rise and fall times. Typical values are 20-40ns depending on the MOSFET capacitance and $\mathrm{V}_{\text {IN }}$ voltage.
$t_{\text {RF2 }}$ is the average of the SW2 pin rise and fall times and, similar to $\mathrm{t}_{\text {RF1 } 1}$, is typically $20 \mathrm{~ns}-40 \mathrm{~ns}$ depending on the MOSFET capacitance and $\mathrm{V}_{\text {Out }}$ voltage.
$\mathrm{R}_{\mathrm{DS}(0 \mathrm{ON})}$ is the "on" resistance of the MOSFET at $25^{\circ} \mathrm{C}$ ρ_{τ} is a normalization factor (unity at $25^{\circ} \mathrm{C}$) accounting for the significant variation in MOSFET on-resistance with temperature, typically about $0.4 \% /{ }^{\circ} \mathrm{C}$, as shown in Figure 11. For a maximum junction temperature of $125^{\circ} \mathrm{C}$, using a value $=1.5$ is reasonable.

Figure 11. Normalized MOSFET RDS(ON) vs Temperature

Switch M1: For positive conduction, the maximum power dissipation in M1 occurs either in the buck region when $\mathrm{V}_{\text {IN }}$ is highest, $\mathrm{V}_{\text {OUT }}$ is highest, and switching power losses are greatest, or in the boost region when $\mathrm{V}_{\text {IN }}$ is smallest, $\mathrm{V}_{\text {OUT }}$ is highest and M 1 is always on.
In most cases of negative conduction, the M1 switching power dissipation is quite small and $I^{2} R$ power losses dominate. In negative conduction, $\mathrm{M} 1 \mathrm{I}^{2} \mathrm{R}$ power is greatest in the boost region due to the lower $V_{\mathbb{I N}}$ and higher $V_{\text {OUT }}$ that cause the M1 switch to be "on" for the most amount of time.

Switch M2: In most cases of positive conduction, the M2 switching power dissipation is quite small and $I^{2} R$ power losses dominate. In positive conduction, $\mathrm{M} 2 I^{2} \mathrm{R}$ power is greatest in the buck region due to the higher $\mathrm{V}_{\text {IN }}$ and lower $V_{\text {Out }}$ that cause M2 to be "on" for the most amount of time.

For negative conduction, the maximum power dissipation in M2 occurs in the buck region when $\mathrm{V}_{\text {IN }}$ is highest and $V_{\text {OUT }}$ is lowest.

Switch M3: If the inductor current is positive, the maximum power dissipation in M 3 occurs when $\mathrm{V}_{\text {IN }}$ is lowest and $\mathrm{V}_{\text {OUT }}$ is highest.
In most cases of negative conduction, the M3 switching power dissipation is quite small and $I^{2} R$ power losses dominate. In negative conduction, $\mathrm{M} 3 \mathrm{I}^{2} \mathrm{R}$ power is greatest in the boost region due to the lower $\mathrm{V}_{\mathbb{I N}}$ and higher $V_{\text {OUT }}$ that cause the M3 switch to be "on" for the most amount of time.

Switch M4: If the inductor current is positive, in most cases the switching power dissipation in the M4 switch is quite small and $I^{2} R$ power losses dominate. $I^{2} R$ power is greatest in the boost region due to the lower $V_{\text {IN }}$ and higher $V_{\text {Out }}$ that cause M4 switch to be "on" for the most amount of time.

If the inductor current is negative, the maximum power dissipation in the M4 switch occurs either in the boost region when $\mathrm{V}_{\text {IN }}$ is highest, $\mathrm{V}_{\text {OUT }}$ is highest, and switching power losses are greatest, or in the buck region when $V_{\text {IN }}$ is highest, $\mathrm{V}_{\text {OUT }}$ is lowest and M 4 is always on.

APPLICATIONS INFORMATION

Gate Resistors: In some cases it can be beneficial to add 1Ω to 10Ω of resistance between some of the NMOS gate pins and their respective gate driver pins on the LT8708 (i.e., TG1, BG1, TG2, BG2). Due to parasitic inductance and capacitance, ringing can occur on SW1 or SW2 when Iow capacitance MOSFETs are turned on/off too quickly. The ringing can be of greatest concern when operating the MOSFETs or the LT8708 near the rated voltage limits. Additional gate resistance slows the switching speed, minimizing the ringing.
Excessive gate resistance can have two negative side effects on performance:

1. Slowing the switch transition times can also increase power dissipation in the switch. This is described above.
2. Capacitive coupling from the SW1 or SW2 pin to the switch gate node can turn it on when it's supposed to be off, thus increasing power dissipation. With too much gate resistance, this would happen to the M2 switch when SW1 is rising with positive inductor current and to the M3 switch when SW2 is rising with negative inductor current.

Careful board evaluation should be performed when optimizing the gate resistance values. SW1 and SW2 pin ringing can be affected by the inductor current levels, therefore board evaluation should include measurements at a wide range of load currents, $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$. When performing PCB measurements of the SW1 and SW2 pins, be sure to use a very short ground post from the PCB ground to the scope probe ground sleeve in order to minimize false inductive voltage readings.

$\mathrm{C}_{\text {IN }}$ AND $\mathrm{C}_{\text {OUT }}$ SELECTION

$\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ capacitance is necessary to suppress voltage ripple caused by discontinuous current moving in and out of the regulator. A parallel combination of capacitors is typically used to achieve high capacitance and low ESR (equivalent series resistance). Dry tantalum, special
polymer, aluminum electrolytic and ceramic capacitors are all available in surface mount packages. Capacitors with low ESR and high ripple current ratings, such as OS-CON and POSCAP are also available.

Ceramic capacitors should be placed near the regulator input and output to suppress high frequency switching spikes. A ceramic capacitor, of at least 1μ F at the maximum $V_{\text {InCHIP }}$ operating voltage, should also be placed from $V_{\text {INCHIP }}$ to GND as close to the LT8708 pins as possible. Due to their excellent low ESR characteristics ceramic capacitors can significantly reduce input ripple voltage and help reduce power loss in the higher ESR bulk capacitors. X5R or X7R dielectrics are preferred, as these materials retain their capacitance over wide voltage and temperature ranges. Many ceramic capacitors, particularly 0805 or 0603 case sizes, have greatly reduced capacitance at the desired operating voltage.
$V_{\text {IN }}$ Capacitance: Discontinuous $V_{\text {IN }}$ current is highest in the buck region due to the M1 switch toggling on and off. Make sure that the $\mathrm{C}_{\text {IN }}$ capacitor network has low enough ESR and is sized to handle the maximum RMS current. For buck operation, the $\mathrm{V}_{\text {IN }}$ RMS current is given by:

$$
\begin{equation*}
\mathrm{I}_{(\mathrm{IN}, \mathrm{RMS})} \cong \mathrm{I}_{\text {OUT }} \cdot \frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}} \cdot \sqrt{\frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\text {OUT }}}-1} \quad \mathrm{~A} \tag{A}
\end{equation*}
$$

This formula has a maximum at $\mathrm{V}_{\text {IN }}=2 \cdot \mathrm{~V}_{\text {OUT }}$, where $\mathrm{I}_{(\text {IN,RMS })}=\mathrm{I}_{\mathrm{OUT}} / 2$. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief.
$\mathrm{C}_{\text {IN }}$ is necessary to reduce the $\mathrm{V}_{\text {IN }}$ voltage ripple caused by discontinuities and ripple of I_{IN}. The effects of ESR and the bulk capacitance must be considered when choosing the correct capacitor for a given $\mathrm{V}_{\text {IN }}$ ripple.
The $\mathrm{V}_{\text {IN }}$ ripple due to the voltage drop across the bulk cap ESR BULK , without having any ceramic capacitance in parallel, is approximately:

$$
\Delta \mathrm{V}_{(I N, B U C K, B U L K)} \cong I_{\text {OUT }} \bullet E S R_{\text {BULK }} V
$$

APPLICATIONS InFORMATION

When low ESR ceramic capacitance is added in parallel with the bulk capacitor, the V_{IN} ripple is approximately:

$$
\begin{aligned}
& \Delta V_{\text {(IN,BUCK,CERAM })} \cong \\
& \mathrm{I}_{\text {OUT }} \cdot \frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}} \cdot \text { ESR }_{\text {CERAM }} \bullet \\
& \\
& \left(1-\exp \left(\frac{-\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }} \bullet f \bullet \text { ESR }_{\text {CERAM }} \bullet \mathrm{C}_{\text {IN-CERAM }}}\right)\right) V
\end{aligned}
$$

Add enough ceramic capacitance to make sure $\Delta \mathrm{V}_{\text {(IN,BUCK,CERAM) }}$ is adequate for the application. In a properly designed application, $\Delta \mathrm{V}_{\text {(IN,BUCK,CERAM) }}$ should be much smaller than $\Delta V_{(I N, B U C K, B U L K)}$.
$V_{\text {OUT }}$ Capacitance: Discontinuous $\mathrm{V}_{\text {OUT }}$ current is highest in the boost region due to the M4 switch toggling on and off. Make sure that the Cout capacitor network has low enough ESR and is sized to handle the maximum RMS current. For boost operation, the $\mathrm{V}_{\text {OUT }}$ RMS current is given by:

$$
I_{(O U T, R M S} \cong I_{\text {OUT }} \cdot \sqrt{\frac{V_{\text {OUT }}}{V_{\text {IN }}}-1} \quad \mathrm{~A}
$$

This formula has a maximum when $\mathrm{V}_{I N}$ is minimum and $V_{\text {OUT }}$ is maximum.
Cout is necessary to reduce the $V_{\text {OUT }}$ ripple caused by discontinuities and ripple of I OUT. The effects of ESR and the bulk capacitance must be considered when choosing the right capacitor for a given $\mathrm{V}_{\text {OUT }}$ ripple.
The $\mathrm{V}_{\text {OUT }}$ ripple due to the voltage drop across the bulk cap ESR without having any ceramic caps in parallel is approximately:

$$
\begin{aligned}
& \Delta \mathrm{V}_{(\text {OUT,BOOST,BULK })} \cong \frac{\mathrm{V}_{\text {OUT }} \bullet \mathrm{I}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}} \cdot \mathrm{ESR}_{\text {BULK }} \\
& \Delta \mathrm{V}_{(\text {OUT,BUCK,BULK })} \cong I_{\text {RIPPLE }} \bullet \mathrm{ESR}_{\text {BULK }}
\end{aligned}
$$

With enough ceramic caps added in parallel, the steady state $\mathrm{V}_{\text {OUT }}$ ripple due to charging and discharging the ceramic $\mathrm{C}_{\text {OUT }}$ is given by the following equations:
$\Delta V_{(\text {OUT,BOOST,CERAM })} \cong$

$$
\begin{aligned}
& \mathrm{I}_{\text {OUT }} \bullet \text { ESR }_{\text {CERAM }} \bullet \\
& \left(1-\exp \left(\frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {OUT }} \cdot f \bullet \text { ESR }_{\text {CERAM }} \bullet C_{\text {OUT-CERAM }}}\right)\right) V
\end{aligned}
$$

for $V_{\text {OUT }}>\mathrm{V}_{\text {IN }}$, and

$$
\begin{aligned}
& \Delta \mathrm{V}_{(\text {OUT,BUCK,CERAM })} \cong \\
& \frac{\mathrm{V}_{\text {OUT }} \cdot\left(1-\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)}{8 \cdot L \cdot f^{2} \cdot \mathrm{C}_{\text {OUT-CERAM }}} \mathrm{V}
\end{aligned}
$$

for $V_{\text {OUT }}<V_{\text {IN }}$
Addenough ceramic capstomake sure $\Delta \mathrm{V}_{\text {(OUT,BOOST,CERAM) }}$ and $\triangle \mathrm{V}_{\text {(OUT,BUCK,CERAM) }}$ are adequate for the application. In a properly designed application, $\Delta \mathrm{V}_{\text {(OUT,BOOST,CERAM) }}$ and $\Delta V_{\text {(OUT,BUCK,CERAM) }}$ should be much smaller than $\Delta \mathrm{V}_{\text {(OUT,BOOST,BULK) }}$ and $\Delta \mathrm{V}_{\text {(OUT,BUCK,BULK) }}$, respectively.

SCHOTKY DIODE (D1, D2, D3, D4) SELECTION

During forward conduction the Schottky diodes, D2 and D4, shown in Figure 1, conduct during the dead time between the conduction of the power MOSFET switches. They help to prevent the body diodes of synchronous switches M2 and M4 from turning on and storing charge. For example, D4 can significantly reduce reverse-recovery current when M3 turns on, which improves converter efficiency, reduces switch M3 power dissipation, and reduces noise in the inductor current sense resistor (RSENSE). Similarly, during reverse conduction, D1 and D3 conduct during the dead time between the conduction of the power MOSFET switches. In order for the diodes to be effective, the inductance between them and the synchronous switch must be as small as possible, mandating that these components be placed very close to the MOSFETs.

