

LMK00304

ZHCS807F - FEBRUARY 2012 - REVISED MARCH 2016

LMK00304 3GHz 4 路输出

超低附加抖动差动时钟缓冲器/电平转换器

1 特性

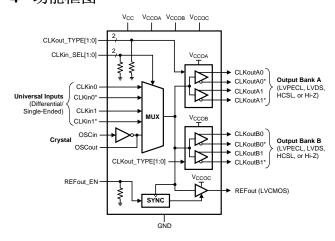
- 3: 1 输入多路复用器
 - 两个通用输入运行频率高达 3.1GHz,并且接受低电压正射极耦合逻辑 (LVPECL),低压差分信令 (LVDS),电流模式逻辑 (CML),短截线串联端接逻辑 (SSTL),高速收发器逻辑 (HSTL),主机时钟信号电平 (HCSL)或单端时钟
 - 一个晶振输入可接受 10MHz 至 40MHz 的晶振 或单端时钟
- 两组差分输出,每组2个
 - LVPECL、LVDS、HCSL 或 Hi-Z (可选)
 - LMK03806 时钟源为 156.25MHz 时,LVPECL 附加抖动:
 - 20fs RMS (10kHz 至 1MHz)
 - 51fs RMS (12kHz 至 20MHz)
- 高电源抑制比 (PSRR): 156.25MHz 时为 -65/-76dBc (LVPECL/LVDS)
- 具有同步使能驶入的 LVCMOS 输出
- 由引脚控制的配置
- V_{CC}内核电源: 3.3V ± 5%
- 3 个独立的 V_{CCO}输出电源: 3.3V/2.5V ± 5%
- 工业温度范围: -40°C 至 +85°C
- 32 接线超薄型四方扁平无引线 (WQFN) 封装 (5mm x 5mm)

2 应用

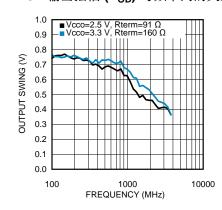
- 针对模数转换器 (ADC),数模转换器 (DAC),多千 兆以太网,XAUI,光纤通 道,SATA/SAS,SONET/SDH,通用公共无线接 口 (CPRI),高频背板的时钟分配和电平转换
- 交换机、路由器、线路接口卡、定时卡
- 服务器, 计算, PCI Express (PCIe 3.0)
- 远程无线电单元和基带单元

3 说明

LMK00304 是一款 3GHz、4 路输出差动扇出缓冲器,用于高频、低抖动时钟/数据分配和电平转换。可从两个通用输入或一个晶振输入中选择输入时钟。所选择的的输入时钟被分配到两组输出,每组输出包含 2 个差分输出和 1 个 LVCMOS 输出。两个差分输出组可一起被配置为 LVPECL、LVDS 或 HCSL 驱动器,或者被禁用。LVCMOS 输出具有同步使能输入,在使能或禁用后可实现无短脉冲运行。LMK00304 由一个 3.3V 内核电源和 3 个独立的 3.3V/2.5V 输出电源供电运行。


LMK00304 具有高性能、多用途和电源效率特性,这 使得它成为替代固定输出缓冲器器件的理想选择,同时 还能增加系统中的时序余裕。

器件信息⁽¹⁾


器件型号	封装	封装尺寸 (标称值)
LMK00304	WQFN (32)	5.00mm x 5.00mm

(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。

4 功能框图

LVPECL 输出摆幅 (VoD) 与频率间的关系

_	\Rightarrow
_	ملب
_	w

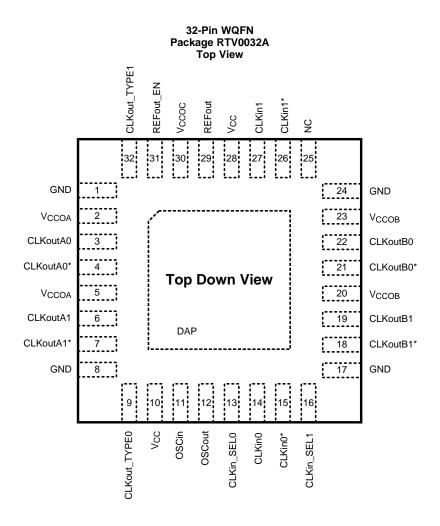
1	特性 1		9.3 Feature Description	19
2	应用 1	10	Application and Implementation	. 21
3	说明 1		10.1 Driving the Clock Inputs	21
4	功能框图 1		10.2 Crystal Interface	22
5	修订历史记录		10.3 Termination and Use of Clock Drivers	23
6	Pin Configuration and Functions	11	Power Supply Recommendations	. 28
7	Specifications		11.1 Power Supply Sequencing	28
•	7.1 Absolute Maximum Ratings 5		11.2 Current Consumption and Power Dissipation Calculations	
	7.2 ESD Ratings		11.3 Power Supply Bypassing	29
	7.3 Recommended Operating Conditions		11.4 Thermal Management	30
	7.4 Thermal Information	12	器件和文档支持	. 32
	7.5 Electrical Characteristics		12.1 文档支持	. 32
_	7.6 Typical Characteristics		12.2 社区资源	. 32
8	Parameter Measurement Information 17		12.3 商标	. 32
	8.1 Differential Voltage Measurement Terminology 17		12.4 静电放电警告	. 32
9	Detailed Description 18		12.5 Glossary	
	9.1 Overview 18 9.2 Functional Block Diagram 18	13	机械、封装和可订购信息	
	5.2 Fullotional block Diagram			

5 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Cł	nanges from Revision E (May 2013) to Revision F	Page
•	已添加"超低附加抖动"至文档标题	1
•	已添加、更新或重命名以下部分: 规范; 详细 说明; 应用和实施; 电源相关建议; 器件和文档支持; 机械、封装和可订购信息	
•	Changed Cin (typ) from 1 pF to 4 pF (based on updated test method) in Electrical Characteristics: Crystal Interface	7
•	Added footnote for V _{I_SE} parameter in the <i>Electrical Characteristics</i> table.	<mark>7</mark>
•	Added "Additive RMS Jitter, Integration Bandwidth 10 kHz to 20 MHz" parameter with 100 MHz and 156.25 MHz Test conditions, Typical values, Max values, and footnotes in Electrical Characteristics: LVPECL Outputs	8
•	Added "Additive RMS Jitter, Integration Bandwidth 10 kHz to 20 MHz" parameter with 100 MHz and 156.25 MHz Test conditions, Typical values, Max values, and footnotes in Electrical Characteristics: LVDS Outputs	9
•	Added new paragraph at end of Driving the Clock Inputs	21
•	Changed "LMK00301" to "LMK00304" in Figure 27 and Figure 28	22
•	Changed Cin = 4 pF (typ, based on updated test method) in Crystal Interface	22
•	Added POWER SUPPLY SEQUENCING	28

CI	nanges from Revision D (February 2013) to Revision E	Page
•	Changed V _{CM} text to condition for V _{IH} to V _{CM} parameter group.	7
•	Deleted V _{IH} min value from Electrical Characteristics table.	<mark>7</mark>
•	Deleted V _{IL} max value from Electrical Characteristics table	<mark>7</mark>
•	Added V _{I SE} parameter and spec limits with corresponding table note to Electrical Characteristics Table	<mark>7</mark>
•	Changed third paragraph in <i>Driving the Clock Inputs section</i> to include CLKin* and LVCMOS text. Revised to better correspond with information in Electrical Characteristics Table.	
•	Changed bypass cap text to signal attenuation text of the fourth paragraph in Driving the Clock Inputs section	21
•	Changed Single-Ended LVCMOS Input, DC Coupling with Common Mode Biasing image with revised graphic	<mark>22</mark>
•	Added text to second paragraph of Termination for AC Coupled Differential Operation to explain graphic update to Differential LVDS Operation with AC Coupling to Receivers.	25



Changed graphic for Differential LVDS Operation, AC Coupling, No Biasing by the Receiver and updated caption. 25

6 Pin Configuration and Functions

Pin Functions⁽¹⁾

	PIN				
NO.	NAME	TYPE	DESCRIPTION		
DAP	DAP	GND	Die Attach Pad. Connect to the PCB ground plane for heat dissipation.		
1, 8 17, 24	GND	GND	Ground		
2, 5	V _{CCOA}	PWR	Power supply for Bank A Output buffers. V_{CCOA} operates from 3.3 V or 2.5 V. The V_{CCOA} pins are internally tied together. Bypass with a 0.1 uF low-ESR capacitor placed very close to each Vcco pin. $^{(2)}$		
3, 4	CLKoutA0, CLKoutA0*	0	Differential clock output A0. Output type set by CLKout_TYPE pins.		
6, 7	CLKoutA1, CLKoutA1*	0	Differential clock output A1. Output type set by CLKout_TYPE pins.		
9, 32	CLKout_TYPE0, CLKout_TYPE1	I	Bank A and Bank B output buffer type selection pins (3)		
10, 28	Vcc	PWR	Power supply for Core and Input Buffer blocks. The Vcc supply operates from 3.3 V. Bypass with a 0.1 uF low-ESR capacitor placed very close to each Vcc pin.		
11	OSCin	1	Input for crystal. Can also be driven by a XO, TCXO, or other external single-ended clock.		
12	OSCout	0	Output for crystal. Leave OSCout floating if OSCin is driven by a single-ended clock.		
13, 16	CLKin_SEL0, CLKin_SEL1	I	Clock input selection pins (3)		
14, 15	CLKin0, CLKin0*	I	Universal clock input 0 (differential/single-ended)		
18, 19	CLKoutB1*, CLKoutB1	0	Differential clock output B1. Output type set by CLKout_TYPE pins.		
20, 23	V _{ССОВ}	PWR	Power supply for Bank B Output buffers. V_{CCOB} operates from 3.3 V or 2.5 V. The V_{CCOB} pins are internally tied together. Bypass with a 0.1 uF low-ESR capacitor placed very close to each Vcco pin. See <i>Absolute Maximum Ratings</i>		
21, 22	CLKoutB0*, CLKoutB0	0	Differential clock output B0. Output type set by CLKout_TYPE pins.		
25	NC	_	Not connected internally. Pin may be floated, grounded, or otherwise tied to any potential within the Supply Voltage range stated in the <i>Absolute Maximum Ratings</i> .		
26, 27	CLKin1*, CLKin1	I	Universal clock input 1 (differential/single-ended)		
29	REFout	0	LVCMOS reference output. Enable output by pulling REFout_EN pin high.		
30	Vccoc	PWR	Power supply for REFout buffer. V _{CCOC} operates from 3.3 V or 2.5 V. Bypass with a 0.1 uF low-ESR capacitor placed very close to each Vcco pin. (2)		
31	REFout_EN	1	REFout enable input. Enable signal is internally synchronized to selected clock input. (3)		

⁽¹⁾ Any unused output pins should be left floating with minimum copper length (see note in *Clock Outputs*), or properly terminated if connected to a transmission line, or disabled/Hi-Z if possible. See *Clock Outputs* for output configuration and *Termination and Use of Clock Drivers* for output interface and termination techniques.

⁽²⁾ The output supply voltages or pins (V_{CCOA}, V_{CCOB}, and V_{CCOC}) will be called V_{CCO} in general when no distinction is needed, or when the output supply can be inferred from the output bank/type.