APPLICATIONS InFORMATION

For applications with high input or output voltages (typically $>40 \mathrm{~V}$) avoid Schottky diodes with excessive reverse-leakage currents, particularly at high temperatures. Some ultra-low V_{F} diodes will trade-off increased high temperature leakage current for reduced forward voltage. Diodes D1 and D2 can have reverse voltages in excess of $\mathrm{V}_{\text {IN }}$ and D3 and D4 can have reverse voltages in excess of $\mathrm{V}_{\text {OUT }}$. The combination of high reverse voltage and current can lead to self-heating of the diode. Besides reducing efficiency, this can increase leakage current which increases temperatures even further. Choose packages with lower thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ to minimize self heating of the diodes.

TOPSIDE MOSFET DRIVER SUPPLY

$\left(C_{B 1}, D_{B 1}, C_{B 2}, D_{B 2}\right)$

The top MOSFET drivers (TG1 and TG2) are driven digitally between their respective SW and BOOST pin voltages. The BOOST voltages are biased from floating booststrap capacitors $C_{B 1}$ and $C_{B 2}$, which are normally recharged through external silicon diodes $D_{B 1}$ and $D_{B 2}$ when the respective top MOSFET is turned off. The capacitors are charged to about 6.3 V (about equal to $\mathrm{GATEV}_{\text {CC }}$) forcing the $V_{\text {BOOST1-SW1 }}$ and $V_{\text {BOOST2-SW2 }}$ voltages to be about 6.3 V . The boost capacitors $\mathrm{C}_{\mathrm{B} 1}$ and $\mathrm{C}_{\mathrm{B} 2}$ need to store about 100 times the gate charge required by the top switches M1 and M4. In most applications, a $0.1 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}$ or X 7 R dielectric capacitor is adequate. The bypass capacitance from GATEV $_{C C}$ to GND should be at least 10 times the $\mathrm{C}_{\mathrm{B} 1}$ or $\mathrm{C}_{\mathrm{B} 2}$ capacitance.

Top Driver: Boost Cap Charge Control Block

When the LT8708 operates exclusively in the boost or buck region, M1 or M4 respectively may be "on" continuously. This prevents the respective bootstrap capacitor, $\mathrm{C}_{\mathrm{B} 1}$ or $\mathrm{C}_{\mathrm{B} 2}$, from being recharged through the silicon diode, $\mathrm{D}_{\mathrm{B} 1}$ or $\mathrm{D}_{\mathrm{B} 2}$. The Boost Cap Charge Control block (see Figure 1) keeps the appropriate bootstrap capacitor charged in these cases. In the boost region, when M1 is always on, current is drawn, as needed, from the CSNOUT and/or BOOST2 pins to charge the $\mathrm{C}_{\mathrm{B} 1}$ capacitor. In the buck region, when M4 is always on, current is drawn, as needed, from the CSNIN and/or BOOST1 pins to charge the $\mathrm{C}_{\mathrm{B} 2}$ capacitor.

Because of this function, CSPIN and CSNIN should be connected across RSENSE1 in series with the M1 drain. Connect both pins to the M1 drain if they are not being used. Also, CSPOUT and CSNOUT should be connected across Rense2 in series with the M4 drain or connect both to the M4 drain if not being used.

Top Driver: Boost Diodes $D_{B 1}$ and $D_{B 2}$

Although Schottky diodes have the benefit of low forward voltage drops, they can exhibit high reverse current leakage and have the potential for thermal runaway under high voltage and temperature conditions. Silicon diodes are thus recommended for diodes $\mathrm{D}_{\mathrm{B} 1}$ and $\mathrm{D}_{\mathrm{B} 2}$. Make sure that $D_{B 1}$ and $D_{B 2}$ have reverse breakdown voltage ratings higher than $\mathrm{V}_{\text {IN(MAX) }}$ and $\mathrm{V}_{\text {OUT(MAX) }}$ and have less than 1 mA of reverse-leakage current at the maximum operating junction temperature. Make sure that the reverse-leakage current at high operating temperatures and voltages won't cause thermal runaway of the diode.

In some cases it is recommended that up to 5Ω of resistance is placed in series with $D_{B 1}$ and $D_{B 2}$. The resistors reduce surge currents in the diodes and can reduce ringing at the SW and BOOST pins of the IC. Since SW pin ringing is highly dependent on PCB layout, SW pin edge rates and the type of diodes used, careful measurements directly at the SW pins of the IC are recommended. If required, a single resistor can be placed between $\mathrm{GATEV}_{\mathrm{CC}}$ and the common anodes of $D_{B 1}$ and $D_{B 2}$ (as in the front page application) or by placing separate resistors between the cathodes of each diode and the respective BOOST pins. Excessive resistance in series with $\mathrm{D}_{\mathrm{B} 1}$ and $\mathrm{D}_{\mathrm{B} 2}$ can reduce the BOOST-SW capacitor voltage when the M2 or M3 ontimes are very short and should be avoided.

VINHIMON, VOUTLOMON AND RVSOFF

During reverse conduction, current and power are drawn from $V_{\text {OUT }}$ and delivered to $\mathrm{V}_{\text {IN }}$. This has the potential to draw $\mathrm{V}_{\text {OUT }}$ lower than desired or drive $\mathrm{V}_{\text {IN }}$ higher than desired, depending on the supplies and loads. The VINHIMON and VOUTLOMON pins are used to detect either of these conditions and disable reverse conduction by pulling RVSOFF low.

APPLICATIONS INFORMATION

The purpose of the VINHIMON and VOUTLOMON functions becomes clearer when considering the priorities of the error amplifiers (see Table 3). A few important cases should be considered.

1. $V_{I N}$ and $V_{\text {OUT }}$ are both above regulation: In this case FBIN is greater than 1.205 V while FBOUT is greater than 1.207 V . Normally this condition causes V_{C} to fall due to FBOUT being above 1.207V. The LT8708 responds by increasing the reverse current and power being fed into $\mathrm{V}_{\text {IN }}$.

This can be an undesirable response, for example, if $\mathrm{V}_{\text {IN }}$ is connected to a battery being charged from $V_{\text {OUT. }}$. The solution is to use VINHIMON to detect the maximum $V_{I N}$ and disable reverse conduction by pulling RVSOFF low.
2. $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ are both below regulation: In this case FBIN is below 1.205 V while FBOUT is below 1.207 V . Normally this condition causes V_{C} to fall due to FBIN being below 1.205 V . The LT8708 responds by increasing the reverse current and power being drawn from $\mathrm{V}_{\text {OUT }}$.
This can be an undesirable response, for example, if $\mathrm{V}_{\text {OUT }}$ is connected to a battery or supercapacitor supplying power to $\mathrm{V}_{\text {IN }}$. The solution is to use VOUTLOMON to detect the minimum $\mathrm{V}_{\text {OUT }}$ and disable reverse conduction by pulling RVSOFF low.
If VINHIMON rises above its activation threshold or VOUTLOMON falls below its activation threshold (see Electrical Characteristics), the LT8708 will pull the RVSOFF pin low and not allow M4 switch to turn on if the inductor current is negative. In addition to the 24 mV (typical) voltage hysteresis, the VINHIMON pin will source $1 \mu \mathrm{~A}$ (typical) current and the VOUTLOMON pin will sink $1 \mu \mathrm{~A}$ (typical) current as current hysteresis.
There are two ways to configure the VINHIMON and VOUTLOMON pins. Method (1) uses dedicated resistor dividers for VINHIMON and VOUTLOMON respectively, while method (2) uses common resistor dividers for VINHIMON and FBIN as well as for VOUTLOMON and FBOUT, allowing improved tracking with the FBOUT and FBIN regulation voltages, respectively.

1. Connect a resistor divider between $\mathrm{V}_{\text {IN }}$, VINHIMON and GND to configure the $\mathrm{V}_{\text {IN }}$ overvoltage threshold. Connect a resistor divider between $\mathrm{V}_{0 U T}$, VOUTLOMON and GND to configure the $\mathrm{V}_{\text {OUt }}$ undervoltage threshold. (see Figure 12). Use the following equations to calculate the resistor values:

$$
\begin{aligned}
& R_{\text {HIMON1 }}=\frac{V_{\text {OVIN }^{+}}-1.207}{I_{\text {FBDIV }}} \\
& R_{\text {HIMON2 }}=\frac{1.207}{I_{\text {FBDIV }}} \\
& R_{\text {HIMON3 }}=\left(\frac{1.207-V_{\text {HYSMON }}}{I_{\text {HYSMON }}}\right)-\left(\frac{R_{\text {HIMON1 }} \bullet R_{\text {HIMON2 }}}{R_{\text {HIMON } 1}+R_{\text {HIMON2 }}}\right) \\
&-\left(\frac{V_{\text {OVIN }}-\bullet R_{\text {HIMON2 }}}{I_{\text {HYSMON }} \cdot\left(R_{\text {HIMON1 }}+R_{\text {HIMON2 }}\right)}\right) \\
& R_{\text {LOMON1 }}= \frac{V_{\text {UVOUT }}-1.207}{} \\
& I_{\text {FBDIV }}
\end{aligned}
$$

$$
\mathrm{R}_{\text {LOMON2 }}=\frac{1.207}{\mathrm{I}_{\text {FBDIV }}}
$$

$$
\mathrm{R}_{\text {LOMON3 }}=\left(\frac{\mathrm{V}_{\mathrm{UVOUT}}{ }^{+} \cdot \mathrm{R}_{\text {LOMON2 }}}{\mathrm{I}_{\text {HYSMON }} \bullet\left(\mathrm{R}_{\text {LOMON1 }}+\mathrm{R}_{\text {LOMON2 }}\right)}\right)
$$

$$
-\left(\frac{\mathrm{R}_{\text {LOMON } 1} \cdot \mathrm{R}_{\text {LOMON } 2}}{\mathrm{R}_{\text {LOMON } 1}+\mathrm{R}_{\text {LOMON } 2}}\right)-\left(\frac{1.207+\mathrm{V}_{\text {HYSMON }}}{\mathrm{I}_{\text {HYSMON }}}\right)
$$

where:
$I_{\text {FBDIV }}$ is the desired current through the resistor string. $50 \mu \mathrm{~A}-100 \mu \mathrm{~A}$ is a good value.
$\mathrm{V}_{\text {OVIN }}+$ and $\mathrm{V}_{\text {OVIN }}$ - are the rising and falling $\mathrm{V}_{\text {IN }}$ overvoltage thresholds.
$\mathrm{V}_{\text {UVOUT }}$ and $\mathrm{V}_{\text {UVOUT }}$ - are the rising and falling $\mathrm{V}_{\text {OUT }}$ undervoltage thresholds.
$\mathrm{R}_{\text {HIMON1-3 }}$ and $\mathrm{R}_{\text {LOMON1-3 }}$ are shown in Figure 12.
$V_{\text {HYSMON }}$ is the VINHIMON and VOUTLOMON hysteresis voltage. Typical value is 24 mV .
$I_{\text {HYSMON }}$ is the VINHIMON and VOUTLOMON hysteresis current. Typical value is $1 \mu \mathrm{~A}$.

APPLICATIONS INFORMATION

(a) Resistor Divider for VINHIMON

(b) Resistor Divider for VOUTLOMON

Figure 12.
where:
$I_{\text {FBDIV }}$ is the desired currentthrough the resistor string. $50 \mu \mathrm{~A}-100 \mu \mathrm{~A}$ is a good value.
$\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ are the desired regulation voltages.