⁽³⁾ CMOS control input with internal pull-down resistor.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V _{CC} , V _{CCO}	Supply Voltages	-0.3	3.6	V
V_{IN}	Input Voltage	-0.3	$(V_{CC} + 0.3)$	V
T _{STG}	Storage Temperature Range	-65	+150	°C
T _L	Lead Temperature (solder 4 s)		+260	°C
T _J	Junction Temperature		+150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

	, and the second		VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge Machine model (MM)	Machine model (MM)	±150	V
(ESD)	License and alcomarge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±750	·

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.

7.3 Recommended Operating Conditions

		MIN	TYP	MAX	UNIT
T _A	Ambient Temperature Range	-40	25	85	°C
T_{J}	Junction Temperature			125	°C
V _{CC}	Core Supply Voltage Range	3.15	3.3	3.45	V
V _{CCO}	Output Supply Voltage Range (1)(2)	3.3 – 5% 2.5 – 5%	3.3 2.5	3.3 + 5% 2.5 + 5%	V

⁽¹⁾ The output supply voltages or pins (V_{CCOA}, V_{CCOB}, and V_{CCOC}) will be called V_{CCO} in general when no distinction is needed, or when the output supply can be inferred from the output bank/type.

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾⁽¹⁾⁽²⁾		LMK00304 RTV0032A (WQFN)	
		32 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	38.1	°C/W
R _{θJC(top)} (DAP)	Junction-to-case (top) thermal resistance	7.2	C/VV

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±750 V may actually have higher performance.

⁽²⁾ Vcco for any output bank should be less than or equal to Vcc (Vcco ≤ Vcc).

⁽²⁾ Specification assumes 5 thermal vias connect the die attach pad (DAP) to the embedded copper plane on the 4-layer JEDEC board. These vias play a key role in improving the thermal performance of the package. It is recommended that the maximum number of vias be used in the board layout.

7.5 Electrical Characteristics

Unless otherwise specified: $Vcc = 3.3 \text{ V} \pm 5\%$, $Vcco = 3.3 \text{ V} \pm 5\%$, $2.5 \text{ V} \pm 5\%$, $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Typical values represent most likely parametric norms at Vcc = 3.3 V, Vcco = 3.3 V, $T_A = 25 \text{ °C}$, and at the Recommended Operation Conditions at the time of product characterization and are not ensured. (1) (2)

		TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
CURRENT C	ONSUMPTION(3)						
	Core Supply Current, All	CLKinX selected			8.5	10.5	mA
ICC_CORE	Outputs Disabled	OSCin selected			10	13.5	mA
I _{CC_PECL}	Additive Core Supply Current, LVPECL Banks Enabled				38	48	mA
I _{CC_LVDS}	Additive Core Supply Current, LVDS Banks Enabled				43	52	mA
I _{CC_HCSL}	Additive Core Supply Current, HCSL Banks Enabled				50	58.5	mA
I _{CC_CMOS}	Additive Core Supply Current, LVCMOS Output Enabled				3.5	5.5	mA
I _{CCO_PECL}	Additive Output Supply Current, LVPECL Banks Enabled		Includes Output Bank Bias and Load Currents for both banks, $R_{T}=50~\Omega$ to Vcco - 2V on all outputs		135	163	mA
I _{CCO_LVDS}	Additive Output Supply Current, LVDS Banks Enabled				25	34.5	mA
I _{CCO_HCSL}	Additive Output Supply Current, HCSL Banks Enabled		Includes Output Bank Bias and Load Currents for both banks, $R_T = 50~\Omega$ on all outputs		65	81.5	mA
	Additive Output Supply		Vcco = 3.3 V ± 5%		9	10	mA
I _{CCO_CMOS}	Current, LVCMOS Output Enabled	200 MHz, C _L = 5 pF	Vcco = 2.5 V ± 5%		7	8	mA
POWER SUP	PPLY RIPPLE REJECTION (I	PSRR)					
	Ripple-Induced		156.25 MHz		-65		
PSRR _{PECL}	Phase Spur Level Differential LVPECL Output ⁽⁴⁾		312.5 MHz		-63		dBc
	Ripple-Induced Phase	100 kHz, 100 mVpp Ripple Injected on Vcco,	156.25 MHz		-76		
PSRR _{LVDS}	Spur Level Differential LVDS Output (4)	Vcco = 2.5 V	312.5 MHz		-74		dBc
	Ripple-Induced Phase		156.25 MHz		-72		
PSRR _{HCSL}	Spur Level Differential HCSL Output (4)	312.5 MHz			-63		dBc
CMOS CONT	ROL INPUTS (CLKin_SELn	, CLKout_TYPEn, REFou	t_EN)				
V _{IH}	High-Level Input Voltage			1.6		Vcc	V
V _{IL}	Low-Level Input Voltage			GND		0.4	V
I _{IH}	High-Level Input Current	V _{IH} = Vcc, Internal pull-do	own resistor			50	μΑ
I _{IL}	Low-Level Input Current	V _{IL} = 0 V, Internal pull-do		-5	0.1		μA

⁽¹⁾ The output supply voltages or pins (V_{CCOA}, V_{CCOB}, and V_{CCOC}) will be called V_{CCO} in general when no distinction is needed, or when the output supply can be inferred from the output bank/type.

⁽²⁾ The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

⁽³⁾ See Power Supply Recommendations for more information on current consumption and power dissipation calculations.

⁽⁴⁾ Power supply ripple rejection, or PSRR, is defined as the single-sideband phase spur level (in dBc) modulated onto the clock output when a single-tone sinusoidal signal (ripple) is injected onto the Vcco supply. Assuming no amplitude modulation effects and small index modulation, the peak-to-peak deterministic jitter (DJ) can be calculated using the measured single-sideband phase spur level (PSRR) as follows: DJ (ps pk-pk) = [(2 * 10^(PSRR / 20)) / (π * f_{CLK})] * 1E12

Unless otherwise specified: Vcc = 3.3 V \pm 5%, Vcco = 3.3 V \pm 5%, 2.5 V \pm 5%, -40 °C \leq T_A \leq 85 °C, CLKin driven differentially, input slew rate \geq 3 V/ns. Typical values represent most likely parametric norms at Vcc = 3.3 V, Vcco = 3.3 V, T_A = 25 °C, and at the Recommended Operation Conditions at the time of product characterization and are not ensured. (1) (2)

		TEST	CONDITIONS	MIN	TYP MAX	UNIT	
CLOCK INP	UTS (CLKin0/CLKin0*, CLKi	n1/CLKin1*)					
f _{CLKin}	Input Frequency Range ⁽⁵⁾	Output frequency rang output type (refer to L	Functional up to 3.1 GHz Output frequency range and timing specified per output type (refer to LVPECL, LVDS, HCSL, LVCMOS output specifications)		3.1	GHz	
V_{IHD}	Differential Input High Voltage				Vcc	V	
V_{ILD}	Differential Input Low Voltage	CLKin driven differenti	ally	GND		V	
V _{ID}	Differential Input Voltage Swing ⁽⁶⁾			0.15	1.3	V	
		V _{ID} = 150 mV	/ _{ID} = 150 mV		Vcc - 1.2		
V_{CMD}	Differential Input Common Mode Voltage	$V_{ID} = 350 \text{ mV}$ $V_{ID} = 800 \text{ mV}$		0.25	Vcc - 1.1	V	
	Common wode voltage			0.25	Vcc - 0.9		
V _{IH}	Single-Ended Input High Voltage				Vcc	V	
V _{IL}	Single-Ended Input Low Voltage		CLKinX driven single-ended (AC or DC coupled), CLKinX* AC coupled to GND or externally biased			V	
V_{I_SE}	Single-Ended Input Voltage Swing ⁽⁷⁾⁽⁸⁾	within V _{CM} range	o GND or externally blased	0.3	2	Vpp	
V_{CM}	Single-Ended Input Common Mode Voltage			0.25	Vcc - 1.2	V	
			f _{CLKin0} = 100 MHz		-84		
100	Mux Isolation, CLKin0 to	f _{OFFSET} > 50 kHz,	f _{CLKin0} = 200 MHz		-82	dBc	
ISO _{MUX}	CLKin1	$P_{CLKinX} = 0 dBm$	$f_{CLKin0} = 500 \text{ MHz}$		-71		
		$f_{CLKin0} = 1000 \text{ MHz}$			-65		
CRYSTAL I	NTERFACE (OSCin, OSCout)					
F _{CLK}	External Clock Frequency Range ⁽⁵⁾	OSCin driven single-e	nded, OSCout floating		250	MHz	
F _{XTAL}	Crystal Frequency Range	Fundamental mode crystal ESR \leq 200 Ω (10 to 30 MHz) ESR \leq 125 Ω (30 to 40 MHz) $^{(9)}$		10	40	MHz	
C _{IN}	OSCin Input Capacitance				4	pF	

⁽⁵⁾ Specification is ensured by characterization and is not tested in production.

⁽⁶⁾ See Differential Voltage Measurement Terminology for definition of V_{ID} and V_{OD} voltages.

⁽⁷⁾ Parameter is specified by design, not tested in production.

⁽⁸⁾ For clock input frequency ≥ 100 MHz, CLKinX can be driven with single-ended (LVCMOS) input swing up to 3.3 Vpp. For clock input frequency < 100 MHz, the single-ended input swing should be limited to 2 Vpp max to prevent input saturation (refer to *Driving the Clock Inputs* for interfacing 2.5 V/3.3 V LVCMOS clock input < 100 MHz to CLKinX).</p>

⁽⁹⁾ The ESR requirements stated must be met to ensure that the oscillator circuitry has no startup issues. However, lower ESR values for the crystal may be necessary to stay below the maximum power dissipation (drive level) specification of the crystal. Refer to Crystal Interface for crystal drive level considerations.

Unless otherwise specified: $Vcc = 3.3 \text{ V} \pm 5\%$, $Vcco = 3.3 \text{ V} \pm 5\%$, $2.5 \text{ V} \pm 5\%$, $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, CLKin driven differentially, input slew rate ≥ 3 V/ns. Typical values represent most likely parametric norms at Vcc = 3.3 V, Vcco = 3.3 V, T_A - 25 °C, and at the Recommended Operation Conditions at the time of product characterization and are not ensured. (1) (2)