Figure 13. Single Divider for VINHIMON and FBIN

Figure 14. Single Divider for VOUTLOMON and FBOUT
2. Connect a resistor divider between V_{IN}, FBIN, VINHIMON and GND to configure the $\mathrm{V}_{\text {IN }}$ regulation and overvoltage thresholds (see Figure 13). Connect a resistor divider between VOUT, VOUTLOMON, FBOUT and GND to configure the $\mathrm{V}_{\text {OUT }}$ regulation and undervoltage thresholds (see Figure 14).
Use the following equations to calculate the resistor values:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{IN} 3}=\frac{1.207 \cdot \mathrm{~V}_{\text {IN }}}{\mathrm{V}_{\mathrm{OVIN}^{+}} \cdot \bullet_{\mathrm{FBDIV}}} \\
& \mathrm{R}_{\mathrm{IN} 1}=\mathrm{V}_{\mathrm{OVIN}^{+}} \cdot \mathrm{R}_{\mathrm{IN} 3} \cdot\left(\frac{1}{1.207}-\frac{1}{\mathrm{~V}_{\mathrm{IN}}}\right) \\
& \mathrm{R}_{\mathrm{IN} 2}=\frac{\left(\mathrm{V}_{\mathrm{OVIN}^{+}}-\mathrm{V}_{\text {IN }}\right)}{\mathrm{V}_{\text {IN }}} \cdot \mathrm{R}_{\text {IN } 3}
\end{aligned}
$$

$$
\mathrm{R}_{\text {IN4 }}=
$$

$$
\left(\frac{\left[\left(\mathrm{R}_{\mathrm{IN} 1}+\mathrm{R}_{\mathrm{IN} 2}\right) \cdot l_{\mathrm{HYSMON}}+\mathrm{V}_{\mathrm{OVIN}^{+}}-\mathrm{V}_{\mathrm{OVIN}^{-}}\right] \cdot 1.207}{\mathrm{~V}_{\mathrm{OVIN}^{+}} \bullet_{\mathrm{HYSMON}}}\right)
$$

$$
-\left(\frac{\mathrm{V}_{\mathrm{HYSMON}}}{\mathrm{I}_{\mathrm{HYSMON}}}\right)-\left(\frac{\left(\mathrm{V}_{\mathrm{OVIN}^{+}}-1.207\right) \cdot \mathrm{R}_{\mathrm{IN} 3}}{\mathrm{~V}_{\mathrm{OVIN}^{+}}}\right)
$$

$$
\mathrm{R}_{\text {OUT3 }}=\frac{1.207}{\mathrm{I}_{\text {FBDIV }}}
$$

$$
\mathrm{R}_{\text {OUT } 1}=\mathrm{V}_{\text {OUT }} \cdot \mathrm{R}_{\text {OUT3 }} \cdot\left(\frac{1}{1.207}-\frac{1}{\mathrm{~V}_{\text {UVOUT }^{-}}}\right)
$$

$$
\mathrm{R}_{\text {OUT2 }}=\frac{\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {UVOUT }^{-}}\right)}{\mathrm{V}_{\text {UVOUT }^{-}}} \cdot \mathrm{R}_{\text {OUT3 }}
$$

$$
\mathrm{R}_{\text {OUT4 } 4}=
$$

$$
\left.\left(\frac{\left(\mathrm{R}_{\text {OUT } 1} \bullet \mathrm{l}_{\mathrm{HYSMON}}+\mathrm{V}_{\mathrm{UVOUT}^{+}}-\mathrm{V}_{\mathrm{UVOUT}}\right.}{}\right) \cdot 1.207{ }_{\mathrm{V}_{\mathrm{UVOUT}^{-}} \boldsymbol{l}_{\mathrm{HYSMON}}}\right)
$$

$$
-\left(\frac{\mathrm{V}_{\text {HYSMON }}}{\mathrm{I}_{\text {HYSMON }}}\right)-\left(\frac{\left(\mathrm{V}_{\text {UVOUT }^{-}}-1.207\right) \cdot \mathrm{R}_{\text {OUT3 }}}{\mathrm{V}_{\text {UVOUT }^{-}}}\right)
$$

APPLICATIONS INFORMATION

$\mathrm{V}_{\text {OVIN }}+$ and $\mathrm{V}_{\text {OVIN }}$ - are the rising and falling $\mathrm{V}_{\text {IN }}$ overvoltage thresholds.
$\mathrm{V}_{\text {UVOUT }}+$ and $\mathrm{V}_{\text {UVOUT }}$ - are the rising and falling $\mathrm{V}_{\text {OUT }}$ undervoltage thresholds.
$\mathrm{R}_{\text {IN1-4 }}$ and $\mathrm{R}_{\text {OUT1-4 }}$ are shown in Figure 13 and Figure 14.
$V_{\text {HYSMON }}$ is the VINHIMON and VOUTLOMON hysteresis voltage. Typical value is 24 mV .
$I_{\text {HYSMON }}$ is the VINHIMON and VOUTLOMON hysteresis current. Typical value is $1 \mu \mathrm{~A}$.
If unused, tie VINHIMON to GND and/or VOUTLOMON to LD033.

Note: after the resistor values are selected, make sure to check that the FBIN and VOUTLOMON voltages are below their $A B S M A X$ values when $V_{I N}$ and $V_{O U T}$ are at their maximum, respectively.

$I_{\text {IN }}$ AND $I_{\text {OUt }}$ CURRENT MONITORING AND LIMITING

The LT8708 has independent $\left.\right|_{I_{N}}$ and $l_{\text {OUT }}$ Current monitors that can monitor and limit the respective currents in both positive and negative directions. Figure 15 and Figure 16 illustrate the operation of the current monitor circuits.
The remaining discussion refers to the l_{IN} current monitor circuit of Figure 15. All discussion and equations are also applicable to the I IOUT current monitor circuit, substituting pin and device names as appropriate.
Current Monitoring: The IMON_INP and IMON_INN pins can be used to monitor I_{IN} in the forward and reverse directions, respectively. When configured as shown in Figure 15, the IMON_INP and IMON_INN voltages are proportional to $l_{\text {IN. }}$. VIMON_INP is proportional to the positive I_{IN} current, increasing as I_{IN} becomes more positive. $V_{\text {IMON_INN }}$ is proportional to the negative $\mathrm{I}_{\text {IN }}$ current, increasing as I_{IN} becomes more negative.

Figure 15. I_{N} Current Monitor and Limit

Figure 16. Iout Current Monitor and Limit

APPLICATIONS INFORMATION

Transconductance amplifier A3 performs this monitoring function. A3 converts the current sense voltage, $\mathrm{V}_{\text {CSPIN- }}$ CSNIN, into two currents:

$$
+\mathrm{V}_{\text {CSPIN-CSNIN }} \cdot 1 \mathrm{~m} \frac{\mathrm{~A}}{\mathrm{~V}}
$$

and

$$
-\mathrm{V}_{\text {CSPIN-CSNIN }} \cdot 1 \mathrm{~m} \frac{\mathrm{~A}}{\mathrm{~V}}
$$

These currents are added to $20 \mu \mathrm{~A}$ offsets and then forced into $R_{I M O N _I N P}$ and $R_{\text {IMON_INN, }}$ respectively.

Due to the $20 \mu \mathrm{~A}$ offset currents, $\mathrm{V}_{\text {IMON_INP }}$ and $\mathrm{V}_{\text {IMON_ }}$ INN are not 0 V when $\mathrm{I}_{\text {IN }}$ is 0 A . Instead, $\mathrm{V}_{\text {IMON_INP(0) }}=$ $20 \mu A \cdot R_{\text {IMON_INP }}$ Volts and $V_{\text {IMON_INN(} 0)}=20 \mu A \cdot R_{\text {IMON_INN }}$ Volts (typical) when $I_{I N}=0$ Amps. As I_{IN} becomes increasingly negative, $\mathrm{V}_{\text {IMON_INP }}$ reduces below $\mathrm{V}_{\text {IMON_INP(0) }}$ until $\mathrm{V}_{\text {IMON_INP }}=0 \mathrm{~V}$. Similarly, as $\mathrm{I}_{\text {IN }}$ becomes increasingly positive, $\mathrm{V}_{\text {Imon_inn }}$ reduces below $\mathrm{V}_{\text {IMON_inn(0) }}$ until $\mathrm{V}_{\text {IMON_INN }}=0 \mathrm{~V}$. $\mathrm{I}_{\text {MON_InP }}$ and $\mathrm{I}_{\text {MON_InN }}$ will not be driven below ground as their output currents can only be positive or zero.
The complete transfer functions for IMON_INP and IMON_INN are given in the equations below:

$$
\begin{aligned}
& V_{\text {IMON_INP }}=\left(1 m \frac{A}{V} \cdot R_{\text {SENSE1 }} \bullet I_{\text {IN }}+20 \mu \mathrm{~A}\right) \cdot R_{\text {IMON_INP }} \\
& V_{\text {IMON_INN }}=\left(-1 m \frac{A}{V} \cdot R_{\text {SENSE }} \bullet I_{\text {IN }}+20 \mu \mathrm{~A}\right) \cdot R_{\text {IMON_INN }}
\end{aligned}
$$

The differential voltage $V_{\text {CSPIN-CSNIN }}$ should remain between -100 mV and 100 mV due to the limited current that can be driven out of IMON_INP and IMON_INN. If the instantaneous $V_{\text {CSPIN-CSNIN }}$ exceeds these limits but the average $\mathrm{V}_{\text {CSPIN-CSNIN }}$ is within the limits, consider including the current sense filter described in the next section.
In addition, IMON_INP and IMON_INN should be filtered with capacitors $\mathrm{C}_{\text {IMON_INP }}$ and $\mathrm{C}_{\text {IMON_INN }}$ due to I_{IN} ripple and discontinuities that can occur in various regions of operation. A few nF of capacitance is usually sufficient.

Current Limiting:Asshown in Figure 15, IMON_INP voltage that exceeds 1.209 V (typical) causes V_{C} to reduce, thus limiting the forward $\mathrm{I}_{\mathbb{N}}$ and inductor currents. IMON_INN voltage that exceeds 1.21 V (typical) causes V_{C} to increase, thus limiting the reverse I_{IN} and inductor currents (see the Error Amplifiers section).
The forward $\mathrm{I}_{\text {IN }}$ limit, $\mathrm{I}_{(\mathrm{IN}, \mathrm{FWD}, \mathrm{LIMIT}) \text {, can be set as needed }}$ by choosing the appropriate $R_{\text {SENSE1 }}$ and RIMON IINP resistors using the following equation:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{IMON}_{-} \mathrm{INP}}= \\
& \frac{1.209}{\mathrm{I}_{(I N, F W D, L I M I T)} \bullet 1 \mathrm{~m} \frac{\mathrm{~A}}{\mathrm{~V}} \cdot \mathrm{R}_{\text {SENSE1 }}+20 \mu \mathrm{~A}} \Omega
\end{aligned}
$$

For example, if $\mathrm{R}_{\text {SENSE1 }}$ is chosen to be $12.5 \mathrm{~m} \Omega$ and the desired forward I_{IN} current limit is 4 A then:

$$
\begin{aligned}
& \mathrm{R}_{\text {IMON_INP }}= \\
& \frac{1.209}{4 \mathrm{~A} \cdot 1 \mathrm{~m} \frac{\mathrm{~A}}{\mathrm{~V}} \cdot 12.5 \mathrm{~m} \Omega+20 \mu \mathrm{~A}}=17.3 \mathrm{k} \Omega
\end{aligned}
$$

Similarly, the reverse $I_{I N}$ limit, $I_{(I N, R V S, L I M I T), ~ c a n ~ b e ~ s e t ~ a s ~}$ needed by choosing the appropriate $R_{\text {SENSE } 1}$ and $R_{\text {IMON_INN }}$ resistors using the following equation:

$$
\begin{aligned}
& \mathrm{R}_{\text {IMON_INN }}= \\
& \frac{1.21}{\mathrm{I}_{(\mathrm{IN,RVS,LIMIT)}} \cdot 1 \mathrm{~m} \frac{\mathrm{~A}}{\mathrm{~V}} \cdot \mathrm{R}_{\text {SENSE1 }}+20 \mu \mathrm{~A}} \Omega
\end{aligned}
$$

$\mathrm{C}_{\text {IMON_INP }}$ and $\mathrm{C}_{\text {IMON_InN }}$ Capacitors of at least a few nF are necessary to maintain loop stability when IMON_INP and IMON_INN, respectively, are used to operate the LT8708 at constant current limit.

Review the Electrical Characteristics and the IMON Output Currents graph in the Typical Performance Characteristics section to understand the operational limits of the IMON_OP,IMON_ON, IMON_INP and IMON_INN currents.

External currents can be summed to the IMON pins to adjust $I_{\text {IN }}$ and/or I $I_{0 U T}$ limit in both directions while switching. When the IMON_OP and IMON_ON pins are used in

APPLICATIONS INFORMATION

this way, ICP and ICN can be used to monitor the I OUT current in the forward and reverse directions respectively (see the Current Monitoring, Regulation and Limiting: ICP and ICN Pins section).

Current Sense Filter: The + and - outputs of current sense amplifiers A1 and A3 are rated to provide a range of $-20 \mu A$ to $+100 \mu \mathrm{~A}$. For example, IMON_INP, which primarily reports forward I_{IN} current, may not provide the expected output current when $\mathrm{V}_{\text {CSPIN-CSNIN }}$ exceeds 100 mV . In addition, the IMON_INP pin will not provide the expected output current when $\mathrm{V}_{\text {CSPIN-CSNIN }}$ is below -20 mV .

Currents that flow through the current sense resistors ($\mathrm{R}_{\text {SENSE1 }}, \mathrm{R}_{\text {SENSE2 }}$ in Figure 17) are often discontinuous and can contain significant AC content during each switching cycle. One example is the forward l_{N} in the buck region. If the I_{IN} current presents an average differential (VCSPIN-CSNIN) less than 100 mV , but contains AC peaks exceeding 100 mV , the IMON_INP current may clip. To prevent clipping, the current sense filter shown in Figure 17, can be added. The filter will reduce the peak differential (VCSPIN-CSNIN) to $<100 \mathrm{mV}$ while keeping the same average, thus allowing the correct result to be presented on IMON_INP. As another example, consider the reverse Iout measured by IMON_ON. If the current presents an average differential (VCSNOUT-CSPOUT) less than 100 mV , but contains AC peaks exceeding 100 mV , the current sense filter can be used to reduce the peaks below 100 mV while keeping the same average.