		TEST CO	ONDITIONS	MIN	TYP	MAX	UNIT	
LVPECL OUT	TPUTS (CLKoutAn/CLKout/	An*, CLKoutBn/CLKoutB	n*)					
f	Maximum Output	$V_{OD} \ge 600 \text{ mV},$ $R_L = 100 \Omega \text{ differential}$	Vcco = 3.3 V ± 5%, R_T = 160 Ω to GND	1.0	1.2		GHz	
[†] CLKout_FS	Frequency Full V _{OD} Swing ⁽⁵⁾⁽¹⁰⁾		Vcco = 2.5 V \pm 5%, R _T = 91 Ω to GND	0.75	1.0		GHZ	
f	Maximum Output Frequency	V _{OD} ≥ 400 mV,	Vcco = $3.3 \text{ V} \pm 5\%$, R _T = 160Ω to GND	1.5	3.1		GHz	
f _{CLKout_RS}	Reduced V _{OD} Swing ⁽⁵⁾⁽¹⁰⁾	$R_L = 100 \Omega$ differential	Vcco = 2.5 V \pm 5%, R _T = 91 Ω to GND	1.5	2.3		GHZ	
	Additive RMS Jitter, Integration Bandwidth	$Vcco = 2.5 V \pm 5\%$: R _T = 91 Ω to GND,	CLKin: 100 MHz, Slew rate ≥ 3 V/ns		77	98	_	
Jitter _{ADD}	10 kHz to 20 MHz (5) (11) (12) $R_T = 160 \text{ to}$	Vcco = 3.3 V ± 5%: R_T = 160 to GND, R_L = 100 Ω differential	CLKin: 156.25 MHz, Slew rate ≥ 3 V/ns		54	78	fs	
			CLKin: 100 MHz, Slew rate ≥ 3 V/ns		59			
Jitter _{ADD} Ir	Additive RMS Jitter Integration Bandwidth 1 MHz to 20 MHz ⁽¹¹⁾	$Vcco = 3.3 \text{ V},$ $R_T = 160 \Omega \text{ to GND},$ $R_L = 100 \Omega \text{ differential}$	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns		64		fs	
			CLKin: 625 MHz, Slew rate ≥ 3 V/ns		30			
littor	Additive RMS Jitter with Vcco = 3.3 V,		CLKin: 156.25 MHz, J _{SOURCE} = 190 fs RMS (10 kHz to 1 MHz)		20		fo	
Jitter _{ADD}	LVPECL clock source from LMK03806 ⁽¹¹⁾⁽¹³⁾	$R_T = 160 \Omega$ to GND, $R_L = 100 \Omega$ differential	CLKin: 156.25 MHz, J _{SOURCE} = 195 fs RMS (12 kHz to 20 MHz)		51		fs	
			CLKin: 100 MHz, Slew rate ≥ 3 V/ns		-162.5			
Noise Floor	Noise Floor f _{OFFSET} ≥ 10 MHz ⁽¹⁴⁾⁽¹⁵⁾	Vcco = 3.3 V, $R_T = 160 \Omega$ to GND,	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns		-158.1		dBc/Hz	
		$R_L = 100 \Omega$ differential	CLKin: 625 MHz, Slew rate ≥ 3 V/ns		-154.4			
DUTY	Duty Cycle ⁽⁵⁾	50% input clock duty cycle		45%		55%		
V _{OH}	Output High Voltage			Vcco - 1.2	Vcco - 0.9	Vcco - 0.7	V	
V _{OL}	Output Low Voltage	$R_T = 25$ °C, DC Measure $R_T = 50$ Ω to Vcco - 2 V	T_A = 25 °C, DC Measurement, R_T = 50 Ω to Vcco - 2 V		Vcco - 1.75	Vcco - 1.5	V	
V _{OD}	Output Voltage Swing ⁽⁶⁾			600	830	1000	mV	

(10) See *Typical Characteristics* for output operation over frequency.

- Conversion block.
- (13) 156.25 MHz LVPECL clock source from LMK03806 with 20 MHz crystal reference (crystal part number: ECS-200-20-30BU-DU). J_{SOURCE} = 190 fs RMS (10 kHz to 1 MHz) and 195 fs RMS (12 kHz to 20 MHz). Refer to the LMK03806 datasheet for more information.
- (14) The noise floor of the output buffer is measured as the far-out phase noise of the buffer. Typically this offset is ≥ 10 MHz, but for lower frequencies this measurement offset can be as low as 5 MHz due to measurement equipment limitations.
- (15) Phase noise floor will degrade as the clock input slew rate is reduced. Compared to a single-ended clock, a differential clock input (LVPECL, LVDS) will be less susceptible to degradation in noise floor at lower slew rates due to its common mode noise rejection. However, it is recommended to use the highest possible input slew rate for differential clocks to achieve optimal noise floor performance at the device outputs.

⁽¹¹⁾ For the 100 MHz and 156.25 MHz clock input conditions, Additive RMS Jitter (J_{ADD}) is calculated using Method #1: J_{ADD} = SQRT(J_{OUT}² - J_{SOURCE}²), where J_{OUT} is the total RMS jitter measured at the output driver and J_{SOURCE} is the RMS jitter of the clock source applied to CLKin. For the 625 MHz clock input condition, Additive RMS Jitter is approximated using Method #2: $J_{ADD} = SQRT(2*10^{dBc/10})$ / $(2^*\pi^*f_{CLK})$, where dBc is the phase noise power of the Output Noise Floor integrated from 1 to 20 MHz bandwidth. The phase noise power can be calculated as: $dBc = Noise\ Floor + 10*log_{10}(20\ MHz - 1\ MHz)$. The additive RMS jitter was approximated for 625 MHz using Method #2 because the RMS jitter of the clock source was not sufficiently low enough to allow practical use of Method #1. Refer to the "Noise Floor vs. CLKin Slew Rate" and "RMS Jitter vs. CLKin Slew Rate" plots in *Typical Characteristics*.

(12) 100 MHz and 156.25 MHz input source from Rohde & Schwarz SMA100A Low-Noise Signal Generator and Sine-to-Square-wave

Unless otherwise specified: $Vcc = 3.3 \text{ V} \pm 5\%$, $Vcco = 3.3 \text{ V} \pm 5\%$, $2.5 \text{ V} \pm 5\%$, $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Typical values represent most likely parametric norms at Vcc = 3.3 V, Vcco = 3.3 V,

	·	TEST CO	ONDITIONS	MIN	TYP	MAX	UNIT
t _R	Output Rise Time 20% to 80% ⁽⁷⁾		form transmission line up		175	300	ps
t _F	Output Fall Time 80% to 20% (7)	to 10 in. with 50- Ω characteristic impedance, R _L = 100 Ω differential C _L \leq 5 pF			175	300	ps
LVDS OUTPU	JTS (CLKoutAn/CLKoutAn	*, CLKoutBn/CLKoutBn*))				
f _{CLKout_FS}	Maximum Output Frequency Full V _{OD} Swing ^{(5) (10)}	V _{OD} ≥ 250 mV, R _L = 100	Ω differential	1.0	1.6		GHz
f _{CLKout_RS}	Maximum Output Frequency Reduced V _{OD} Swing ⁽⁵⁾⁽¹⁰⁾	V _{OD} ≥ 200 mV, R _L = 100	Ω differential	1.5	2.1		GHz
Р.,	Additive RMS Jitter, Integration Bandwidth	D 400 0 1111 11 1	CLKin: 100 MHz, Slew rate ≥ 3 V/ns		94	115	,
Jitter _{ADD}	10 kHz to 20 MHz (5)(11)(12)		CLKin: 156.25 MHz, Slew rate ≥ 3 V/ns		70	90	fs
			CLKin: 100 MHz, Slew rate ≥ 3 V/ns		89		
Jitter ADD Integration Bandwidth	Additive RMS Jitter Integration Bandwidth 1 MHz to 20 MHz ⁽¹¹⁾	$Vcco = 3.3 \text{ V},$ $R_L = 100 \Omega \text{ differential}$	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns		77		fs
	T IVITIZ TO ZO IVITIZ		CLKin: 625 MHz, Slew rate ≥ 3 V/ns		37		
Noise Floor Noise Floor foFFSET ≥ 10 MH			CLKin: 100 MHz, Slew rate ≥ 3 V/ns		-159.5		
	Noise Floor $f_{OFFSET} \ge 10 \text{ MHz}^{(14)(15)}$	$Vcco = 3.3 V$, $R_L = 100 Ω$ differential	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns		-157.0		dBc/Hz
			CLKin: 625 MHz, Slew rate ≥ 3 V/ns		-152.7		
DUTY	Duty Cycle ⁽⁵⁾	50% input clock duty cyc	cle	45%		55%	
V _{OD}	Output Voltage Swing ⁽⁶⁾			250	400	450	mV
ΔV_{OD}	Change in Magnitude of V _{OD} for Complementary Output States	T _A = 25 °C, DC Measure	ement, $R_1 = 100 \Omega$	-50		50	mV
V _{OS}	Output Offset Voltage	differential	, ,	1.125	1.25	1.375	V
ΔV _{OS}	Change in Magnitude of V _{OS} for Complementary Output States					35	mV
I _{SA} I _{SB}	Output Short Circuit Current Single Ended	T _A = 25 °C, Single ended outputs shorted to GND		-24		24	mA
I _{SAB}	Output Short Circuit Current Differential	Complementary outputs tied together		-12		12	mA
t _R	Output Rise Time 20% to 80% ⁽⁷⁾	l l	e up to 10 inches with 50-		175	300	ps
t _F	Output Fall Time 80% to 20% ⁽⁷⁾	Ω characteristic impedar R_L = 100 Ω differential, Ω	•		175	300	ps

Unless otherwise specified: $Vcc = 3.3 \text{ V} \pm 5\%$, $Vcco = 3.3 \text{ V} \pm 5\%$, $2.5 \text{ V} \pm 5\%$, $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Typical values represent most likely parametric norms at Vcc = 3.3 V, Vcco = 3.3 V, $T_A = 25 \text{ °C}$, and at the Recommended Operation Conditions at the time of product characterization and are not ensured. (1) (2)