The $-20 \mu \mathrm{~A}$ output current limits for amplifiers A1 and A3 are often most important when using the HCM mode (see the Unidirectional Conduction: HCM section). The current

Figure 17. CSPIN/CSNIN and CSPOUT/CSNOUT Current Sense Filter
sense amplifier outputs may clip at the $-20 \mu \mathrm{Alimits}$ when the average sensed current is low but contains high AC content. Clipping may distortthe ICN or IMON_INP voltages that are used to select between heavy and light load HCM operation. Once again, the current sense filter can be used to reduce the AC content appearing at the amplifier inputs.
Current sense filter(s) should be connected as shown in Figure 16. Note that resistance in series with CSNIN and CSNOUT is not recommended. As described in the Topside MOSFET Driver Supply (CB1, DB1, CB2, DB2) section, the CSNIN and CSNOUT pins are also connected to the Boost Cap Charge Control block (also see Figure 1) and can draw current under certain conditions. In addition, the same CSNIN and CSNOUT current sense pins can draw bias current under normal operating conditions, while CSPIN and CSPOUT draw zero (typical) bias current. A time constant lower than $10 \mu \mathrm{~s}$ is recommended for the filter(s).

Also, because of their use with the Boost Cap Charge Control block, tie the CSPIN and CSNIN pins to $\mathrm{V}_{\text {IN }}$ and tie the IMON_INP and IMON_INN pins to ground when the input current sensing is not in use. Similarly, the CSPOUT and CSNOUT pins should be tied to $\mathrm{V}_{0 U T}$, the IMON_OP, IMON_ON pins should be grounded when not in use.

LOOP COMPENSATION

The loop stability is affected by a number of factors including the inductor value, output capacitance, load current, $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ and the V_{C} resistor and capacitors. The LT8708 uses internal transconductance error amplifiers driving V_{C} to help compensate the control loop. For mostapplications a 3.3 nF series capacitor at V_{C} is a good value. The parallel capacitor (from V_{C} to GND) is typically $1 / 10$ th the value of the series capacitor to filter high frequency noise. A larger V_{C} series capacitor value may be necessary if the output capacitance is reduced. A good starting value for the V_{C} series resistor is 20 k . Lower resistance will improve stability but will slow the loop response. Use a trim pot instead of a fixed resistor for initial bench evaluation to determine the optimum value.

Also note that $\mathrm{C}_{\text {IMON_INP }}$ and $\mathrm{C}_{\text {IMON_INN }}$ capacitors of at least a few nF are necessary to maintain loop stability

APPLICATIONS INFORMATION

when IMON_INP and IMON_INN, respectively, are used to operate the LT8708 at constant current limit.

INTV $_{\text {cc }}$ REGULATORS AND EXTV ${ }_{c C}$ CONNECTION

The LT8708 features two PNP LDOs (low dropout regulators) that regulate the 6.35 V (typical) INTV ${ }_{\text {CC }}$ pin from either the $\mathrm{V}_{\text {INCHIP }}$ or EXTV $_{\text {CC }}$ supply pin. INTV ${ }_{\text {CC }}$ powers the MOSFET gate drivers viathe required GATEV $_{C C}$ connection and also powers the LD033 pin regulator and much of the LT8708's internal control circuitry. The INTV $C C$ LDO selection is determined automatically by the EXTV ${ }_{\text {CC }}$ pin voltage. When EXTV ${ }_{\text {CC }}$ is lower than 6.2 V (typical), INTV ${ }_{C C}$ is regulated from the $\mathrm{V}_{\text {INCHIP }}$ pin LDO. After EXTV ${ }_{C C}$ rises above 6.4 V (typical), INTV $_{\text {CC }}$ is regulated by the EXTV ${ }_{\text {CC }}$ pin LDO instead.
Overcurrent protection circuitry typically limits the maximum current draw from either LDO to 127 mA . When GATEV $_{\text {CC }}$ and INTV ${ }_{\text {CC }}$ are below 4.65V, during start-up or during an overload condition, the typical current limit is reduced to 42 mA . The INTV ${ }_{\text {CC }}$ pin must be bypassed to ground with a minimum $4.7 \mu \mathrm{~F}$ ceramic capacitor placed as close as possible to the INTV ${ }_{c C}$ and GND pins. An additional ceramic capacitor should be placed as close as possible to the GATEV ${ }_{C C}$ and GND pins to provide good bypassing to supply the high transient current required by the MOSFET gate drivers. $1 \mu \mathrm{~F}$ to $4.7 \mu \mathrm{~F}$ is recommended.

Power dissipated inthe INTV ${ }_{C C}$ LDOs must be minimized to improve efficiency and prevent overheating of the LT8708. Since LDO power dissipation is proportional to the supply voltage and $\mathrm{V}_{\text {INCHIP }}$ can be as high as 80 V in some applications, the EXTV ${ }_{\text {CC }}$ pin is available to regulate INTV $_{\text {CC }}$ from a lower supply voltage. The EXTV CC pin is connected to $V_{\text {OUT }}$ in many applications since $V_{\text {OUT }}$ is often regulated to a much lower voltage than the maximum $\mathrm{V}_{\text {INCHIP. }}$ During start-up, power for the MOSFET drivers, control circuits and the LDO33 pin is usually derived from $V_{\text {INCHIP }}$ until $\mathrm{V}_{\text {OUT }} /$ EXTV $_{\text {CC }}$ rises above 6.4 V , after which the power is derived from $\mathrm{V}_{\text {OUT }} / E X T V$ CC. This works well, for example, in a case where $\mathrm{V}_{\text {OUT }}$ is regulated to 12 V and the maximum $V_{\text {INCHIP }}$ voltage is 40 V . EXTV ${ }_{\text {CC }}$ can be floated or grounded when not in use or can also be connected to an external power supply if available.

The following list summarizes the three possible connections for EXTV ${ }_{\text {CC }}$:

1. EXTV $V_{C C}$ left open (or grounded). This will cause INTV ${ }_{C C}$ to be powered from $\mathrm{V}_{\text {INCHIP }}$ through the internal 6.3 V regulator at the cost of a small efficiency penalty.
 is the normal connection for the regulator and usually provides the highest efficiency.
2. EXTV ${ }_{C C}$ connected to an external supply. If an external supply is available greater than 6.4 V (typical) it may be used to power EXTV ${ }_{\text {CC }}$.
Powering INTV ${ }_{\text {CC }}$ from EXTV ${ }_{\text {CC }}$ can also provide enough gate drive when $\mathrm{V}_{\text {INCHIP }}$ drops as low as 2.8 V . This allows the part to operate with a reduced VINCHIP voltage after $V_{\text {OUT }}$ gets into regulation.
The maximum current drawn through the INTV ${ }_{\text {CC }}$ LDO occurs under the following conditions:
3. Large (capacitive) MOSFETs are being driven at high frequencies.
4. $V_{\text {IN }}$ and/or $V_{\text {OUT }}$ is high, thus requiring more charge to turn the MOSFET gates on and off.
5. The LD033 pin output current is high.
6. In some applications, LDO current draw is maximum when the part is operating in the buck-boost region where $\mathrm{V}_{\text {IN }}$ is close to $\mathrm{V}_{\text {OUT }}$ since all four MOSFETs are switching.

To check for overheating find the operating conditions that consume the most power in the LT8708 ($\mathrm{P}_{\mathrm{LT} 8708}$). This will often be under the same conditions just listed that maximize LDO current. Under these conditions monitor the CLKOUT pin duty cycle to measure the approximate die temperature. See the Junction Temperature Measurement section for more information.

LD033 REGULATOR

The LT8708 includes a low dropout regulator (LDO) to regulate the LD033 pin to 3.3 V . This pin can be used to power external circuitry such as a microcontroller or other desired peripherals. The input supply for the LD033 pin

APPLICATIONS INFORMATION

regulator is $I N T V_{C C}$. Therefore $I N T V_{C C}$ must have sufficient voltage, typically $>4.0 \mathrm{~V}$, to properly regulate LD033. The LDO33 and INTV ${ }_{\text {CC }}$ regulators are enabled by the SHDN pin and are not affected by SWEN. The LD033 pin regulator has overcurrent protection circuitry that typically limits the output current to 17.25 mA . An undervoltage lockout monitors LD033 and disables switching activity when LD033 falls below 3.04V (typical). LD033 should be bypassed locally with $0.1 \mu \mathrm{~F}$ or more.

VOLTAGE LOCKOUTS

The LT8708 contains several voltage detectors to make sure the chip is under proper operating conditions. Table 8 summarizes the pins that are monitored and also indicates the state that the LT8708 will enter if an under or over voltage condition is detected.
Table 8. Voltage Lockout Conditions

PIN(S)	APPROXIMATE VOLTAGE CONDITION	CHIP STATE (Figure 2)	READ SECTION
$V_{\text {INCHIP }}$	<2.5V	CHIP OFF	Operation: Start-Up
$\overline{\text { SHDN }}$	<1.18V		
INTV ${ }_{\text {CC }}$ and GATEV $_{\text {CC }}$	<4.65V	SWITCHER OFF 1	
SWEN	<1.18V		
LD033	<3.04V		
VINHIMON	>1.207V	-	Applications Information: VINHIMON, VOUTLOMON and RVSOFF
VOUTLOMON	<1.207V		
RVSOFF	<1.209V		
FBIN	<1.205V		Voltage Lockouts

The conditions are listed in order of priority from top to bottom. If multiple over/undervoltage conditions are detected, the chip will enter the state listed highest on the table.

Due to their accurate thresholds, configurable undervoltage lockouts (UVLOs) can be implemented using the SHDN and SWEN and in some cases, FBIN pin. The UVLO function sets the turn on/off of the LT8708 at a desired minimum voltage. For example, a resistor divider can be connected between $\mathrm{V}_{\text {IN }}, \overline{\mathrm{SHDN}}$ and GND as shown in Figure 1. From the Electrical Characteristics, SHDN has typical rising and
falling thresholds of 1.221 V and 1.181 V , respectively. The falling threshold for turning-off switching activity can be chosen using:

$$
\begin{aligned}
& \mathrm{R}_{\text {SHDN } 1}= \\
& \frac{\mathrm{R}_{\text {SHDN2 }} \cdot\left(\mathrm{V}_{(\text {IN,CHIPOFF,FALLING })}-1.181\right)}{1.181}
\end{aligned}
$$

For example, choosing $\mathrm{R}_{\text {SHDN2 }}=20 \mathrm{k}$ and a falling V_{IN} threshold of 5.42 V results in:

$$
\begin{aligned}
& \mathrm{R}_{\text {SHDN } 1}= \\
& \quad \frac{20 \mathrm{k} \cdot(5.42-1.181)}{1.181} \cong 71.5 \mathrm{k} \Omega
\end{aligned}
$$

The rising threshold for enabling switching activity would be:

$$
\mathrm{V}_{(I N, C H I P O F F, R I S I N G)}=\mathrm{V}_{(I N, C H I P O F F, F A L L I N G)} \bullet \frac{1.221}{1.181}
$$

or 5.6 V in this example.
Similar calculations can be used to select a resistor divider connected to SWEN that would stop switching activity during an undervoltage condition. Make sure that the divider doesn't cause SWEN to exceed 7V (ABSMAX rating) under maximum supply voltage conditions. See the Start-Up: SWEN Pin section for additional information.

The same technique described in the V_{IN} : Regulation section can be used to create an undervoltage lockout if the LT8708 is in forward non-CCM mode, where forcing V_{C} low will stop all switching activity. Note that this does not reset the soft-start function, therefore resumption of switching activity will not be accompanied by a soft-start.

JUNCTION TEMPERATURE MEASUREMENT

The duty cycle of the CLKOUT signal is linearly proportional to the die junction temperature, T_{J}. Measure the duty cycle of the CLKOUT signal and use the following equation to approximate the junction temperature:

$$
\mathrm{T}_{\mathrm{J}} \cong \frac{\mathrm{DC}_{\text {CLKOUT }}-34.4 \%}{0.325 \%}{ }^{\circ} \mathrm{C}
$$

APPLICATIONS InFORMATION

where $\mathrm{DC}_{\text {CLKOUT }}$ is the CLKOUT duty cycle in $\%$ and T_{J} is the die junction temperature in ${ }^{\circ} \mathrm{C}$. The actual die temperature can deviate from the above equation by $\pm 10^{\circ} \mathrm{C}$.

THERMAL SHUTDOWN

If the die junction temperature reaches approximately $165^{\circ} \mathrm{C}$, the part will go into thermal shutdown. The power switches will be turned off and the INTV ${ }_{\text {CC }}$ and LDO33 regulators will be turned off (see Figure 2). The part will be re-enabled when the die temperature has dropped by $\sim 5^{\circ} \mathrm{C}$ (nominal). After re-enabling, the part will start in the SWITCHER OFF 1 state as shown in Figure 2. The part will then INITIALIZE, perform a SOFT-START, then enter NORMAL OPERATION as long as the die temperature remains below approximately $165^{\circ} \mathrm{C}$.