	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
TS (CLKoutAn/CLKoutAn	*, CLKoutBn/CLKoutBn	*)				
Output Frequency Range ⁽⁵⁾	$R_L = 50 \Omega$ to GND, $C_L \le$	≤ 5 pF	DC		400	MHz
Additive RMS Phase Jitter for PCIe 3.0 ⁽⁵⁾	PCIe Gen 3, PLL BW = 2-5 MHz, CDR = 10 MHz	CLKin: 100 MHz, Slew rate ≥ 0.6 V/ns		0.03	0.15	ps
Additive RMS Jitter Integration Bandwidth 1 MHz to 20 MHz ⁽¹¹⁾	Vcco = 3.3 V,	CLKin: 100 MHz, Slew rate ≥ 3 V/ns		77		to
	$R_T = 50 \Omega$ to GND	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns		86		fs
Noise Floor Noise Floor f _{OFFSET} ≥ 10 MHz ⁽¹⁴⁾⁽¹⁵⁾	Vcco = 3.3 V, R T = 50 Ω to GND $CLKin: 100 MHz$, $Slew rate ≥ 3 V/ns$ $CLKin: 156.25 MHz$, $Slew rate ≥ 2.7 V/ns$			-161.3		-ID - /I I -
			-156.3		dBc/Hz	
Duty Cycle ⁽⁵⁾	50% input clock duty cy	rcle	45%		55%	
Output High Voltage	T 25 °C DC Macaus	rement D 50 O to CND	520	810	920	mV
Output Low Voltage	TA = 25 C, DC Measur	ement, $K_T = 50 \Omega$ to GND	-150	0.5	150	mV
Absolute Crossing Voltage ^{(5) (16)}	D 50 0 to CND 0	4.5. m.E	250	350	460	mV
Total Variation of V _{CROSS} (5) (16)	$R_L = 50 \Omega$ to GND, $C_L \le 5 \text{ pF}$				140	mV
Output Rise Time 20% to 80% (7) (16)	250 MHz, Unifrom transmission line up to 10			300	500	ps
Output Fall Time 80% to 20% ⁽⁷⁾⁽¹⁶⁾	Ω to GND, $C_L \le 5$ pF	ctenstic impedance, R _L = 50		300	500	ps
	Output Frequency Range (5) Additive RMS Phase Jitter for PCle 3.0 (5) Additive RMS Jitter Integration Bandwidth 1 MHz to 20 MHz (11) Noise Floor foFFSET ≥ 10 MHz (14) (15) Duty Cycle (5) Output High Voltage Output Low Voltage Absolute Crossing Voltage (5) (16) Total Variation of VCROSS (5) (16) Output Rise Time 20% to 80% (7) (16) Output Fall Time	TS (CLKoutAn/CLKoutAn*, CLKoutBn/CLKoutBn Output Frequency Range (5) $R_L = 50 \Omega$ to GND, $C_L \le 10 \Omega$ MeV of GND $R_L = 10 \Omega$ MeV of GND, $R_L = 10 \Omega$ Me	Range (5) $R_L = 50 \ \Omega \ \text{to GND}, \ C_L \le 5 \ \text{pF}$ Additive RMS Phase Jitter for PCle $3.0^{(5)}$ $PCle \ Gen \ 3, \\ PLL \ BW = 2-5 \ \text{MHz}, \\ CDR = 10 \ \text{MHz}$ $CLKin: 100 \ \text{MHz}, \\ Slew \ rate \ge 0.6 \ \text{V/ns}$ $CLKin: 100 \ \text{MHz}, \\ Slew \ rate \ge 3 \ \text{V/ns}$ $CLKin: 100 \ \text{MHz}, \\ Slew \ rate \ge 3 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 3 \ \text{V/ns}$ $CLKin: 100 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 3 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 100 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 3 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 3 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 3 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 3 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ $CLKin: 156.25 \ \text{MHz}, \\ Slew \ rate \ge 2.7 \ \text{V/ns}$ CLK	TS (CLKoutAn/CLKoutAn*, CLKoutBn/CLKoutBn*) Output Frequency Range (5) Additive RMS Phase Jitter for PCle 3.0 (5) Additive RMS Jitter Integration Bandwidth 1 MHz to 20 MHz (11) Noise Floor $f_{OFFSET} \ge 10 \text{ MHz}(14)(15)$ Duty Cycle (5) Output High Voltage Output Low Voltage Absolute Crossing Voltage (5) (16) Total Variation of VCROss (5) (16) Output Rise Time 20% to 80% (7)(16) Output Fall Time Output Fall Time PCle Gen 3, PLL BW = 2-5 MHz, Slew rate ≥ 0.6 V/ns CLKin: 100 MHz, Slew rate ≥ 3 V/ns CLKin: 100 MHz, Slew rate ≥ 2.7 V/ns CLKin: 156.25 MHz, Slew rate ≥ 3 V/ns CLKin: 156.25 MHz, Slew rate ≥ 3 V/ns CLKin: 150.05 MHz, Sl	TS (CLKoutAn/CLKoutAn*, CLKoutBn/CLKoutBn*) Output Frequency Range (5) Additive RMS Phase Jitter for PCle 3.0 (5) Additive RMS Jitter Integration Bandwidth 1 MHz to 20 MHz (11) Noise Floor $f_{OFFSET} \ge 10 \text{ MHz}^{(14)(15)}$ Duty Cycle (5) Output High Voltage Output Low Voltage Output Rise Time 20% to 80% (7)(16) Output Rise Time 20% to 80% (7)(16) Output Fall Time PCle Gen 3, PLL BW = 2–5 MHz, CLKin: 100 MHz, Slew rate ≥ 0.6 V/ns CLKin: 100 MHz, Slew rate ≥ 3 V/ns CLKin: 100 MHz, Slew rate ≥ 3 V/ns CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns CLKin: 150.00 MHz, Slew rate ≥ 3.7 V/ns CLKin: 150.00 MHz, Slew rate ≥ 3.7 V/ns CLKin: 150.00 MHz, Slew rate ≥ 3.7 V/ns CLKin:	$ \begin{array}{ c c c c c } \hline \textbf{TS (CLKoutAn/CLKoutAn^*, CLKoutBn/CLKoutBn^*)} \\ \hline \textbf{Output Frequency} \\ \hline \textbf{Range}^{(5)} & R_L = 50 \ \Omega \ \text{to GND, C}_L \le 5 \ \text{pF} \\ \hline \textbf{DC} & 400 \\ \hline \textbf{Additive RMS Phase} \\ \hline \textbf{Jitter for PCIe } 3.0^{(5)} & PCIe \ \text{Gen } 3, \\ \hline \textbf{PLL BW} = 2-5 \ \text{MHz,} \\ \hline \textbf{CDR} = 10 \ \text{MHz} \\ \hline \textbf{Additive RMS Jitter} \\ \hline \textbf{Integration Bandwidth} \\ 1 \ \text{MHz to } 20 \ \text{MHz}^{(11)} \\ \hline \textbf{Noise Floor} \\ \hline \textbf{foFFSET} \ge 10 \ \text{MHz}^{(14)(15)} \\ \hline \textbf{Output High Voltage} \\ \hline \textbf{Output Low Voltage} \\ \hline \textbf{Output Rise Time} \\ \hline \textbf{Output Rise Time} \\ \hline \textbf{20\% to 80W} \\ \hline \textbf{Output Fall Time} \\ \hline \hline \textbf{Output Fall Time} \\ \hline \textbf{Output Fall Time} \\ \hline \hline \textbf{Output Rise Time} \\ \hline \textbf{Output Fall Time} \\ \hline \hline \textbf{Output Rise Time} \\ \hline \textbf{Output Fall Time} \\ \hline Out$

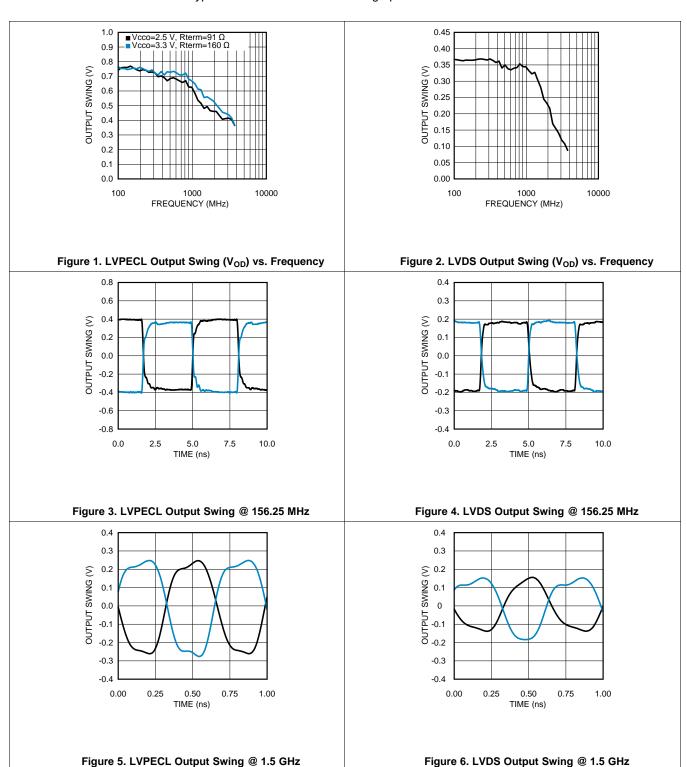
⁽¹⁶⁾ AC timing parameters for HCSL or CMOS are dependent on output capacitive loading.

Unless otherwise specified: Vcc = 3.3 V \pm 5%, Vcco = 3.3 V \pm 5%, 2.5 V \pm 5%, -40 °C \leq T_A \leq 85 °C, CLKin driven differentially, input slew rate \geq 3 V/ns. Typical values represent most likely parametric norms at Vcc = 3.3 V, Vcco = 3.3 V, T_A = 25 °C, and at the Recommended Operation Conditions at the time of product characterization and are not ensured. (1) (2)

		TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
LVCMOS OU	TPUT (REFout)	·	<u> </u>				
f _{CLKout}	Output Frequency Range ⁽⁵⁾	C _L ≤ 5 pF		DC		250	MHz
Jitter _{ADD}	Additive RMS Jitter Integration Bandwidth 1 MHz to 20 MHz ⁽¹¹⁾	Vcco = 3.3 V, C _L ≤ 5 pF	100 MHz, Input Slew rate ≥ 3 V/ns		95		fs
Noise Floor	Noise Floor f _{OFFSET} ≥ 10 MHz ⁽¹⁴⁾⁽¹⁵⁾	Vcco = 3.3 V, C _L ≤ 5 pF	100 MHz, Input Slew rate ≥ 3 V/ns		-159.3		dBc/Hz
DUTY	Duty Cycle ⁽⁵⁾	50% input clock duty cyc	50% input clock duty cycle			55%	
V _{OH}	Output High Voltage	1 mA load		Vcco - 0.1			V
V_{OL}	Output Low Voltage					0.1	V
	Output High Current	Output High Current Vcco = 3.3 V	Vcco = 3.3 V		28		mA
I _{OH}	(Source)	Vo = Vcco / 2	Vcco = 2.5 V		20		MA
	Output Low Current	V0 = VCC0 / 2	Vcco = 3.3 V		28		A
I _{OL}	(Sink)		Vcco = 2.5 V		20		mA
t _R	Output Rise Time 20% to 80% ⁽⁷⁾⁽¹⁶⁾	250 MHz, Uniform transmission line up to 10 inches with 50- Ω characteristic impedance, R _L = 50 Ω to GND, C _L ≤ 5 pF			225	400	ps
t _F	Output Fall Time 80% to 20% ⁽⁷⁾⁽¹⁶⁾				225	400	ps
t _{EN}	Output Enable Time ⁽¹⁷⁾	0.45.5				3	cycles
t _{DIS}	Output Disable Time ⁽¹⁷⁾	C _L ≤ 5 pF	; _L ≤ 5 pF			3	cycles

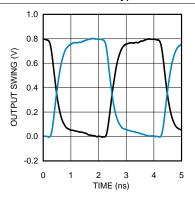
⁽¹⁷⁾ Output Enable Time is the number of input clock cycles it takes for the output to be enabled after REFout_EN is pulled high. Similarly, Output Disable Time is the number of input clock cycles it takes for the output to be disabled after REFout_EN is pulled low. The REFout_EN signal should have an edge transition much faster than that of the input clock period for accurate measurement.

Unless otherwise specified: $Vcc = 3.3 \text{ V} \pm 5\%$, $Vcco = 3.3 \text{ V} \pm 5\%$, $2.5 \text{ V} \pm 5\%$, $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Typical values represent most likely parametric norms at Vcc = 3.3 V, Vcco = 3.3 V, $T_A = 25 \text{ °C}$, and at the Recommended Operation Conditions at the time of product characterization and are not ensured. (1) (2)


		TEST CONDITIONS		MIN	TYP	MAX	UNIT
PROPAGAT	TION DELAY and OUTPUT SI	KEW					
t _{PD_PECL}	Propagation Delay CLKin-to-LVPECL ⁽⁷⁾	$R_T = 160 \Omega \text{ to GN}$ $C_L \le 5 \text{ pF}$	$R_T = 160 \Omega$ to GND, $R_L = 100 \Omega$ differential, $C_1 \le 5 \text{ pF}$		360	540	ps
t _{PD_LVDS}	Propagation Delay CLKin-to-LVDS ⁽⁷⁾	$R_L = 100 \Omega \text{ difference}$	R_L = 100 Ω differential, $C_L \le 5$ pF		400	600	ps
t _{PD_HCSL}	Propagation Delay CLKin-to-HCSL ⁽⁷⁾⁽¹⁶⁾	$R_T = 50 \Omega$ to GND, $C_L \le 5 pF$		295	590	885	ps
Propagation Delay	C < 5 n F	Vcco = 3.3 V	900	1475	2300		
t _{PD_CMOS}	CLKin-to-LVCMOS (7) (16)	C _L ≤ 5 pF	Vcco = 2.5 V	1000	1550	2700	ps
t _{SK(O)}	Output Skew LVPECL/LVDS/HCSL (5)(16)(18)	Skew specified be	Skew specified between any two CLKouts with the		30	50	ps
t _{SK(PP)}	Part-to-Part Output Skew LVPECL/LVDS/HCSL (7)(16)(18)	same buffer type. Load conditions per output type are the same as propagation delay specifications.			80	120	ps

⁽¹⁸⁾ Output skew is the propagation delay difference between any two outputs with identical output buffer type and equal loading while operating at the same supply voltage and temperature conditions.

7.6 Typical Characteristics


Unless otherwise specified: Vcc = 3.3 V, Vcco = 3.3 V, $T_A = 25 ^{\circ}\text{C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Consult Table 1 at the end of the *Typical Characteristics* section for graph notes.

Typical Characteristics (continued)

Unless otherwise specified: Vcc = 3.3 V, Vcco = 3.3 V, $T_A = 25 \text{ °C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Consult Table 1 at the end of the *Typical Characteristics* section for graph notes.

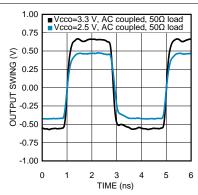
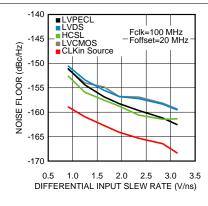



Figure 7. HCSL Output Swing @ 250 MHz

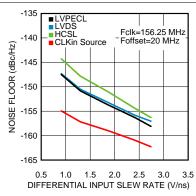
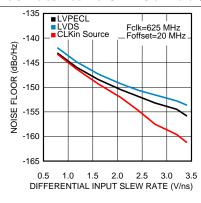
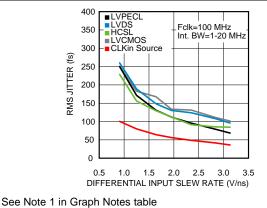



Figure 9. Noise Floor vs. CLKin Slew Rate @ 100 MHz

Figure 10. Noise Floor vs. CLKin Slew Rate @ 156.25 MHz



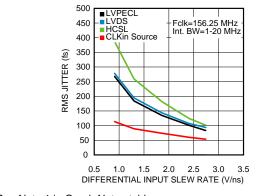

Figure 11. Noise Floor vs. CLKin Slew Rate @ 625 MHz

Figure 12. RMS Jitter vs. CLKin Slew Rate @ 100 MHz

Typical Characteristics (continued)

Unless otherwise specified: Vcc = 3.3 V, Vcco = 3.3 V, $V_A = 25 \text{ °C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Consult Table 1 at the end of the *Typical Characteristics* section for graph notes.

See Note 1 in Graph Notes table

Figure 13. RMS Jitter vs. CLKin Slew Rate @ 156.25 MHz

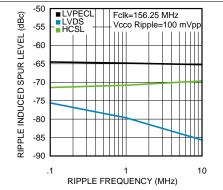


Figure 15. PSRR vs. Ripple Frequency @ 156.25 MHz

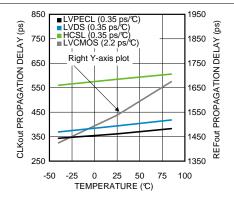


Figure 17. Propagation Delay vs. Temperature

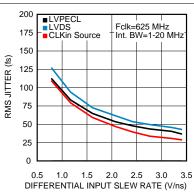


Figure 14. RMS Jitter vs. CLKin Slew Rate @ 625 MHz

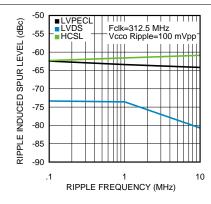
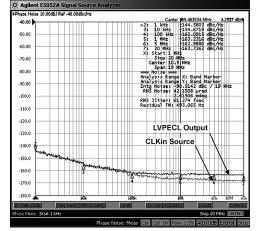



Figure 16. PSRR vs. Ripple Frequency @ 312.5 MHz

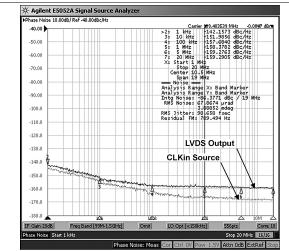
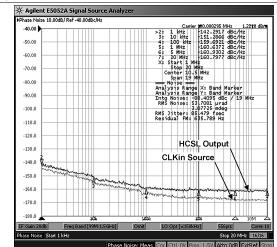

See Note 1 in Graph Notes table

Figure 18. LVPECL Phase Noise @ 100 MHz



Typical Characteristics (continued)

Unless otherwise specified: Vcc = 3.3 V, Vcco = 3.3 V, $T_A = 25 ^{\circ}\text{C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Consult Table 1 at the end of the *Typical Characteristics* section for graph notes.

See Note 1 in Graph Notes table

See Note 1 in Graph Notes table

Figure 19. LVDS Phase Noise @ 100 MHz

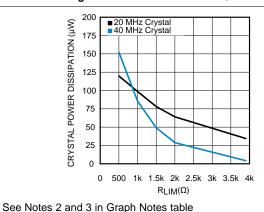
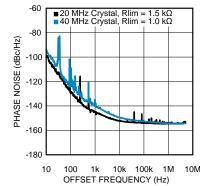



Figure 21. Crystal Power Dissipation vs. R_{LIM}

See Notes 2 and 3 in Graph Notes table

Figure 22. LVDS Phase Noise in Crystal Mode

Table 1. Graph Notes

NOTE	
(1)	The typical RMS jitter values in the plots show the total output RMS jitter (J_{OUT}) for each output buffer type and the source clock RMS jitter (J_{SOURCE}). From these values, the Additive RMS Jitter can be calculated as: $J_{ADD} = SQRT(J_{OUT}^2 - J_{SOURCE}^2)$.
(2)	20 MHz crystal characteristics: Abracon ABL series, AT cut, C_L = 18 pF , C_0 = 4.4 pF measured (7 pF max), ESR = 8.5 Ω measured (40 Ω max), and Drive Level = 1 mW max (100 μ W typical).
(3)	40 MHz crystal characteristics: Abracon ABLS2 series, AT cut, C_L = 18 pF , C_0 = 5 pF measured (7 pF max), ESR = 5 Ω measured (40 Ω max), and Drive Level = 1 mW max (100 μ W typical).

8 Parameter Measurement Information

8.1 Differential Voltage Measurement Terminology

The differential voltage of a differential signal can be described by two different definitions causing confusion when reading datasheets or communicating with other engineers. This section will address the measurement and description of a differential signal so that the reader will be able to understand and discern between the two different definitions when used.

The first definition used to describe a differential signal is the absolute value of the voltage potential between the inverting and non-inverting signal. The symbol for this first measurement is typically V_{ID} or V_{OD} depending on if an input or output voltage is being described.

The second definition used to describe a differential signal is to measure the potential of the non-inverting signal with respect to the inverting signal. The symbol for this second measurement is V_{SS} and is a calculated parameter. Nowhere in the IC does this signal exist with respect to ground, it only exists in reference to its differential pair. V_{SS} can be measured directly by oscilloscopes with floating references, otherwise this value can be calculated as twice the value of V_{OD} as described in the first description.

Figure 23 illustrates the two different definitions side-by-side for inputs and Figure 24 illustrates the two different definitions side-by-side for outputs. The V_{ID} (or V_{OD}) definition show the DC levels, V_{IH} and V_{OL} (or V_{OH} and V_{OL}), that the non-inverting and inverting signals toggle between with respect to ground. V_{SS} input and output definitions show that if the inverting signal is considered the voltage potential reference, the non-inverting signal voltage potential is now increasing and decreasing above and below the non-inverting reference. Thus the peak-to-peak voltage of the differential signal can be measured.

V_{ID} and V_{OD} are often defined as volts (V) and V_{SS} is often defined as volts peak-to-peak (V_{PP}).

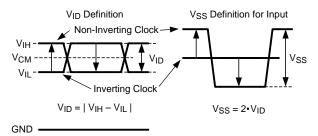


Figure 23. Two Different Definitions for Differential Input Signals

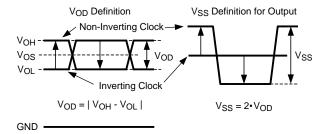
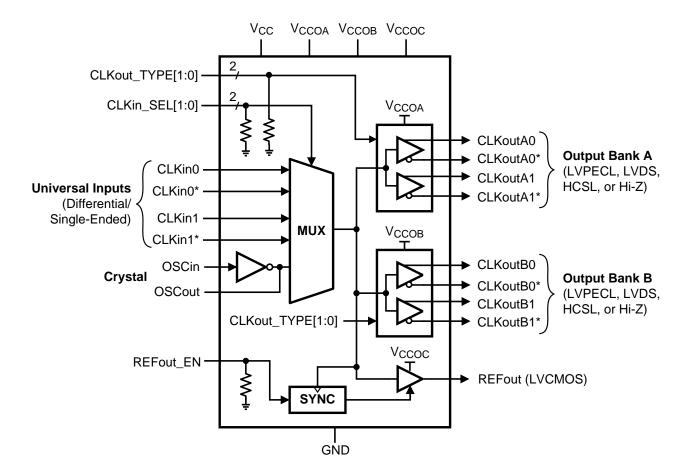


Figure 24. Two Different Definitions for Differential Output Signals

Refer to Application Note AN-912 (SNLA036), Common Data Transmission Parameters and their Definitions, for more information.



9 Detailed Description

9.1 Overview

The LMK00304 is a 4-output differential clock fanout buffer with low additive jitter that can operate up to 3.1 GHz. It features a 3:1 input multiplexer with an optional crystal oscillator input, two banks of 2 differential outputs with multi-mode buffers (LVPECL, LVDS, HCSL, or Hi-Z), one LVCMOS output, and 3 independent output buffer supplies. The input selection and output buffer modes are controlled via pin strapping. The device is offered in a 32-pin WQFN package and leverages much of the high-speed, low-noise circuit design employed in the LMK04800 family of clock conditioners.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 V_{CC} and V_{CCO} Power Supplies

The LMK00304 has separate 3.3 V core supply (V_{CC}) and 3 independent 3.3 V/2.5 V output power supplies (V_{CCOA} , V_{CCOB} , V_{CCOC}). Output supply operation at 2.5 V enables lower power consumption and output-level compatibility with 2.5 V receiver devices. The output levels for LVPECL (V_{OH} , V_{OL}) and LVCMOS (V_{OH}) are referenced to its respective Vcco supply, while the output levels for LVDS and HCSL are relatively constant over the specified Vcco range. Refer to *Power Supply Recommendations* for additional supply related considerations, such as power dissipation, power supply bypassing, and power supply ripple rejection (PSRR).

NOTE

Care should be taken to ensure the Vcco voltages do not exceed the Vcc voltage to prevent turning-on the internal ESD protection circuitry.

9.3.2 Clock Inputs

The input clock can be selected from CLKin0/CLKin0*, CLKin1/CLKin1*, or OSCin. Clock input selection is controlled using the CLKin_SEL[1:0] inputs as shown in *Table 2*. Refer to *Driving the Clock Inputs* for clock input requirements. When CLKin0 or CLKin1 is selected, the crystal circuit is powered down. When OSCin is selected, the crystal oscillator circuit will start-up and its clock will be distributed to all outputs. Refer to *Crystal Interface* for more information. Alternatively, OSCin may be driven by a single-ended clock (up to 250 MHz) instead of a crystal.