EFFICIENCY CONSIDERATIONS

The efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Although all dissipative elements in the circuit produce losses, three main sources account for most of the losses in LT8708 circuits. These and a few additional loss components are listed below:

1. Switching losses. These losses arise from the brief amount of time the switches (M1-M4) spend in the saturated region during switch node transitions. Power loss depends upon the input voltage, load current, driver strength and MOSFET capacitance, among other factors. See the Power MOSFET Selection section for more details.
2. $D C I^{2} R$ losses. These arise from the resistances of the MOSFETs (M1 - M4), sensing resistors, inductor and PC board traces and cause the efficiency to drop at high currents.
3. INTV ${ }_{\text {CC }}$ current. This is the sum of the MOSFET driver current, LDO33 pin current and control currents. The I^{\prime} TV $_{\text {CC }}$ regulator's input voltage times the current represents lost power. This loss can be reduced by supplying INTV ${ }_{C C}$ current through the EXTV ${ }_{\text {CC }}$ pin
from a high efficiency source, such as the output or alternate supply if available. Also, lower capacitance MOSFETs can reduce INTV ${ }_{\text {CC }}$ current and power loss.
4. $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUT }}$ loss. The $\mathrm{C}_{\text {IN }}$ Capacitor has the difficultjob of filtering the large RMS input current to the regulator in buck mode. The Cout capacitor has the more difficult job of filtering the large RMS output current in boost mode. Both $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{0 U T}$ are required to have low ESR to minimize the AC ${ }^{2}$ R loss and have sufficient capacitance to prevent the RMS current from causing additional upstream losses in fuses or batteries.
5. Other losses. Schottky diodes D1, D2, D3 and D4 are responsible for conduction losses during dead time and light load conduction periods. Inductor core loss occurs predominately at light loads.
Hybrid conduction mode (HCM) can be used to improve the efficiency when large inductor current ripples are present in DCM. See the Unidirectional Conduction: HCM section for details.
When making adjustments to improve efficiency, the input current is the best indicator of changes in efficiency. If one makes a change and the input current decreases, then the efficiency has increased. If there is no change in input current, then there is no change in efficiency.

CIRCUIT BOARD LAYOUT CHECKLIST

The basic circuit board layout requires a dedicated ground plane layer. Also, for high current, a multilayer board provides heat sinking for power components.

- The ground plane layer should not have any traces and should be as close as possible to the layer with the power MOSFETs.
- The high di/dt path formed by switch M1, switch M2, D1, $\mathrm{R}_{\text {SENSE }}$ and the $\mathrm{C}_{\text {IN }}$ capacitor should be compact with short leads and PC trace lengths. The high di/ dt path formed by switch M3, switch M4, D2 and the Cout capacitor also should be compact with short leads and PC trace lengths. Two layout examples are shown in Figure 18 (a) and (b).

APPLICATIONS INFORMATION

18(a)
Figure 18. Switches Layout

- Avoid running signal traces parallel to the traces that carry high di/dt current because they can receive inductively coupled voltage noise. This includes the SW1, SW2, TG1 and TG2 traces to the controller.
- Use immediate vias to connect the components (including the LT8708's GND pins) to the ground plane. Use several vias for each power component.
- Minimize parasitic SW pin capacitance by removing GND, $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ copper from underneath the SW1 and SW2 regions.
- Except under the SW pin regions, flood all unused areas on all layers with copper. Flooding with copper will reduce the temperature rise of power components. Connect the copper areas to a DC net (i.e., quiet GND) with many vias. The more vias the board has, the better heat conduction it has.
- Partition the power ground from the signal ground. The small-signal component grounds should not return to the IC GND through the power ground path.
- Place switch M2 and switch M3 as close to the controller as possible, keeping the GND, BG and SW traces short.
- Minimize inductance from the sources of M2 and M3 to $R_{\text {SENSE }}$ by making the trace short and wide.
- Keep the high dv/dt nodes SW1, SW2, BOOST1, BOOST2, TG1 and TG2 away from sensitive smallsignal nodes.
- The output capacitor (-)terminals should be connected as closely as possible to the (-) terminals of the input capacitor.
- Connect the top driverboostcapacitor $\mathrm{C}_{\mathrm{B} 1}$ closely to the BOOST1 and SW1 pins. Connect the top driver boost capacitor $\mathrm{C}_{\mathrm{B} 2}$ closely to the BOOST2 and SW2 pins.
- Connect the $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {Out }}$ capacitors closely to the power MOSFETs. These capacitors carry the MOSFET AC current in the boost and buck regions.
- Connect the FBOUT, FBIN, VINHIMON and VOUTLOMON pin resistor dividers to the (+) terminals of Cout and $\mathrm{C}_{\text {IN }}$, respectively. Small FBOUT/FBIN/VINHIMON/ VOUTLOMON bypass capacitors may be connected closely to the LT8708's GND pin ifneeded. The resistor connections should not be along the high current or noise paths.
- Route current sense traces (CSP/CSN, CSPIN/CSNIN, CSPOUT/CSNOUT) together with minimum PC trace

APPLICATIONS INFORMATION

spacing. Avoid having sense lines pass through noisy areas, such as switch nodes. The optionalfilter network capacitor between CSP and CSN should be as close as possible to the IC. Ensure accurate current sensing with Kelvin connections at the $\mathrm{R}_{\text {SENSE }}$ resistors.

- Connect the V_{C} pin compensation network closely to the IC, between V_{C} and the signal ground pins. The capacitor helps to filter the effects of PCB noise and output voltage ripple voltage from the compensation loop.
- Connect the INTV ${ }_{\text {CC }}$ and GATEV $_{\text {CC }}$ bypass capacitors close to the IC. The capacitors carry the MOSFET drivers' current peaks.
- Run the trace from the LT8708's SW1/SW2 pin to the drain of M2/M3 in parallel with the trace from the GATEV ${ }_{\text {CC }}$ capacitor's GND to the $\mathrm{C}_{\text {IN }}$ GND. Route the traces (as much as possible) directly above/below one another on adjacent layers and in such a way that they carry currents in opposite directions.
- Attention is required when making the PCB layout for $\mathrm{R}_{\text {SENSE1 }}$ and $\mathrm{R}_{\text {SENSE2, }}$, especially for sense resistor values smaller than $5 \mathrm{~m} \Omega$. Improper PCB layout can yield significant errors in the sense voltage.

HOT PLUGGING CONSIDERATIONS

When connecting a battery to an LT8708 application, there can be significant inrush current due to charge equalization between the partially charged battery stack and the charger output capacitors. To a lesser extent a similar effect can occur when connecting a powered DC supply to the input or output. The magnitude of the inrush current depends on (1) the battery or supply voltage, (2) ESR of the input or output capacitors, (3) initial voltage of the capacitors, and (4) cable impedance. Excessive inrush current can lead to sparking that can compromise connector integrity and/ or voltage overshoot that can cause electrical overstress on LT8708 pins.
Excessive inrush current can be mitigated by first connecting the battery or supply to the charger through a resistive path, followed quickly by a short circuit. This can be accomplished using staggered length pins in a
multi-pin connector. Alternatively, consider the use of a Hot Swap controller such as the LT1641, LT4256, etc. to make a current limited connection.

DESIGN EXAMPLE

$V_{I N}=8 \mathrm{~V}$ to 25 V
$\mathrm{V}_{\text {IN_FBIN }}=12 \mathrm{~V}$ ($\mathrm{V}_{\text {IN }}$ regulation voltage set by FBIN Ioop)
$V_{\text {OUT_FBOUT }}=12 \mathrm{~V}$ (VOUT regulationvoltage setby FBOUTIoop)
$I_{\text {OUT (MAX,FWD }}=5 \mathrm{~A}$
$I_{\operatorname{IN}(M A X, R V S)}=3 A$
$f=150 \mathrm{kHz}$
This design operates in CCM.
Maximum ambient temperature $=60^{\circ} \mathrm{C}$
Power Flow Verification: Determine which conditions in Table 6(a) apply to this application. In this design example, the VINHIMON and VOUTLOMON are disabled, therefore the conditions highlighted in blue in the copy of Table 6(a) apply to this application.
Table 9. A Copy of Table 6(a)

	$V_{\text {OUT }}<$ $V_{\text {OUT_VOUTLOMON }}$	$V_{\text {OUT }}>$ $V_{\text {OUT_VOUTLOMON }} \&$	$V_{\text {OUT }}>$ $V_{\text {OUT_FBOUT }}$
$V_{\text {OUT_FBOUT }}$			

Next, check each of these highlighted cells using Table 6(b) with MODE = CCM. A copy of Table 6(b) is shown below:

9(b). A Copy of Table 6(b)

	MODE = BURST	MODE = CCM	$\begin{aligned} & \text { MODE = } \\ & \text { DCM/HCM, } \\ & \text { DIR = FWD } \end{aligned}$	$\begin{gathered} \text { MODE = DCM/ } \\ \text { HCM, DIR = RVS } \end{gathered}$
A	Power Flows from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$			No Power Flow
B	No Power Flow	Power Flows from $V_{\text {OUT }}$ to $V_{\text {IN }}$	No Power Flow	Power Flows from $V_{\text {OUt }}$ to $\mathrm{V}_{\text {IN }}$
D	Power Flows from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$			No Power Flow

LT8708

APPLICATIONS INFORMATION

Verify expected operation by combining Table 6(a) and Table 6(b):

- \quad When $\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IN_FBIN }}(12 \mathrm{~V})$ and $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {OUT_FBOUT }}(12 \mathrm{~V})$ B - power is transferred from $V_{\text {OUT }}$ to $V_{\text {IN }}$
- When $\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IN_FBIN }}(12 \mathrm{~V})$ and $\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {OUT_FBOUT }}(12 \mathrm{~V})$
B - power is transferred from $V_{\text {OUT }}$ to $V_{\text {IN }}$
- When $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {IN_FBIN }}(12 \mathrm{~V})$ and $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {OUT_FBOUT }}(12 \mathrm{~V})$

C - power is transferred from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$

- When $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {IN_FBIN }}(12 \mathrm{~V})$ and $V O U T$ < $V_{\text {OUT_FBOUT }}(12 \mathrm{~V})$
D - power is transferred from $V_{\text {IN }}$ to $V_{\text {OUT }}$
The results above are as expected for this design example.
$\mathbf{R}_{\boldsymbol{T}}$ Selection: Choose the $\mathrm{R}_{\boldsymbol{T}}$ resistor for the free-running oscillator frequency using:

$$
\mathrm{R}_{\mathrm{T}}=\left(\frac{43,750}{\mathrm{f}_{\mathrm{OSC}}}-1\right) \mathrm{k} \Omega=\left(\frac{43,750}{150}-1\right)=290.7 \mathrm{k} \Omega
$$

We will choose 294k for R_{\top} resistor.
$\mathbf{R}_{\text {SENSE }}$ Selection: Start by calculating the maximum and minimum duty cycle in the boost region:

$$
\begin{aligned}
& \mathrm{DC}_{(\text {MAX,M3,BOOST })} \cong \\
& \quad\left(1-\frac{\mathrm{V}_{\text {IN(MIN,BOOST })}}{\mathrm{V}_{\text {OUT(MAX,BOOST) }}}\right) \cdot 100 \% \\
& \quad=\left(1-\frac{8 \mathrm{~V}}{12 \mathrm{~V}}\right) \cdot 100 \%=33 \% \\
& \begin{array}{l}
\text { DC } \\
(\text { ABSMIN,M3,BOOST })
\end{array} \\
& \quad=\mathrm{t}_{\mathrm{ON}(\mathrm{M} 3, \mathrm{MIN})} \bullet f \bullet 100 \% \\
& \quad 200 \mathrm{~ns} \bullet 150 \mathrm{kHz} \bullet 100 \%=3 \%
\end{aligned}
$$

Next, from the Maximum Inductor Current Sense Voltage vs Duty Cycle graph in the Typical Performance Characteristics section:
$V_{\text {RSENSE(MAX,BOOST,MAXDC })} \cong 83 \mathrm{mV}$

$$
V_{\text {RSENSE(MIN,BOOST,MINDC) }} \cong 93 \mathrm{mV}
$$

Next, estimate the inductor current ripples at maximum and minimum boost duty cycles:

$$
\Delta \mathrm{L}_{\mathrm{LMIN}, \mathrm{BOOST})} \cong \frac{\mathrm{I}_{\mathrm{IN(MAX,RVS})}}{\left(\frac{100 \%}{10 \%}-0.5\right)} \mathrm{A}
$$

$$
=\frac{3 \mathrm{~A}}{\left(\frac{100 \%}{10 \%}-0.5\right)}=0.32 \mathrm{~A}
$$

Now calculate the maximum $R_{\text {SENSE }}$ values in the boost region:

$$
\begin{aligned}
& \Delta_{\text {L(MAX,BOOST) }} \cong \\
& \frac{V_{\text {OUT(MAX,BOOST) }} \bullet \operatorname{loUT}_{\text {OUTMAX,FWD) }}}{V_{\text {IN(MIN,BOOST })} \cdot\left(\frac{100 \%}{\% \text { Ripple }}-0.5\right)} \mathrm{A} \\
& =\frac{12 \mathrm{~V} \cdot 5 \mathrm{~A}}{8 \mathrm{~V} \cdot\left(\frac{100 \%}{40 \%}-0.5\right)}=3.75 \mathrm{~A}
\end{aligned}
$$