Table 2. Input Selection

CLKin_SEL1	CLKin_SEL0	SELECTED INPUT
0	0	CLKin0, CLKin0*
0	1	CLKin1, CLKin1*
1	X	OSCin

Table 3 shows the output logic state vs. input state when either CLKin0/CLKin0* or CLKin1/CLKin1* is selected. When OSCin is selected, the output state will be an inverted copy of the OSCin input state.

Table 3. CLKin Input vs. Output States

STATE of SELECTED CLKin	STATE of ENABLED OUTPUTS
CLKinX and CLKinX* inputs floating	Logic low
CLKinX and CLKinX* inputs shorted together	Logic low
CLKin logic low	Logic low
CLKin logic high	Logic high

9.3.3 Clock Outputs

The differential output buffer type for both Bank A and B outputs are configured using the CLKout_TYPE[1:0] as shown in Table 4. For applications where all differential outputs are not needed, any unused output pin should be left floating with a minimum copper length (see note below) to minimize capacitance and potential coupling and reduce power consumption. If all differential outputs are not used, it is recommended to disable (Hi-Z) the banks to reduce power. Refer to *Termination and Use of Clock Drivers* for more information on output interface and termination techniques.

NOTE

For best soldering practices, the minimum trace length for any unused pin should extend to include the pin solder mask. This way during reflow, the solder has the same copper area as connected pins. This allows for good, uniform fillet solder joints helping to keep the IC level during reflow.

Table 4. Differential Output Buffer Type Selection

CLKout_ TYPE1	CLKout_ TYPE0	CLKoutX BUFFER TYPE (BANK A and B)
0	0	LVPECL
0	1	LVDS
1	0	HCSL
1	1	Disabled (Hi-Z)

9.3.3.1 Reference Output

The reference output (REFout) provides a LVCMOS copy of the selected input clock. The LVCMOS output high level is referenced to the Vcco voltage. REFout can be enabled or disabled using the enable input pin, REFout EN, as shown in Table 5.

Table 5. Reference Output Enable

REFout_EN	REFout STATE
0	Disabled (Hi-Z)
1	Enabled

The REFout_EN input is internally synchronized with the selected input clock by the SYNC block. This synchronizing function prevents glitches and runt pulses from occurring on the REFout clock when enabled or disabled. REFout will be enabled within 3 cycles (t_{EN}) of the input clock after REFout_EN is toggled high. REFout will be disabled within 3 cycles (t_{DIS}) of the input clock after REFout_EN is toggled low.

When REFout is disabled, the use of a resistive loading can be used to set the output to a predetermined level. For example, if REFout is configured with a 1 $k\Omega$ load to ground, then the output will be pulled to low when disabled.

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Driving the Clock Inputs

The LMK00304 has two universal inputs (CLKin0/CLKin0* and CLKin1/CLKin1*) that can accept DC-coupled 3.3V/2.5V LVPECL, LVDS, CML, SSTL, and other differential and single-ended signals that meet the input requirements specified in *Electrical Characteristics*. The device can accept a wide range of signals due to its wide input common mode voltage range (V_{CM}) and input voltage swing (V_{ID}) / dynamic range. For 50% duty cycle and DC-balanced signals, AC coupling may also be employed to shift the input signal to within the V_{CM} range. Refer to *Termination and Use of Clock Drivers* for signal interfacing and termination techniques.

To achieve the best possible phase noise and jitter performance, it is mandatory for the input to have high slew rate of 3 V/ns (differential) or higher. Driving the input with a lower slew rate will degrade the noise floor and jitter. For this reason, a differential signal input is recommended over single-ended because it typically provides higher slew rate and common-mode-rejection. Refer to the "Noise Floor vs. CLKin Slew Rate" and "RMS Jitter vs. CLKin Slew Rate" plots in *Typical Characteristics*.

While it is recommended to drive the CLKin/CLKin* pair with a differential signal input, it is possible to drive it with a single-ended clock provided it conforms to the Single-Ended Input specifications for CLKin pins listed in the *Electrical Characteristics*. For large single-ended input signals, such as 3.3V or 2.5V LVCMOS, a 50 Ω load resistor should be placed near the input for signal attenuation to prevent input overdrive as well as for line termination to minimize reflections. Again, the single-ended input slew rate should be as high as possible to minimize performance degradation. The CLKin input has an internal bias voltage of about 1.4 V, so the input can be AC coupled as shown in Figure 25. The output impedance of the LVCMOS driver plus Rs should be close to 50 Ω to match the characteristic impedance of the transmission line and load termination.

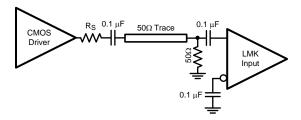


Figure 25. Single-Ended LVCMOS Input, AC Coupling

A single-ended clock may also be DC coupled to CLKinX as shown in Figure 26. A $50-\Omega$ load resistor should be placed near the CLKin input for signal attenuation and line termination. Because half of the single-ended swing of the driver ($V_{O,PP}$ / 2) drives CLKinX, CLKinX* should be externally biased to the midpoint voltage of the attenuated input swing (($V_{O,PP}$ / 2) × 0.5). The external bias voltage should be within the specified input common voltage (V_{CM}) range. This can be achieved using external biasing resistors in the k Ω range (R_{B1} and R_{B2}) or another low-noise voltage reference. This will ensure the input swing crosses the threshold voltage at a point where the input slew rate is the highest.

If the LVCMOS driver cannot achieve sufficient swing with a DC-terminated 50Ω load at the CLKinX input as shown in Figure 26, then consider connecting the 50Ω load termination to ground through a capacitor (C_{AC}). This AC termination blocks the DC load current on the driver, so the voltage swing at the input is determined by the voltage divider formed by the source (Ro+Rs) and 50Ω load resistors. The value for C_{AC} depends on the trace delay, Td, of the 50Ω transmission line, where $C_{AC} >= 3*Td/50\Omega$.

Driving the Clock Inputs (continued)

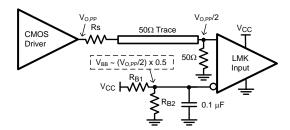


Figure 26. Single-Ended LVCMOS Input, DC Coupling with Common Mode Biasing

If the crystal oscillator circuit is not used, it is possible to drive the OSCin input with an single-ended external clock as shown in Figure 27. The input clock should be AC coupled to the OSCin pin, which has an internally-generated input bias voltage, and the OSCout pin should be left floating. While OSCin provides an alternative input to multiplex an external clock, it is recommended to use either universal input (CLKinX) since it offers higher operating frequency, better common mode and power supply noise rejection, and greater performance over supply voltage and temperature variations.

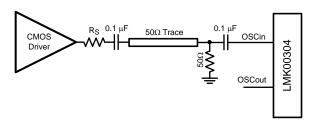


Figure 27. Driving OSCin with a Single-Ended Input

10.2 Crystal Interface

The LMK00304 has an integrated crystal oscillator circuit that supports a fundamental mode, AT-cut crystal. The crystal interface is shown in Figure 28.

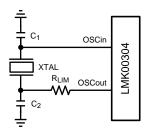


Figure 28. Crystal Interface

The load capacitance (C_L) is specific to the crystal, but usually on the order of 18 - 20 pF. While C_L is specified for the crystal, the OSCin input capacitance (C_{IN} = 4 pF typical) of the device and PCB stray capacitance (C_{STRAY} ~ 1~3 pF) can affect the discrete load capacitor values, C_1 and C_2 .

For the parallel resonant circuit, the discrete capacitor values can be calculated as follows:

$$C_{1} = (C_{1} * C_{2}) / (C_{1} + C_{2}) + C_{IN} + C_{STRAY}$$
(1)

Typically, $C_1 = C_2$ for optimum symmetry, so Equation 1 can be rewritten in terms of C_1 only:

$$C_{L} = C_{1}^{2} / (2 * C_{1}) + C_{IN} + C_{STRAY}$$
 (2)

Finally, solve for C₁:

$$C_1 = (C_L - C_{IN} - C_{STRAY})^2$$
 (3)

(4)

Crystal Interface (continued)

Electrical Characteristics provides crystal interface specifications with conditions that ensure start-up of the crystal, but it does not specify crystal power dissipation. The designer will need to ensure the crystal power dissipation does not exceed the maximum drive level specified by the crystal manufacturer. Overdriving the crystal can cause premature aging, frequency shift, and eventual failure. Drive level should be held at a sufficient level necessary to start-up and maintain steady-state operation.

The power dissipated in the crystal, P_{XTAL}, can be computed by:

$$P_{XTAL} = I_{RMS}^2 * R_{ESR}^* (1 + C_0/C_L)^2$$

where

- I_{RMS} is the RMS current through the crystal.
- R_{ESR} is the max. equivalent series resistance specified for the crystal
- C_L is the load capacitance specified for the crystal
- ullet C_0 is the min. shunt capacitance specified for the crystal

 I_{RMS} can be measured using a current probe (e.g. Tektronix CT-6 or equivalent) placed on the leg of the crystal connected to OSCout with the oscillation circuit active.

As shown in *Figure 28*, an external resistor, R_{LIM} , can be used to limit the crystal drive level, if necessary. If the power dissipated in the selected crystal is higher than the drive level specified for the crystal with R_{LIM} shorted, then a larger resistor value is mandatory to avoid overdriving the crystal. However, if the power dissipated in the crystal is less than the drive level with R_{LIM} shorted, then a zero value for R_{LIM} can be used. As a starting point, a suggested value for R_{LIM} is 1.5 k Ω .

10.3 Termination and Use of Clock Drivers

When terminating clock drivers keep in mind these guidelines for optimum phase noise and jitter performance:

- Transmission line theory should be followed for good impedance matching to prevent reflections.
- Clock drivers should be presented with the proper loads.
 - LVDS outputs are current drivers and require a closed current loop.
 - HCSL drivers are switched current outputs and require a DC path to ground via 50 Ω termination.
 - LVPECL outputs are open emitter and require a DC path to ground.
- Receivers should be presented with a signal biased to their specified DC bias level (common mode voltage) for proper operation. Some receivers have self-biasing inputs that automatically bias to the proper voltage level; in this case, the signal should normally be AC coupled.

It is possible to drive a non-LVPECL or non-LVDS receiver with a LVDS or LVPECL driver as long as the above guidelines are followed. Check the datasheet of the receiver or input being driven to determine the best termination and coupling method to be sure the receiver is biased at the optimum DC voltage (common mode voltage).

10.3.1 Termination for DC Coupled Differential Operation

For DC coupled operation of an LVDS driver, terminate with 100 Ω as close as possible to the LVDS receiver as shown in Figure 29.

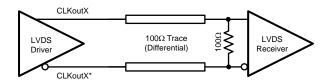


Figure 29. Differential LVDS Operation, DC Coupling, No Biasing by the Receiver

For DC coupled operation of an HCSL driver, terminate with 50 Ω to ground near the driver output as shown in Figure 30. Series resistors, Rs, may be used to limit overshoot due to the fast transient current. Because HCSL drivers require a DC path to ground, AC coupling is not allowed between the output drivers and the 50 Ω termination resistors.