APPLICATIONS INFORMATION

```
\(R_{\text {SENSE(MAX,BOOST,FWD) }}=\)
```



```
\[
=\frac{2 \cdot 83 \mathrm{mV} \cdot 8 \mathrm{~V}}{(2 \cdot 5 \mathrm{~A} \cdot 12 \mathrm{~V})+(3.75 \mathrm{~A} \cdot 8 \mathrm{~V})}=8.85 \mathrm{~m} \Omega
\]
\(R_{\text {SENSE(MAX,BOOST,RVS })}=\)
\(\frac{2 \cdot\left|V_{\text {RSENSE(MIN,BOOST,MINDC) }}\right|}{\left.\left(2 \cdot \|_{\text {IN(MAX,RVS) }}\right)-\Delta \Delta_{L(M I N, B O O S T}\right)} \Omega\)
\[
=\frac{2 \cdot 93 \mathrm{mV}}{(2 \cdot 3 \mathrm{~A})-0.32 \mathrm{~A}}=32.7 \mathrm{~m} \Omega
\]
```

Next, calculate the maximum and minimum duty cycle in the buck region:

$$
\begin{aligned}
& \text { DC }_{(\text {ABSMIN,M2,BUCK })} \cong \mathrm{t}_{\mathrm{ON}(\mathrm{M} 2, \mathrm{MIN})} \bullet f \bullet 100 \% \\
& \quad=200 \mathrm{~ns} \cdot 150 \mathrm{kHz} \cdot 100 \%=3 \% \\
& \mathrm{DC}_{(\text {MAX,M2,BUCK })} \cong \\
& \quad\left(1-\frac{\mathrm{V}_{\text {OUT(MIN,BUCK })}}{V_{\text {IN(MAX,BUCK })}}\right) \cdot 100 \% \\
& \quad=\left(1-\frac{12 \mathrm{~V}}{25 \mathrm{~V}}\right) \cdot 100 \%=52 \%
\end{aligned}
$$

Next, from the Maximum Inductor Current Sense Voltage vs Duty Cycle graph in the Typical Performance Characteristics section:

$$
\begin{aligned}
& V_{\text {RSENSE }(M A X, B U C K, M I N D C)} \cong 100 \mathrm{mV} \\
& V_{\text {RSENSE }(M I N, B U C K, M A X D C)} \cong 82 \mathrm{mV}
\end{aligned}
$$

Next, estimate the inductor current ripples at maximum and minimum buck duty cycles:

$$
\begin{aligned}
& \Delta L_{\mathrm{L}(\mathrm{MIN}, \mathrm{BUCK})} \cong \\
& \frac{\mathrm{I}_{\text {OUT(MAX,FWD) }}}{\left(\frac{100 \%}{10 \%}-0.5\right)} A=\frac{5 \mathrm{~A}}{\left(\frac{100 \%}{10 \%}-0.5\right)} \\
& =0.526 \mathrm{~A} \\
& \Delta L_{\text {L(MAX,BUCK })} \cong \\
& \frac{\mathrm{V}_{\text {IN(MAX,BUCK }} \bullet_{\ln (\mathrm{MAX}, \mathrm{RVS})}}{\mathrm{V}_{\text {OUT(MIN,BUCK) }} \bullet\left(\frac{100 \%}{\% \text { Ripple }}-0.5\right)} \mathrm{A} \\
& =\frac{25 \mathrm{~V} \cdot 3 \mathrm{~A}}{12 \mathrm{~V} \cdot\left(\frac{100 \%}{40 \%}-0.5\right)}=3.125 \mathrm{~A}
\end{aligned}
$$

Now calculate the maximum $\mathrm{R}_{\text {SENSE }}$ values in the buck region:

$$
\begin{aligned}
& \mathrm{R}_{\text {SENSE(MAX,BUCK,FWD })}= \\
& \frac{2 \cdot \text { V }_{\text {RSENSE(MAX,BUCK,MINDC })}}{\left(2 \bullet 1_{\text {OUT(MAX,FWD) }}\right)-\Delta \mathrm{I}_{\mathrm{L}(\mathrm{MIN}, B U C K)}} \Omega \\
& \quad=\frac{2 \cdot 100 \mathrm{mV}}{(2 \cdot 5 \mathrm{~A})-0.53 \mathrm{~A}}=21.1 \mathrm{~m} \Omega
\end{aligned}
$$

$\mathrm{R}_{\text {SENSE(MAX,BUCK,RVS })}=$

$$
\begin{aligned}
& \frac{2 \cdot\left|\mathrm{~V}_{\text {RSENSE(MIN,BUCK,MAXDC) }}\right| \cdot \mathrm{V}_{\text {OUT(MIN,BUCK })}}{\left(2 \cdot\left|\mathrm{I}_{\mathrm{IN}(\mathrm{MAX}, \mathrm{RVS})}\right| \cdot \mathrm{V}_{\operatorname{IN}(\text { MAX,BUCK })}\right)+\left(\Delta \mathrm{I}_{\mathrm{L}(\mathrm{MAX}, \mathrm{BUCK})} \cdot \mathrm{V}_{\text {OUT(MIN,BUCK })}\right)} \Omega \\
= & \frac{2 \cdot 82 \mathrm{mV} \cdot 12 \mathrm{~V}}{(2 \cdot 3 \mathrm{~A} \cdot 25 \mathrm{~V})+(3.125 \mathrm{~A} \cdot 12 \mathrm{~V})}=10.5 \mathrm{~m} \Omega
\end{aligned}
$$

Choose the smallest calculated R ${ }_{\text {SENSE }}$ and add an additional 30% margin, choose $R_{\text {SENSE }}$ to be $10.5 \mathrm{~m} \Omega / 1.3$ $=8.1 \mathrm{~m} \Omega$

APPLICATIONS INFORMATION

Inductor Selection: With R ${ }_{\text {SENSE }}$ known, we can now determine the minimum inductor value that will provide adequate load current in the boost region using:

To avoid subharmonic oscillations in the inductor current, choose the minimum inductance according to:

$$
\begin{aligned}
& \mathrm{L}_{(\text {MIIN2,BOOST })}= \\
& \frac{\left[V_{\text {OUT(MAX,BOOST) }}-\left(\frac{V_{\text {IN(MIN,BOOST) }} \cdot V_{\text {OUT(MAX,BOOST) }}}{\left.V_{\text {OUT(MAX,BOOST) }}-V_{\text {IN(MIN,BOOST) }}\right)}\right)\right] \cdot R_{\text {SENSE }}}{0.08 \bullet f} H \\
& =\frac{\left[12 \mathrm{~V}-\left(\frac{8 \mathrm{~V} \cdot 12 \mathrm{~V}}{12 \mathrm{~V}-8 \mathrm{~V}}\right)\right] \cdot 8.1 \mathrm{~m} \Omega}{0.08 \cdot 150 \mathrm{kHz}}=-8.1 \mathrm{HH} \\
& \mathrm{~L}_{(\text {MIN1,BUCK })}= \\
& \frac{\left[V_{\text {IIN(MAX,BUCK })}\left(1-\frac{V_{\text {OUT(MAX,BUCK) }}}{V_{\text {IN(MAX,BUCK) }}-V_{\text {OUT(MIN,BUCK })}}\right)\right] \cdot R_{\text {SENSE }}}{0.08 \bullet f} \mathrm{H} \\
& \frac{\left[25 \mathrm{~V} \cdot\left(1-\frac{12 \mathrm{~V}}{25 \mathrm{~V}-12 \mathrm{~V}}\right)\right] \cdot 8.1 \mathrm{~m} \Omega}{0.08 \cdot 150 \mathrm{kHz}}=1.3 \mu \mathrm{H}
\end{aligned}
$$

The inductance must be higher than all of the minimum values calculated above. We will choose a $10 \mu \mathrm{H}$ standard value inductor for improved margin.
MOSFET Selection: The MOSFETs are selected based on voltage rating, $\mathrm{C}_{0 S S}$ and $\mathrm{R}_{\mathrm{DS}(O N)}$ value. It is important to ensure that the part is specified for operation with the available gate voltage amplitude. Inthis case, the amplitude is 6.3 V and MOSFETs with an $\mathrm{R}_{\mathrm{DS}(O \mathrm{~N})}$ value specified at $V_{G S}=4.5 \mathrm{~V}$ can be used.

Select M1 and M2: With 25V maximum inputvoltage, MOSFETs with a rating of at least 30 V are used. As we do not yet know the actual thermal resistance (circuit board design and airflow have a major impact) we assume that the MOSFET thermal resistance from junction to ambient is $50^{\circ} \mathrm{C} / \mathrm{W}$.

If we design for a maximum junction temperature, $T_{J \text { (MAX) }}$ $=125^{\circ} \mathrm{C}$, the maximum allowable power dissipation can be calculated. First, calculate the maximum powerdissipation:

$$
\begin{aligned}
\mathrm{PD}_{(\text {MAX })} & =\frac{\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}-\mathrm{T}_{\mathrm{A}(\mathrm{MAX})}}{\mathrm{R}_{\text {TH }(\mathrm{JA})}} \\
\mathrm{PD}_{(\text {MAX })} & =\frac{125^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}}{50 \frac{{ }^{\circ}}{\mathrm{W}}}=1.3 \mathrm{~W}
\end{aligned}
$$

Since maximum $I^{2} R$ power in the boost region with positive inductor current happens when $\mathrm{V}_{\text {IN }}$ is minimum, we can determine the maximum allowable $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ for the boost region using (see Table 7):

$$
P M 1=P_{\mid}{ }^{2} R \cong
$$

$$
\left[\left(\frac{V_{O U T}}{V_{I N}} \cdot I_{O U T(M A X, F W D)}\right)^{2} \cdot R_{D S(O N)} \cdot \rho_{\tau}\right] W
$$

and therefore

$$
\mathrm{R}_{\mathrm{DS}(0 \mathrm{O})}<\frac{13 \mathrm{~W}}{\left[\left(\frac{12 \mathrm{~V}}{8 \mathrm{~V}} \cdot 5 \mathrm{~A}\right]^{2} \cdot 1.5\right)}=15.4 \mathrm{~m} \Omega
$$

The Fairchild FDMS7672 meets the specifications with a maximum $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of $\sim 6.9 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}(\sim 10 \mathrm{~m} \Omega$ at $125^{\circ} \mathrm{C}$).
The maximum dissipation in M2 occurs at maximum $V_{I N}$ voltage when the circuit is operating in the buck region in the reverse direction. Using the $6.9 \mathrm{~m} \Omega$ Fairchild FDMS7672, the dissipation is (see Table 7):

APPLICATIONS INFORMATION

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{M} 2} \cong \mathrm{P}_{\mathrm{l}}{ }^{2} \mathrm{R}+\mathrm{P}_{\text {SWITCHING }} \\
& \cong\left(\frac{V_{\text {IN }}-V_{\text {OUT }}}{V_{\text {IN }}} \cdot I_{\text {OUT(MAX,RVS })}{ }^{2} \cdot R_{\text {DS(ON) }} \cdot \rho_{\tau}\right) \\
& +\left(\mathrm{V}_{\text {IN }} \bullet \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX}, \mathrm{RVS})} \bullet f \bullet \mathrm{t}_{\text {RF1 }}\right) \\
& +\left(0.5 \cdot \mathrm{C}_{0 \mathrm{SS}(\mathrm{M} 1+\mathrm{M} 2)} \cdot \mathrm{V}_{\mathrm{IN}}{ }^{2} \cdot f\right) \mathrm{W} \\
& \mathrm{P}_{(\mathrm{M} 2, \mathrm{MAX})} \cong \\
& \left(\frac{25 \mathrm{~V}-12 \mathrm{~V}}{25 \mathrm{~V}} \cdot(3 \mathrm{~A})^{2} \cdot 6.9 \mathrm{~m} \Omega \cdot 1.5\right) \\
& +(25 \mathrm{~V} \cdot 3 \mathrm{~A} \cdot 150 \mathrm{kHz} \cdot 20 \mathrm{~ns}) \\
& +[(0.5 \cdot(685 \mathrm{P}+685 \mathrm{P}) \cdot 25 \mathrm{~V} \cdot 25 \mathrm{~V} \cdot 150 \mathrm{k})] \\
& =0.13 \mathrm{~W}+0.225 \mathrm{~W}+0.064 \mathrm{~W}=0.419 \mathrm{~W}
\end{aligned}
$$

To check the power dissipation in the buck region with $V_{\text {IN }}$ maximum and $V_{\text {OUT }}$ minimum, choose the equation from Table 7 with positive inductor current in buck mode which yields:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{M} 1} \cong \mathrm{P}_{\mathrm{l}}{ }^{2}{ }_{\mathrm{R}}+\mathrm{P}_{\text {SWITCHING }} \\
& \cong\left[\left(\frac{V_{O U T}}{V_{I N}} \cdot I_{O U T(M A X, F W D)}\right)^{2} \cdot R_{D S(O N)} \cdot \rho_{\tau}\right] \\
& +\left(V_{I N} \cdot I_{O U T(M A X, F W D)} \bullet f \bullet t_{R F 1}\right) \\
& +\left(0.5 \cdot \mathrm{C}_{\text {OSS }(\mathrm{M} 1+\mathrm{M} 2)} \cdot \mathrm{V}_{\mathrm{IN}}{ }^{2} \cdot f\right) \mathrm{W} \\
& \mathrm{P}_{(\mathrm{M} 1, \mathrm{MAX})} \cong \\
& {\left[\left(\frac{12 \mathrm{~V}}{25 \mathrm{~V}} \cdot 5 \mathrm{~A}\right)^{2} \cdot 6.9 \mathrm{~m} \Omega \cdot 1.5\right]} \\
& +(25 \mathrm{~V} \cdot 5 \mathrm{~A} \cdot 150 \mathrm{k} \cdot 20 \mathrm{~ns}) \\
& +[(0.5 \cdot(685 \mathrm{P}+685 \mathrm{P}) \cdot 25 \mathrm{~V} \cdot 25 \mathrm{~V} \cdot 150 \mathrm{k})] \\
& =0.06 \mathrm{~W}+0.38 \mathrm{~W}+0.064 \mathrm{~W}=0.504 \mathrm{~W}
\end{aligned}
$$

The maximum switching power of 0.38 W can be reduced by choosing a slower switching frequency. Since this calculation is approximate, measure the actual rise and fall times on the PCB to obtain a better power estimate.