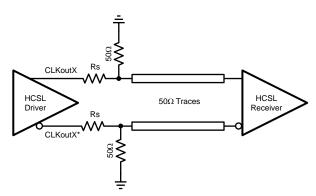


Figure 30. HCSL Operation, DC Coupling

For DC coupled operation of an LVPECL driver, terminate with 50 Ω to Vcco - 2 V as shown in Figure 31. Alternatively terminate with a Thevenin equivalent circuit as shown in Figure 32 for Vcco (output driver supply voltage) = 3.3 V and 2.5 V. In the Thevenin equivalent circuit, the resistor dividers set the output termination voltage (V_{TT}) to Vcco - 2 V.

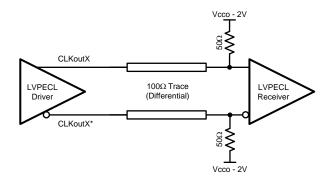
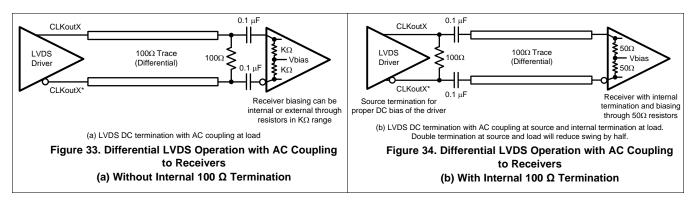


Figure 31. Differential LVPECL Operation, DC Coupling



Figure 32. Differential LVPECL Operation, DC Coupling, Thevenin Equivalent

10.3.2 Termination for AC Coupled Differential Operation


AC coupling allows for shifting the DC bias level (common mode voltage) when driving different receiver standards. Since AC coupling prevents the driver from providing a DC bias voltage at the receiver, it is important to ensure the receiver is biased to its ideal DC level.

When driving differential receivers with an LVDS driver, the signal may be AC coupled by adding DC blocking capacitors; however the proper DC bias point needs to be established at both the driver side and the receiver side. The recommended termination scheme depends on whether the differential receiver has integrated termination resistors or not.

When driving a differential receiver without internal 100 Ω differential termination, the AC coupling capacitors should be placed between the load termination resistor and the receiver to allow a DC path for proper biasing of the LVDS driver. This is shown in Figure 33. The load termination resistor and AC coupling capacitors should be placed as close as possible to the receiver inputs to minimize stub length. The receiver can be biased internally or externally to a reference voltage within the receiver's common mode input range through resistors in the kilo-ohm range.

When driving a differential receiver with internal 100 Ω differential termination, a source termination resistor should be placed before the AC coupling capacitors for proper DC biasing of the driver as shown in Figure 34. However, with a 100 Ω resistor at the source and the load (i.e. double terminated), the equivalent resistance seen by the LVDS driver is 50 Ω which causes the effective signal swing at the input to be reduced by half. If a self-terminated receiver requires input swing greater than 250 mVpp (differential) as well as AC coupling to its inputs, then the LVDS driver with the double-terminated arrangement in Figure 34 may not meet the minimum input swing requirement; alternatively, the LVPECL or HCSL output driver format with AC coupling is recommended to meet the minimum input swing required by the self-terminated receiver.

When using AC coupling with LVDS outputs, there may be a startup delay observed in the clock output due to capacitor charging. The examples in Figure 33 and Figure 34 use 0.1 µF capacitors, but this value may be adjusted to meet the startup requirements for the particular application.

LVPECL drivers require a DC path to ground. When AC coupling an LVPECL signal use 160 Ω emitter resistors (or 91 Ω for Vcco = 2.5 V) close to the LVPECL driver to provide a DC path to ground as shown in Figure 38. For proper receiver operation, the signal should be biased to the DC bias level (common mode voltage) specified by the receiver. The typical DC bias voltage (common mode voltage) for LVPECL receivers is 2 V. Alternatively, a Thevenin equivalent circuit forms a valid termination as shown in Figure 35 for Vcco = 3.3 V and 2.5 V. Note: this Thevenin circuit is different from the DC coupled example in Figure 32, since the voltage divider is setting the input common mode voltage of the receiver.

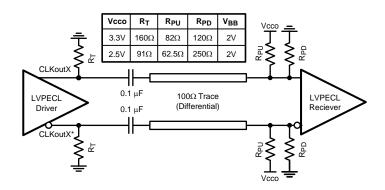


Figure 35. Differential LVPECL Operation, AC Coupling, Thevenin Equivalent

10.3.3 Termination for Single-Ended Operation

A balun can be used with either LVDS or LVPECL drivers to convert the balanced, differential signal into an unbalanced, single-ended signal.

It is possible to use an LVPECL driver as one or two separate 800 mV p-p signals. When DC coupling one of the LMK00304 LVPECL driver of a CLKoutX/CLKoutX* pair, be sure to properly terminate the unused driver. When DC coupling on of the LMK00304 LVPECL drivers, the termination should be 50 Ω to Vcco - 2 V as shown in Figure 36. The Thevenin equivalent circuit is also a valid termination as shown in Figure 37 for Vcco = 3.3 V.

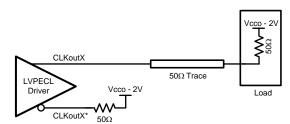


Figure 36. Single-Ended LVPECL Operation, DC Coupling

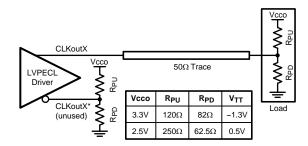


Figure 37. Single-Ended LVPECL Operation, DC Coupling, Thevenin Equivalent

When AC coupling an LVPECL driver use a 160 Ω emitter resistor (or 91 Ω for Vcco = 2.5 V) to provide a DC path to ground and ensure a 50 Ω termination with the proper DC bias level for the receiver. The typical DC bias voltage for LVPECL receivers is 2 V. If the companion driver is not used, it should be terminated with either a proper AC or DC termination. This latter example of AC coupling a single-ended LVPECL signal can be used to measure single-ended LVPECL performance using a spectrum analyzer or phase noise analyzer. When using most RF test equipment no DC bias point (0 VDC) is required for safe and proper operation. The internal 50 Ω termination the test equipment correctly terminates the LVPECL driver being measured as shown in Figure 38. When using only one LVPECL driver of a CLKoutX/CLKoutX* pair, be sure to properly terminated the unused driver.

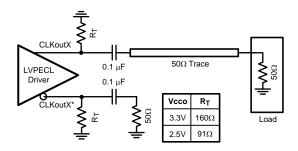


Figure 38. Single-Ended LVPECL Operation, AC Coupling

11 Power Supply Recommendations

11.1 Power Supply Sequencing

When powering the Vcc and Vcco pins from separate supply rails, it is recommended for the supplies to reach their regulation point at approximately the same time while ramping up, or reach ground potential at the same time while ramping down. Using simultaneous or ratiometric power supply sequencing prevents internal current flow from Vcc to Vcco pins that could occur when Vcc is powered before Vcco.

11.2 Current Consumption and Power Dissipation Calculations

The current consumption values specified in *Electrical Characteristics* can be used to calculate the total power dissipation and IC power dissipation for any device configuration. The total V_{CC} core supply current (I_{CC_TOTAL}) can be calculated using Equation 5:

 $I_{CC_TOTAL} = I_{CC_CORE} + I_{CC_BANKS} + I_{CC_CMOS}$

where

- I_{CC CORE} is the V_{CC} current for core logic and input blocks and depends on selected input (CLKinX or OSCin).
- I_{CC_BANKS} is the V_{CC} current for Banks A & B and depends on the selected output type (I_{CC_PECL}, I_{CC_LVDS}, I_{CC_HCSL}, or 0 mA if disabled).
- I_{CC CMOS} is the V_{CC} current for the LVCMOS output (or 0 mA if REFout is disabled).

Since the output supplies (V_{CCOA} , V_{CCOB} , V_{CCOC}) can be powered from 3 independent voltages, the respective output supply currents ($I_{CCO_BANK_A}$, $I_{CCO_BANK_B}$, and I_{CCO_CMOS}) should be calculated separately.

 I_{CCO_BANK} for either Bank A or B may be taken as 50% of the corresponding output supply current specified for two banks (I_{CCO_PECL} , I_{CCO_LVDS} , or I_{CCO_HCSL}) provided the output loading matches the specified conditions. Otherwise, I_{CCO_BANK} should be calculated per bank as follows:

where

- I_{BANK BIAS} is the output bank bias current (fixed value).
- I_{OUT LOAD} is the DC load current per loaded output pair.
- N is the number of loaded output pairs (N = 0 to 2).

Table 6 shows the typical I_{BANK_BIAS} values and I_{OUT_LOAD} expressions for LVPECL, LVDS, and HCSL.

For LVPECL, it is possible to use a larger termination resistor (R_T) to ground instead of terminating with 50 Ω to $V_{TT} = Vcco$ - 2 V; this technique is commonly used to eliminate the extra termination voltage supply (V_{TT}) and potentially reduce device power dissipation at the expense of lower output swing. For example, when Vcco is 3.3 V, a R_T value of 160 Ω to ground will eliminate the 1.3 V termination supply without sacrificing much output swing. In this case, the typical I_{OUT_LOAD} is 25 mA, so I_{CCO_BANK} for one LVPECL bank reduces to 63 mA (vs. 67.5 mA with 50 Ω resistors to Vcco - 2 V).

Table 6. Typical Output Bank Bias and Load Currents

CURRENT PARAMETER	LVPECL	LVDS	HCSL
I _{BANK_BIAS}	13 mA	11.6 mA	2.4 mA
I _{OUT_LOAD}	$(V_{OH} - V_{TT})/R_T + (V_{OL} - V_{TT})/R_T$	0 mA (No DC load current)	V _{OH} /R _T

Once the current consumption is known for each supply, the total power dissipation (P_{TOTAL}) can be calculated:

$$P_{\text{TOTAL}} = (V_{\text{CC}}^{*}I_{\text{CC}} \text{ TOTAL}) + (V_{\text{CCOA}}^{*}I_{\text{CCO BANK}}) + (V_{\text{CCOB}}^{*}I_{\text{CCO BANK}}) + (V_{\text{CCOC}}^{*}I_{\text{CCO CMOS}})$$
(7

If the device is configured with LVPECL and/or HCSL outputs, then it is also necessary to calculate the power dissipated in any termination resistors (P_{RT_PECL} and P_{RT_HCSL}) and in any LVPECL termination voltages (P_{VTT_PECL}). The external power dissipation values can be calculated as follows:

$$P_{RT PECL} (per LVPECL pair) = (V_{OH} - V_{TT})^2 / R_T + (V_{OL} - V_{TT})^2 / R_T$$
(8)

$$P_{VTT PECL} (per LVPECL pair) = V_{TT} * [(V_{OH} - V_{TT})/R_T + (V_{OL} - V_{TT})/R_T]$$
(9)

$$P_{RT \ HCSL}$$
 (per HCSL pair) = V_{OH}^2 / R_T (10)

(6)

Finally, the IC power dissipation (P_{DEVICE}) can be computed by subtracting the external power dissipation values from P_{TOTAL} as follows:

 $P_{DEVICE} = P_{TOTAL} - N_1*(P_{RT_PECL} + P_{VTT_PECL}) - N_2*P_{RT_HCSL}$

where

- N₁ is the number of LVPECL output pairs with termination resistors to V_{TT} (usually Vcco 2 V or GND).
- N₂ is the number of HCSL output pairs with termination resistors to GND.