Select M3 and M4: With 12V output voltage we need MOSFETs with 20V or higher rating.

The highest dissipation of M3 and M4 occurs in the boost region. For switch M3, the max dissipation occurs when the $\mathrm{I}_{\text {OUT }}$ is highest in the forward direction and $\mathrm{V}_{\text {IN }}$ is at the minimum 8V (see Table 7):

$$
\begin{aligned}
& P_{\mathrm{M} 3} \cong P_{1}{ }^{2}{ }_{\mathrm{R}}+\mathrm{P}_{\text {SWITCHING }} \\
& \cong\left(\frac{\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right) \cdot \mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}{ }^{2}} \cdot \mathrm{I}_{\text {OUT(MAX,FWD })}{ }^{2} \cdot \mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \cdot \rho_{\tau}\right) \\
& +\left(V_{\text {OUT }}{ }^{2} \cdot I_{\text {OUT(MAX,FWD) }} \cdot f \cdot \frac{t_{\text {RF2 }}}{V_{\text {IN }}}\right) \\
& +\left(0.5 \cdot C_{\text {OSS }(M 3+M 4)} \cdot \mathrm{V}_{\text {OUT }}{ }^{2} \cdot f\right) \mathrm{W}
\end{aligned}
$$

For switch M4, the max dissipation occurs when the $\mathrm{I}_{\mathrm{IN}_{\mathrm{N}}}$ is highest in the reverse direction and $\mathrm{V}_{\text {IN }}$ is highest in the boost region (see Table 7):

$$
P_{M 4} \cong P_{l}^{2}{ }^{2}+P_{\text {SWITCHING }}
$$

$$
\begin{aligned}
& \cong\left(\frac{V_{I N}}{V_{\text {OUT }}} \cdot I_{\operatorname{IN}(\mathrm{MAX}, \mathrm{RVS})} \cdot 2 \cdot \mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \cdot \rho_{\tau}\right) \\
& +\left(\mathrm{V}_{\mathrm{OUT}} \cdot \mathrm{I}_{\mathrm{IN}(\mathrm{MAX}, \mathrm{RVS})} \cdot f \cdot \mathrm{t}_{\mathrm{RF} 2}\right) \\
& +\left(0.5 \cdot \mathrm{C}_{\text {OSS }(\mathrm{M} 3+\mathrm{M} 4)} \cdot \mathrm{V}_{O U T}{ }^{2} \cdot f\right) \mathrm{W}
\end{aligned}
$$

and

$$
\frac{V_{\text {IN(MAX,BOOST })}}{V_{\text {OUT (MAX,BOOST })}}=1-D C_{(\text {ABSMIN,M3,BOOST })}
$$

therefore,

APPLLCATIONS Information

$\mathrm{P}_{\mathrm{M} 4} \cong \mathrm{P}_{\mathrm{I}}{ }^{2}{ }_{\mathrm{R}}+\mathrm{P}_{\text {SWITCHING }}$
$=\left[\left(1-\operatorname{DC}_{(\text {ABSMIN,M3,BOOST) }}\right) \cdot \operatorname{l}_{\operatorname{IN(MAX,RVS)}}{ }^{2} \cdot R_{\text {DS(ON) }} \bullet \rho_{\tau}\right]$
$+\left(\mathrm{V}_{\text {OUT }} \bullet \operatorname{linn(MAX,RVS)} \cdot f \bullet \mathrm{t}_{\text {RF2 }}\right)$
$+\left(0.5 \cdot C_{\text {OSS }}(\mathrm{M} 3+\mathrm{M} 4) \cdot \mathrm{V}_{\text {OUT }}{ }^{2} \cdot f\right) \mathrm{W}$

The Fairchild FDMS7672 can also be used for M3 and M4. Assuming 20ns rise and fall times, the calculated power loss is then 0.48 W for M3 and 0.21 W for M4.

Select Rensen $_{\text {SE }}$, RIIMON_OP $^{\text {and }}$ RIMON_ON: The $I_{\text {OUT(MAX,FWD) }}$ $=5 A$ and $I_{\operatorname{IN}(M A X, R V S)}=3 A$, with a 20% margin, the $I_{\text {OUT }}$ current limit is set to 6 A in the forward and the $\mathrm{I}_{\text {IN }}$ current limit is set to 3.6 A in the reverse directions, respectively.

Choose RIMON_Op to be 17.4 k , so that the $\mathrm{V}_{\text {CSPOUT-CSNOUT }}$ limit becomes 50 mV , and the $\mathrm{R}_{\text {SENSE2 }}$ is calculated to be:

$$
R_{\text {SENSE2 }}=\frac{50 \mathrm{mV}}{6 \mathrm{~A}} \cong 8 \mathrm{~m} \Omega
$$

Using the equation given in the $\mathrm{I}_{\mathrm{IN}^{N}}$ and $\mathrm{I}_{\text {OUT }}$ Current Monitoring and Limiting section, $\mathrm{R}_{\mathrm{IM} \text { ON_ON }}$ is calculated to be:

$$
\begin{aligned}
\mathrm{R}_{\text {IMON_ON }} & =\frac{1.21}{\mathrm{I}_{(\text {OUT,RVS,LIMIT })} \cdot 1 \mathrm{~m} \frac{\mathrm{~A}}{\mathrm{~V}} \cdot \mathrm{R}_{\text {SENSE2 }}+20 \mu \mathrm{~A}} \Omega \\
& =\frac{1.21}{3.6 \mathrm{~A} \cdot 1 \mathrm{~m} \frac{\mathrm{~A}}{\mathrm{~V}} \cdot 8 \mathrm{~m} \Omega+20 \mu \mathrm{~A}}=24.9 \mathrm{k} \Omega
\end{aligned}
$$

$V_{\text {OUT }}$ Voltage: $V_{\text {OUT }}$ voltage is 12 V . Select $R_{\text {FBOUT2 }}$ as 20k. R FBOUT1 $^{\text {is: }}$

$$
\mathrm{R}_{\text {FBOUT1 }}=\left(\frac{\mathrm{V}_{\text {OUT }}}{1.207 \mathrm{~V}}-1\right) \cdot \mathrm{R}_{\text {FBOUT2 }}
$$

Select $R_{\text {FBOUT1 }}$ as 178 k . Both $\mathrm{R}_{\text {FBOUT1 } 1}$ and $\mathrm{R}_{\text {FBOUT2 }}$ should have a tolerance of no more than 1%.
$\mathbf{V}_{\text {IN }}$ Voltage: Input voltage is 12 V . Select $\mathrm{R}_{\text {FBIN2 }}$ as 20 k . $\mathrm{R}_{\mathrm{FBIN} 1}$ is:

$$
\mathrm{R}_{\mathrm{FBIN} 1}=\left(\frac{\mathrm{V}_{\mathrm{IN}}}{1.207 \mathrm{~V}}-1\right) \cdot \mathrm{R}_{\mathrm{FBIN} 2}
$$

Select $R_{\text {FBIN } 1}$ as 178 k . Both $R_{\text {FBIN } 1}$ and $R_{\text {FBIN2 }}$ should have a tolerance of no more than 1%.

Capacitors: A low ESR ($5 \mathrm{~m} \Omega$) capacitor network with $30 \mu \mathrm{~F}$ ceramic capacitors for $\mathrm{C}_{\mathbb{N}}$ is selected. In this mode, the maximum ripple is:

$$
\begin{aligned}
& \Delta \mathrm{V}_{(\text {BUCK,CAP })} \cong \\
& \quad \mathrm{I}_{\text {OUT }(\mathrm{MAX}, \mathrm{FWD})} \cdot \frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}} \bullet \text { ESR }_{\text {CERAM }} \bullet \\
& \\
& \left(1-\exp \left(\frac{-\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }} \bullet f \bullet \text { ESR }_{\text {CERAM }} \bullet \mathrm{C}_{\text {IN-CERAM }}}\right)\right) \\
& \quad \cong 5 \mathrm{~A} \cdot \frac{12 \mathrm{~V}}{24 \mathrm{~V}} \cdot 5 \mathrm{~m} \Omega \\
& \quad\left(1-\exp \left(\frac{-12 \mathrm{~V}}{24 \mathrm{~V} \cdot 150 \mathrm{kHz} \cdot 5 \mathrm{~m} \Omega \cdot 30 \mathrm{HF}}\right)\right) \\
& \quad=12.5 \mathrm{mV}
\end{aligned}
$$

Having $5 \mathrm{~m} \Omega$ of ESR with $66 \mu \mathrm{~F}$ ceramic capacitor for the $\mathrm{C}_{\text {OUT }}$ network sets the maximum output voltage ripple at:

$$
\begin{aligned}
& \Delta V_{(\text {Boost,CAP })} \cong \\
& \quad \mathrm{I}_{\text {OUT(MAX,FWD) }} \bullet \text { ESR }_{\text {CERAM }} \bullet \\
& \\
& \quad\left(1-\exp \left(\frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {OUT }} \bullet f \bullet \text { ESR }_{\text {CERAM }} \bullet \mathrm{C}_{\text {OUT-CERAM }}}\right)\right) \\
& \quad \cong 5 \mathrm{~A} \cdot 5 \mathrm{~m} \Omega \\
& \quad \cdot\left(1-\exp \left(\frac{8 \mathrm{~V}-12 \mathrm{~V}}{12 \mathrm{~V} \cdot 150 \mathrm{kHz} \cdot 5 \mathrm{~m} \Omega \cdot 66 \mu \mathrm{~F}}\right)\right) \\
& \quad=25 \mathrm{mV}
\end{aligned}
$$

TYPICAL APPLICATIONS

APPLICATIONS InFORMATION

12V Bidirectional Dual Battery System with FHCM \& RHCM Details

$V_{\text {BAT1 }}$ Charge Voltage $=14.6 \mathrm{~V}$ (FBIN in RHCM)
$V_{\text {BAT2 }}$ Charge Voltage $=14.5 \mathrm{~V}$ (FBOUT in FHCM)
$V_{\text {BAT1_DEAD }}=9 \mathrm{~V}$ (Falling) or 9.4V (Rising)
$\mathrm{V}_{\text {BAT2_DEAD }}=9.25 \mathrm{~V}$ (Falling) or 9.4V (Rising)
$V_{\text {BAT1_UV }}$ to Stop Discharging $=10.5 \mathrm{~V}$ (FBIN in FHCM)
$V_{\text {BAT2 }}$ uv to Stop Discharging $=10.5 \mathrm{~V}$ (VOUTLOMON Falling) or 11.7V (VOUTLOMON Rising)
$V_{\text {BAT1 }}$ Charging Current Limit $=15 \mathrm{~A}$ (IMON_INN)
$V_{\text {BAT2 }}$ Charging Current Limit $=15 \mathrm{~A}$ (IMON_OP)
Frequency $=120 \mathrm{kHz}$

Table of Operation Modes and Power Flow Directions

CONDITIONS			RESULTS		
$V_{\text {BAT1 }}$	$V_{\text {BAT2 }}$	DIR	POWER FLOW	CHIP OPERATES IN	RVSOFF*
< $\mathrm{V}_{\text {BAT1_DEAD }}$	-		No Power Flow	Shutdown	-
-	$<V_{\text {BAT2_DEAD }}$	-		No Switching	
< VAT1_UV	$>V_{\text {BAT2_DEAD }}$	Hi		FHCM	
> $\mathrm{V}_{\text {BAT1_UV }}$	$>14.5 \mathrm{~V}$				
	$>V_{\text {BAT2_DEAD }}$ and <14.5V		Power Flows from $V_{\text {BAT1 }}$ to $V_{\text {BAT2 }}$ (VAT2 Charging)		
$>V_{\text {BAT1_DEAD }}$	$>V_{\text {BAT2_DEAD }}$ and < $\mathrm{V}_{\text {BAT2_UV }}$	Lo	No Power Flow	RHCM	Lo
$>14.6 \mathrm{~V}$	$>V_{\text {BAT2_UV }}$				Hi
$>V_{\text {BAT1_DEAD }}$ and $<14.6 \mathrm{~V}$	$>V_{\text {BAT2_UV }}$		Power Flows from $V_{\text {BAT2 }}$ to $V_{\text {BAT1 }}$ ($\mathrm{V}_{\text {BAT1 }}$ Charging)		

*For use with LT8708-1(s)

APPLICATIONS INFORMATION

APPLICATIONS InFORMATION

48V to 14V Bidirectional Dual Battery System with FHCM \& RHCM Details
$V_{\text {BAT1 }}$ Charge Voltage $=48 \mathrm{~V}$ (FBIN in RHCM)
$V_{\text {BAT2 }}$ Charge Voltage $=14.5 \mathrm{~V}$ (FBOUT in FHCM)
$V_{\text {BAT1_DEAD }}=21.3 \mathrm{~V}$ (Falling) or 22.2V (Rising)
$V_{\text {BAT2_DEAD }}=9.25 \mathrm{~V}$ (Falling) or 9.4 V (Rising)
$V_{\text {BAT2_UV }}$ to Stop Discharging $=10.5 \mathrm{~V}$ (VOUTLOMON Falling) or 12.3V (VOUTLOMON Rising)
$V_{\text {BAT1 }}$ Charging Current Limit $=4 \mathrm{~A}$ (IMON_INN)
$V_{\text {BAT2 }}$ Charging Current Limit $=15 \mathrm{~A}$ (IMON_OP)
Frequency $=120 \mathrm{kHz}$

Table of Operation Modes and Power Flow Directions

CONDITIONS			RESULTS		
$V_{\text {BAT1 }}$	$V_{\text {BAT2 }}$	DIR	POWER FLOW	CHIP OPERATES IN	RVSOFF*
$<V_{\text {BAT1_DEAD }}$	-	-	No Power Flow	Shutdown	-
-	$<V_{\text {BAT2_DEAD }}$			No Switching	
< $\mathrm{V}_{\text {BAT1_UV }}$	$>V_{\text {BAT2_DEAD }}$	Hi		FHCM	
$>V_{\text {BAT1_UV }}$	$>14.5 \mathrm{~V}$				
	$>V_{\text {BAT2_DEAD }}$ and $<14.5 \mathrm{~V}$		Power Flows from $V_{\text {BAT1 }}$ to $V_{\text {BAT2 }}$ ($\mathrm{V}_{\text {BAT2 }}$ Charging)		
$>V_{\text {BAT1_DEAD }}$	$>V_{\text {BAT2_DEAD }}$ and < $\mathrm{V}_{\text {BAT2_UV }}$	Lo	No Power Flow	RHCM	Lo
$>48 \mathrm{~V}$	$>V_{\text {BAT2_UV }}$				Hi
$>V_{\text {bat1_dead }}$ and <48V	> $\mathrm{V}_{\text {BAT2_UV }}$		Power Flows from $\mathrm{V}_{\text {BAT2 }}$ to $\mathrm{V}_{\text {BAT1 }}$ ($\mathrm{V}_{\text {BAT1 }}$ Charging)		

*For use with LT8708-1(s)

APPLICATIONS INFORMATION

APPLICATIONS InFORMATION

52V Battery Backup Supply Using FHCM and RHCM Detail

$V_{\text {BAT }}$ Charge Voltage $=52.1 \mathrm{~V}$ (FBOUT in FHCM)
$V_{\text {LOAD }}$ Regulation Voltage $=47.4 \mathrm{~V}$ (FBIN in RHCM)
$V_{\text {BAT_DEAD }}=36 \mathrm{~V}$ (Falling) or 37.5V (Rising)
Frequency $=150 \mathrm{kHz}$
$V_{\text {LOAD }}$ Rising to Activate $\mathrm{V}_{\text {BAT }}$ Charging $=50.2 \mathrm{~V}$ (VINHIMON Rising Activating FHCM)
$V_{\text {LOAD }}$ Falling to Activate Backup Operation $=45.9 \mathrm{~V}$ (VINHIMON Falling Activating RHCM)
$V_{\text {BAT }}$ Charging Current Limit $=5 \mathrm{~A}$ (IMON_OP)
VLOAD Current Limit = 5A (IMON_INN)

Table of Operation Modes and Power Flow Directions

CONDITIONS		RESULTS			
$V_{\text {LOAD }}$	$V_{\text {BAT }}$	POWER FLOW	CHIP OPERATES IN	RVSOFF	DIR
-	$<V_{\text {BAT_DEAD }}$	No Power Flow	Shutdown	-	-
>50.2V*	$>52.1 \mathrm{~V}$				
Fell Into (47.4V to 50.2V) Range*	$V_{\text {BAT_DEAD }}$ to 52.1 V	Power Flows from $V_{\text {IN }}$ to $V_{\text {BAT }}$ ($V_{\text {BAT }}$ Charging)	FHCM	Lo	Hi
	>52.1V	No Power Flow			
Fell Into (45.9V to 47.4V) Range*	$>V_{\text {bAt_dead }}$				
Rose Into (47.4V to 50.2V) Range*			RHCM	Hi	Lo
Rose Into (45.9V to 47.4V) Range		Power Flows from $V_{B A T}$ to $V_{\text {LOAD }}$ (Backup Operation)			
<45.9V					

${ }^{*} \mathrm{~V}_{\text {LOAD }}$ is powered from $\mathrm{V}_{\text {IN }}$.

Transient Behavior Upon $\mathrm{V}_{\text {IN }}$
Dropout, $\mathrm{V}_{\text {BAT }}=52 \mathrm{~V}$

Transient Behavior Upon V_{IN} Dropout, $\mathrm{V}_{\text {BAT }}=53 \mathrm{~V}$

Transient Behavior Upon $\mathrm{V}_{\text {IN }}$
Dropout, $\mathrm{V}_{\text {BAT }}=38 \mathrm{~V}$

APPLICATIONS INFORMATION

APPLICATIONS InFORMATION

Supercapacitor Backup Supply Using CCM Detail

$V_{\text {OUT }}$ Charge Voltage $=15 \mathrm{~V}($ FBOUT $)$
$V_{\text {BACKUP }}$ Regulation Voltage $=11 \mathrm{~V}$ (FBIN)
VIN_miN $=5.42 \mathrm{~V}$ (Falling) or 5.65V (Rising)

Frequency $=350 \mathrm{kHz}$
$V_{\text {OUT }}$ Charging Current Limit $=1 \mathrm{~A}$ (IMON_OP)
$V_{\text {IN }}$ Current Limit $=2$ (IMON_INP)

Table of Operation Modes and Power Flow Directions

$V_{\text {BACKUP }}$	$\mathrm{V}_{\text {OUT }}$	POWER FLOW	CHIP OPERATES IN	RVSOFF*
$<V_{\text {IN_MIN }}$	-	NO POWER FLOW	Shutdown	-
$>13.3 \mathrm{~V}$	$>15 \mathrm{~V}$		CCM	Lo
>13.3V	<15V	Power Flows from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}\left(\mathrm{V}_{\text {OUT }}\right.$ Charging)		
Fell Into (12.9V to 13.3V) Range	>15V	Charging) No Power Flow		
Rose Into (12.9V to 13.3V)	<15V	Power Flows from Vout to LOADS (Backup Operation)		Hi
$>11 \mathrm{~V}$ and $<12.9 \mathrm{~V}$	>15V	Power Flows from $V_{\text {IN }}$ to $V_{\text {OUT }}$ ($V_{\text {OUT }}$ Charging)		
$<11 \mathrm{~V}$ and $>\mathrm{V}_{\text {IN_MIN }}$	-	Power Flows from Vout to LOADS (Backup Operation)		

*For use with LT8708-1(s)

Charging $\mathrm{V}_{\text {Out }}$ to 15 V with 1 A Current

Transient Behavior Upon V_{IN}
Dropout ($\mathrm{L}_{\text {LOAD }}=4 \mathrm{AA}$)

PACKAGE DESCRIPTION
UHG Package
40-Lead Plastic QFN ($5 \mathrm{~mm} \times 8 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1528 Rev A)

PACKAGE DESCRIPTION

LWE Package
64-Lead Plastic Exposed Pad LQFP (10mm \times 10mm)
(Reference LTC DWG \#05-08-1982 Rev A)

SECTION A - A

NOTE

1. DIMENSIONS ARE IN MILLIMETERS
2. DIMENSIONS OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH
3. PIN-1 INDENTIFIER IS A MOLDED INDENTATION, 0.50 mm DIAMETER 4. DRAWING IS NOT TO SCALE

REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	01/20	Added eLQFP package option. Added two arrows and corrected the 2nd y-axis of 8708 G08. Corrected the body connection of M1, changed EA7 to A7. Changed RESENSE1 to RSENSE1. Corrected calculations.	$\begin{gathered} \hline 1,3,4,6,13, \\ 14,64,65 \\ 9 \\ 15 \\ 43 \\ 51,52 \end{gathered}$

LT8708

TYPICAL APPLICATION

Supercapacitor Backup Supply Using CCM

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT8708-1	80V Synchronous 4-Switch Buck-Boost DC/DC Slave Controller for LT8708 Multiphase System	2.8 V (Need EXTV ${ }_{\text {CC }}>6.4 \mathrm{~V}$) $\leq \mathrm{V}_{\text {IN }} \leq 80 \mathrm{~V}, 1.3 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 80 \mathrm{~V}, 5 \mathrm{~mm} \times 8 \mathrm{~mm}$ QFN-40 and $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ eLQFP-64 Packages
LT8705A	80V V IN and $\mathrm{V}_{\text {OUT }}$ Synchronous 4-Switch BuckBoost DC/DC Controller	$2.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 80 \mathrm{~V}$, Input and Output Current Monitor, $5 \mathrm{~mm} \times 7 \mathrm{~mm}$ QFN-38 and TSSOP-38 Packages
LTC ${ }^{\text {® }} 3779$	$150 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ Synchronous 4-Switch BuckBoost Controller	$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 150 \mathrm{~V}, 1.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 150 \mathrm{~V}$, Up to 99% Efficiency Drives Logic-Level or STD Threshold MOSFETs, TSSOP-38 Package
LTC7813	60V Low IQ Synchronous Boost+Buck Controller Low EMI and Low Input/Output Ripple	4.5V (Down to 2.2V After Start-Up) $\leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}$, Boost $\mathrm{V}_{\text {OUT }}$ Up to 60 V , $0.8 \mathrm{~V} \leq$ Buck $\mathrm{V}_{\text {OUT }} \leq 60 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=29 \mu \mathrm{~A}, 5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN-32 Package
LTC3899	60V, Triple Output, Buck/Buck/Boost Synchronous Controller with $29 \mu \mathrm{~A}$ Burst Mode I_{0}	4.5 V (Down to 2.2 V after Start-Up) $\leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}$ Up to 60V, Buck $V_{\text {Out }}$ Range: 0.8 V to 60 V , Boost $\mathrm{V}_{\text {Out }} \mathrm{Up}$ to 60 V
LTM ${ }^{\circledR} 8056$	58V ${ }_{\text {IN }}$, Buck-Boost μ Module Regulator, Adjustable Input and Output Current Limiting	$5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 58 \mathrm{~V}, 1.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 48 \mathrm{~V}, 15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 4.92 \mathrm{~mm}$ BGA Package
LTC3895/ LTC7801	150V Low I ${ }_{Q}$, Synchronous Step-Down DC/DC Controller with 100\% Duty Cycle	$4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 140 \mathrm{~V}$, 150V ABS Max, PLL Fixed Frequency 50 kHz to 900 kHz , $0.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 60 \mathrm{~V}$, Adjustable 5 V to 10 V Gate Drive, $\mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}$, $4 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN-24, TSSOP-24, TSSOP-38(31) Packages
LTC3871	Bidirectional Multiphase DC/DC Synchronous Buck or Boost On-Demand Controller	$\mathrm{V}_{\text {IN }} / V_{\text {Out }}$ Up to 100 V , Ideal for High Power 48V/12V Automotive Battery Applications
LTC7103	105V, 2.3A, Low EMI Synchronous Step-Down Regulator	$4.4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 105 \mathrm{~V}, 1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {IN }}, \mathrm{I}_{\mathrm{Q}}=2 \mu \mathrm{~A}$, Fixed Frequency 200 kHz , $5 \mathrm{~mm} \times 6 \mathrm{~mm}$ QFN Package

[^0]: $R_{\text {SENSE(MAX,BUCK,RVS) }}=$