(11)

11.2.1 Power Dissipation Example: Worst-Case Dissipation

This example shows how to calculate IC power dissipation for a configuration to estimate **worst-case power dissipation**. In this case, the maximum supply voltage and supply current values specified in *Electrical Characteristics* are used.

- Max V_{CC} = V_{CCO} = 3.465 V. Max I_{CC} and I_{CCO} values.
- CLKin0/CLKin0* input is selected.
- Banks A and B are configured for LVPECL: all outputs terminated with 50 Ω to $V_T = Vcco 2 V$.
- REFout is enabled with 5 pF load.
- T_A = 85 °C

Using the power calculations from the previous section and maximum supply current specifications, we can compute P_{TOTAL} and P_{DEVICE} .

- From Equation 5: $I_{CC TOTAL} = 10.5 \text{ mA} + 48 \text{ mA} + 5.5 \text{ mA} = 64 \text{ mA}$
- From I_{CCO PECL} max spec: I_{CCO BANK} = 50% of I_{CCO PECL} = 81.5 mA
- From Equation 7: P_{TOTAL} = (3.465 V * 64 mA) + (3.465 V * 81.5 mA)+ (3.465 V * 81.5 mA) + (3.465 V * 10 mA) = 821 mW
- From Equation 8: $P_{RT\ PECL} = ((2.57\ V 1.47\ V)^2/50\ \Omega) + ((1.72\ V 1.47\ V)^2/50\ \Omega) = 25.5\ mW$ (per output pair)
- From Equation 9: $P_{VTT_PECL} = 1.47 \text{ V} * [((2.57 \text{ V} 1.47 \text{ V}) / 50 \Omega) + ((1.72 \text{ V} 1.47 \text{ V}) / 50 \Omega)] = 39.5 \text{ mW}$ (per output pair)
- From Equation 10: P_{RT HCSL} = 0 mW (no HCSL outputs)
- From Equation 11: P_{DEVICE} = 821 mW (4 * (25.5 mW + 39.5 mW)) 0 mW = 561 mW

In this worst-case example, the IC device will dissipate about 561 mW or 68% of the total power (821 mW), while the remaining 32% will be dissipated in the emitter resistors (102 mW for 4 pairs) and termination voltage (158 mW into Vcco - 2 V). Based on θ_{JA} of 38.1 °C/W, the estimate die junction temperature would be about 21.4 °C above ambient, or 106.4 °C when $T_A = 85$ °C.

11.3 Power Supply Bypassing

The Vcc and Vcco power supplies should have a high-frequency bypass capacitor, such as 0.1 uF or 0.01 uF, placed very close to each supply pin. 1 uF to 10 uF decoupling capacitors should also be placed nearby the device between the supply and ground planes. All bypass and decoupling capacitors should have short connections to the supply and ground plane through a short trace or via to minimize series inductance.

11.3.1 Power Supply Ripple Rejection

In practical system applications, power supply noise (ripple) can be generated from switching power supplies, digital ASICs or FPGAs, etc. While power supply bypassing will help filter out some of this noise, it is important to understand the effect of power supply ripple on the device performance. When a single-tone sinusoidal signal is applied to the power supply of a clock distribution device, such as LMK00304, it can produce narrow-band phase modulation as well as amplitude modulation on the clock output (carrier). In the single-side band phase noise spectrum, the ripple-induced phase modulation appears as a phase spur level relative to the carrier (measured in dBc).

Power Supply Bypassing (continued)

For the LMK00304, power supply ripple rejection, or PSRR, was measured as the single-sideband phase spur level (in dBc) modulated onto the clock output when a ripple signal was injected onto the Vcco supply. The PSRR test setup is shown in Figure 39.

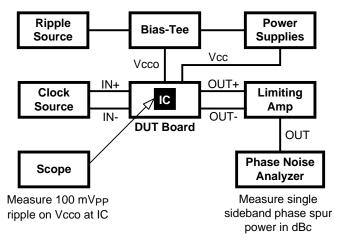


Figure 39. PSRR Test Setup

A signal generator was used to inject a sinusoidal signal onto the Vcco supply of the DUT board, and the peak-to-peak ripple amplitude was measured at the Vcco pins of the device. A limiting amplifier was used to remove amplitude modulation on the differential output clock and convert it to a single-ended signal for the phase noise analyzer. The phase spur level measurements were taken for clock frequencies of 156.25 MHz and 312.5 MHz under the following power supply ripple conditions:

- Ripple amplitude: 100 mVpp on Vcco = 2.5 V
- Ripple frequencies: 100 kHz, 1 MHz, and 10 MHz

Assuming no amplitude modulation effects and small index modulation, the peak-to-peak deterministic jitter (DJ) can be calculated using the measured single-sideband phase spur level (PSRR) as follows:

$$DJ (ps pk-pk) = [(2*10^{(PSRR/20)}) / (\pi*f_{CLK})] * 10^{12}$$
(12)

The "PSRR vs. Ripple Frequency" plots in *Typical Characteristics* show the ripple-induced phase spur levels for the differential output types at 156.25 MHz and 312.5 MHz. The LMK00304 exhibits very good and well-behaved PSRR characteristics across the ripple frequency range for all differential output types. The phase spur levels for LVPECL are below -64 dBc at 156.25 MHz and below -62 dBc at 312.5 MHz. Using Equation 12, these phase spur levels translate to Deterministic Jitter values of 2.57 ps pk-pk at 156.25 MHz and 1.62 ps pk-pk at 312.5 MHz. Testing has shown that the PSRR performance of the device improves for Vcco = 3.3 V under the same ripple amplitude and frequency conditions.

11.4 Thermal Management

Power dissipation in the LMK00304 device can be high enough to require attention to thermal management. For reliability and performance reasons the die temperature should be limited to a maximum of 125 °C. That is, as an estimate, T_A (ambient temperature) plus device power dissipation times θ_{JA} should not exceed 125 °C.

The package of the device has an exposed pad that provides the primary heat removal path as well as excellent electrical grounding to the printed circuit board. To maximize the removal of heat from the package a thermal land pattern including multiple vias to a ground plane must be incorporated on the PCB within the footprint of the package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package.

Thermal Management (continued)

A recommended land and via pattern is shown in Figure 40. More information on soldering WQFN packages can be obtained at: http://www.ti.com/packaging.

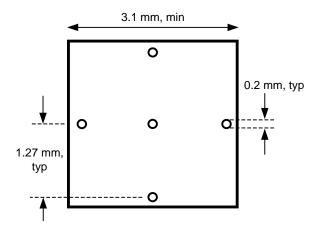


Figure 40. Recommended Land and Via Pattern

To minimize junction temperature it is recommended that a simple heat sink be built into the PCB (if the ground plane layer is not exposed). This is done by including a copper area of about 2 square inches on the opposite side of the PCB from the device. This copper area may be plated or solder coated to prevent corrosion but should not have conformal coating (if possible), which could provide thermal insulation. The vias shown in Figure 40 should connect these top and bottom copper layers and to the ground layer. These vias act as "heat pipes" to carry the thermal energy away from the device side of the board to where it can be more effectively dissipated.

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

应用手册 AN-912《通用数据传输参数及其定义》(文献编号: SNLA036)

12.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Lise

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2016, 德州仪器半导体技术(上海)有限公司

PACKAGE OPTION ADDENDUM

8-Apr-2016

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	_	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMK00304SQ/NOPB	ACTIVE	WQFN	RTV	32	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	K00304	Samples
LMK00304SQE/NOPB	ACTIVE	WQFN	RTV	32	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	K00304	Samples
LMK00304SQX/NOPB	ACTIVE	WQFN	RTV	32	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	K00304	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

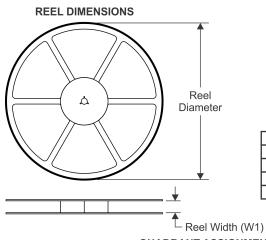
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

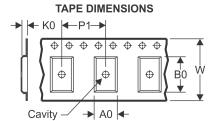
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

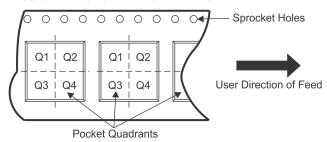
8-Apr-2016


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

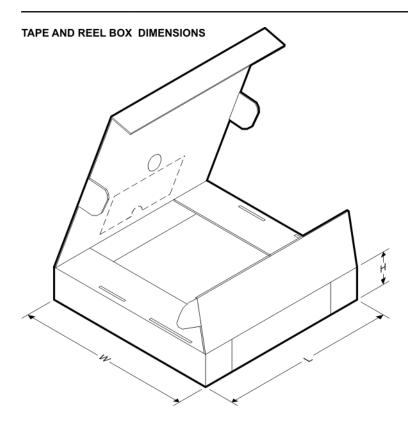

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

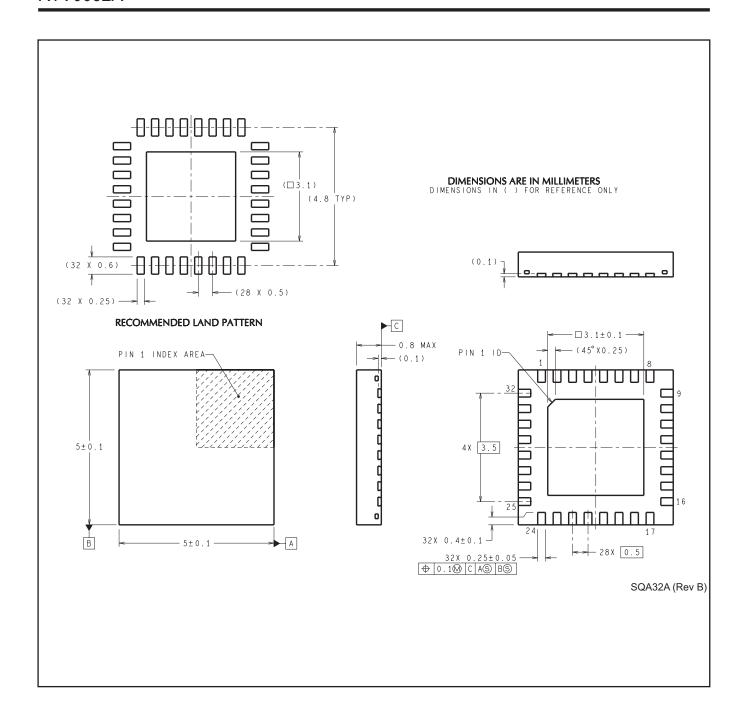
www.ti.com 20-Sep-2016


TAPE AND REEL INFORMATION

_		
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
Γ	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMK00304SQ/NOPB	WQFN	RTV	32	1000	178.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1
LMK00304SQE/NOPB	WQFN	RTV	32	250	178.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1
LMK00304SQX/NOPB	WQFN	RTV	32	2500	330.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1

www.ti.com 20-Sep-2016

*All dimensions are nominal

7 till dillitorionorio di o mominidi								
Device Package Type		Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
LMK00304SQ/NOPB	WQFN	RTV	32	1000	210.0	185.0	35.0	
LMK00304SQE/NOPB	WQFN	RTV	32	250	210.0	185.0	35.0	
LMK00304SQX/NOPB	WQFN	RTV	32	2500	367.0	367.0	35.0	

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III (或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

は田

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

立 口

	产品		巡用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated