# Low Power \& <br> High-Resolution Audio Processing System SoC for Portable Sound Solution 

## LC823455

## Description

LC823455 is an audio processing System-on-Chip (SoC) for recording and playback, with High-Resolution 32-bit \& 192 kHz audio processing capability that provides the key functions required for portable audio solutions.

It has a Dual CPU configuration and a DSP providing intensive processing capability, 4316 KB of internal SRAM that supports the implementation of large-scale programs for WLAN applications, and multiple interfaces for increased extensibility. Its features an extensive range of functions including SBC/AAC codec and Active Noise Canceller by the DSP, UART and ASRC - applicable for wearable audio applications. The highly integrated implementation of this rich set of analog functions results in a miniature footprint with ultra- low power consumption. This, along with its high performance, makes the LC823455 suitable for portable audio markets such as Wireless headsets.

This document describes features, basic functions, electrical specifications, characteristics, application diagrams and package dimension of this SoC.

## Features

- Ultra Low Power Consumption
- Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M3 Dual Core
- Proprietary 32-bit DSP Core (LPDSP32)
- Internal Large-Scale Size SRAM : 4316 KB (4 MB + 220 KB )
- High-Resolution 32-bit \& 192 kHz Audio Processing Capability
- Several DSP Codes Available for Audio Functions
- Hard-Wired Audio Functions Built-In:

MP3 decoder, MP3 encoder,
6 band Equalizer
Synchronous SRC, Asynchronous SRC, etc.

- Analog Blocks Built-in:

System PLL, Audio PLL,
16-bit DAC, Class-D amp, etc.

- USB2.0 Device with an Integrated PHY, eMMC and SD Card I/F,

Serial Flash I/F(Quad) with Cache Memory, SPI, UART, I2C, etc.

## Typical Applications

- Wearable Earbuds
- Wearable Headphone
- Wireless Speaker
- IC Recorder

ON Semiconductor ${ }^{\circledR}$


WLCSP120, 4.086x4.086x0.62 CASE 567WG


LFBGA136, 11.0x11.0 CASE 566GB

## ORDERING INFORMATION

See detailed ordering and shipping information on page 104 of this data sheet.

## arm

Table of Contents
Abstract ..... 3
Terminal Function ..... 21
Pin Assignment ..... 36
Input/Output Circuit ..... 45
Electrical Specification ..... 55
AC Characteristics ..... 69

## ABSTRACT

## Features

- Cortex-M3 Dual Core, AMBA ${ }^{\circledR}$ (AHB/APB) system
- Internal SRAM (4 M-byte)
- Internal ROM (256 k-byte). Boot code, Standard Functions
- DMA Controller (8 ch)
- Interrupt Controller (External 90 ch, Internal 83 ch)
- $\operatorname{SPI}$ (2 ch)
- Serial Flash I/F (1 ch)
- Quad SPI, cache memory (16 k-byte, 4way set associative, 128 line) function available
- UART (3ch) UART1, UART2: w/flow control (CTS, RTS) UART0: w/o flow control
- I2C (2ch) Single Master, Full/Standard
- GPIO (90 ch)
- Pin multiplex function (I2C:2 ch, SPI:2 ch, UART:3 ch, MTM:2 ch, DMIC:2 ch x 2 )
- Plain Timer w/ Watch Dog Timer (1 ch $\times 3$ )
- Multiple Timer (2 ch×4)
- 12 bit ADC ( 8 ch)
- SD Card I/F (3 ch)
eSD/eMMC, UHS-I, w/o CPRM
- SD0: eSD/eMMC boot supported (Internal ROM Boot function)
- SD1: 1.8 V/3.3 V dedicated power supply
- SD2 :
- USB2.0 Device (HS/FS) Controller, Integrated PHY.
$\mathrm{Xtal}(\mathrm{XT} 1)$ is required for USB function, 12, 19.2, 24 MHz for device w/o OTG function.
- Real Time Clock

2 modes below are available

- General RTC mode : RTC w/o key input
- KeyInt RTC mode : RTC w/ key input which enables power on function
- SWD (Serial Wire Debug) is supported as the debug interface
SWV (Serial Wire Viewer) is supported as the trace interfaceOnly one of Cortex-M3 Dual Core can be traced

Availability of features explained here depends on products.

- MP3 hard wired encoder/decoder
- MP3 MPEG1, MPEG2, MPEG2.5
- Sampling rate: $8 \mathrm{kHz}, 11.025 \mathrm{kHz}, 12 \mathrm{kHz}$, $16 \mathrm{kHz}, 22.05 \mathrm{kHz}, 24 \mathrm{kHz}, 32 \mathrm{kHz}, 44.1 \mathrm{kHz}$, 48 kHz
- Bit rate: 8 Kbps to 320 Kbps (Decoder-VBR supported)
- LPDSP32 system
- Internal SRAM (220 kbyte)
- Audio codec
- MP3
- WMA
- AAC
- SBC
- FLAC, etc.
- Audio function
- Active Noise Canceller
- 1-mic/2-mic Noise Canceller for Recorder
- 2-mic Noise Canceller for Hands Free
- Echo Canceller
- Variable Speed Control playback etc.
- JTAG ICE

1 MPEG Layer-3 audio coding technology licensed from Fraunhofer IIS and Thomson. Supply of this product does not convey license nor imply any right to distribute content created with this product in revenue-generating broadcast systems (terrestrial, satellite, cable and/or other distribution channels), streaming applications (via Internet, intranets and/or networks), other content distribution systems (pay-audio or audio-on-demand applications and the like) or on physical media (compact discs, digital versatile discs, semiconductor chips, hard drives, memory cards and the like). For details, please visit http://mp3licensing.com/
Supply of this product does not convey license under the relevant intellectual property of Thomson and/or Fraunhofer Gesellschaft nor imply any right to use this product in any finished end user or ready-to-use final product. An independent license for such use is required. For details, please visit http://mp3licensing.com/
2 This product contain technology of Microsoft company ownership, and you cannot distribute or use without getting license from Microsoft Licensing Company.

- Bluetooth Protocol Stack available
- Audio
- MP3 hard wired encoder/decoder, MP3 MPEG1, MPEG2, MPEG2.5
- Sampling rate: $8 \mathrm{kHz}, 11.025 \mathrm{kHz}, 12 \mathrm{kHz}, 16 \mathrm{kHz}$, $22.05 \mathrm{kHz}, 24 \mathrm{kHz}, 32 \mathrm{kHz}, 44.1 \mathrm{kHz}, 48 \mathrm{kHz}$
- Bit rate :8 Kbps to 320 Kbps
(Decoder-VBR supported)
- Other audio functions available
- 6 band Equalizer (EQ3)
- Hardware Mixer
- Volume, Mute
- Level Meter
- Audio Timer w/ interrupt generation
- 16/24/32 bit 192 kHz PCM I/F ( $2 \mathrm{ch} \times 2$ ). Master/slave, I2S
- SSRC (Synchronous Sampling Rate Converter) 0.25 to 64 conversion capable
- ASRC (Asynchronous Sampling Rate Converter) Jitter reducing function supporting USB audio class and Bluetooth streaming
- Beep generator
- Digital Microphone I/F (2ch x2), Sampling rate : up to 48 kHz , Support up to 4 PDM Digital Microphones
- 16 bit Audio DAC (2 ch) w/ Class-D Amplifier for Head Phone (2 ch). Requires external LC LPF
- Audio clock generation
- Dedicated PLL for audio
- Selectable PLL reference clock

XT1 (12, 19.2, 24 MHz Main xtal)
XTRTC ( 32.768 kHz RTC xtal)
PCM I/F MCLK0 (/MCLK1), BCK0, BCK1

- Power supply
- Typical voltage
- LOGIC(Vdd1),XT1(VddXT1), PLL1 $(A V d d P L L 1), ~ P L L 2(A V d d P L L 2)=1.0 \mathrm{~V}$
$-\operatorname{RTC}(\mathrm{VddRTC})=1.0 \mathrm{~V}$
$-\mathrm{I} / \mathrm{O}(\mathrm{Vdd} 2)=1.8 \mathrm{~V}$ or 3.3 V
$-\mathrm{SD} 1(\mathrm{VddSD} 1)=1.8 \mathrm{~V}$ or 3.3 V
$-\mathrm{ADC}(\mathrm{AVddADC})=1.8 \mathrm{~V}$
- USB PHY(DVddUSBPHY1) $=1.0 \mathrm{~V}$, $($ AVddUSBPHY2 $)=3.3 \mathrm{~V}$, $($ AVddUSBPHY18 $)=1.8 \mathrm{~V}$
- Class-D Amplifier $($ AVddDAMPL,AVddDAMPR $)=1.5 \mathrm{~V}$

[^0]
## LC823455

## Package Codes and Functional Differences

The product with Package Code $=$ " RB " is under planning.

Table 1. FUNCTIONAL DIFFERENCES

| Function | Package Code |  |
| :---: | :---: | :---: |
|  | XA | RB |
| Package | WLP120 | BGA136 |
| SDRAM Controller | - | - |
| External Memory Controller | - | - |
| SD0 | Shared pins with S-Flash function | Dedicated |
| P-SRAM | - | - |
| USB2.0 | HS/FS Device | HS/FS Device |
| 12 bit ADC | 3ch | 8ch |
| $\begin{aligned} & \hline \text { PLL1 } \\ & \text { PLL2 } \end{aligned}$ | Only Internal Loop Filter | Only Internal Loop Filter |
| XTALINFO[1:0] input | $\begin{gathered} " 00 " \\ (24 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} " 00 " \\ (24 \mathrm{MHz}) \end{gathered}$ |
| RTCMODE input | (KEYINT RTC mode) | Available |
| BACKUPB input | Connected with VDET internally | Available |
| KEYINT input | 2ch | 2 ch |
| External Interrupt | 52 ch | 53 ch |
| GPIO | 52 ch | 53 ch |



Figure 1. Top-Level Block Diagram


Figure 2. Bus Matrix

Audio


Figure 3. Audio

## Clock Hierarchy



## Memory Map

All Areas (Cortex-M3)


Figure 5. All Areas (Cortex-M3)

## Code Area (Cortex-M3)

Table 2. CODE AREA (CORTEX-M3) - UNREMAPPED (AFTER RESET)

| Address | Master / Slave |  | Cortex-M3-0 |  |  | Cortex-M3-1 |  |  | DMAC | USB20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | SystemBus | I-Bus | D-Bus | SystemBus | I-Bus | D-Bus |  |  |
| $\begin{gathered} 0 \times 1 \mathrm{C} 00 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 1 \mathrm{~A} 00 \\ 0000 \end{gathered}$ | External memory 1 |  |  |  |  |  |  | $\bigcirc$ |  |  |
| $\begin{gathered} 0 \times 1800 \\ 0000 \end{gathered}$ | External memory 0 |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0600 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0500 \\ 0000 \end{gathered}$ | S-Flash I/F (Memory, Cache) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0254 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0250 \\ 0000 \end{gathered}$ | 256 KB Internal ROM |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0243 \\ 7000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0240 \\ 0000 \end{gathered}$ | 220 KB Internal SRAM (seg 9) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 023 F \\ 8000 \end{gathered}$ | 32 KB Internal SRAM (seg 8) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} \hline 0 \times 023 \mathrm{C} \\ 0000 \end{gathered}$ | 480 KB <br> Internal <br> SRAM <br> (seg 7) | $\begin{gathered} 224 \mathrm{~KB} \\ (\operatorname{seg} 7-B) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0238 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 256 \mathrm{~KB} \\ (\operatorname{seg} 7-\mathrm{A}) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0220 \\ 0000 \end{gathered}$ | 1536 KB Internal SRAM (seg 6) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 021 \mathrm{~A} \\ 0000 \end{gathered}$ | 768 KB <br> Internal <br> SRAM <br> (seg 5) | $\begin{gathered} 384 \mathrm{~KB} \\ (\operatorname{seg} 5-B) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0214 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 384 \mathrm{~KB} \\ (\operatorname{seg} 5-\mathrm{A}) \\ \hline \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0210 \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 4) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} \hline 0 \times 020 \mathrm{C} \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 3) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0208 \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 2) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} \hline 0 \times 0204 \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 1) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0202 \\ 0000 \end{gathered}$ | 256 KB <br> Internal <br> SRAM <br> (seg 0) | $\begin{gathered} 128 \mathrm{~KB} \\ (\operatorname{seg} 0-\mathrm{B}) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0200 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 128 \mathrm{~KB} \\ (\operatorname{seg} 0-\mathrm{A}) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} \hline 0 \times 0004 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0000 \\ 0000 \end{gathered}$ | 256 KB Internal ROM Shadow Area |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |

Table 3. CODE AREA (CORTEX-M3) - REMAPPED (REMAP[1:0]=2'B01)

| Address | Master / Slave |  | Cortex-M3-0 |  |  | Cortex-M3-1 |  |  | DMAC | USB20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | SystemBus | I-Bus | D-Bus | SystemBus | I-Bus | D-Bus |  |  |
| $\begin{gathered} 0 \times 1 \mathrm{C00} \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 1 \mathrm{~A} 00 \\ 0000 \end{gathered}$ | External memory 1 |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 1800 \\ 0000 \end{gathered}$ | External memory 0 |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0600 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0500 \\ 0000 \end{gathered}$ | S (Mem | $I / F$ <br> Cache) |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0254 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0250 \\ 0000 \end{gathered}$ | 256 KB Internal ROM |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0243 \\ 7000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0240 \\ 0000 \end{gathered}$ | 220 KB Internal SRAM (seg 9) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 023 F \\ 8000 \end{gathered}$ | 32 KB Internal SRAM (seg 8) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 023 C \\ 0000 \end{gathered}$ | 480 KB <br> Internal <br> SRAM <br> (seg 7) | $\begin{gathered} 224 \mathrm{~KB} \\ (\operatorname{seg} 7-B) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0238 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 256 \mathrm{~KB} \\ (\operatorname{seg} 7-A) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0220 \\ 0000 \end{gathered}$ | 1536 KB Internal SRAM (seg 6) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 021 \mathrm{~A} \\ 0000 \end{gathered}$ | 768 KB <br> Internal <br> SRAM <br> (seg 5) | $\begin{gathered} 384 \mathrm{~KB} \\ (\operatorname{seg} 5-B) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0214 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 384 \mathrm{~KB} \\ (\operatorname{seg} 5-A) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0210 \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 4) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} \hline 0 \times 020 \mathrm{C} \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 3) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0208 \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 2) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0204 \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 1) |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0202 \\ 0000 \end{gathered}$ | 256 KB <br> Internal <br> SRAM <br> (seg 0) | $\begin{gathered} 128 \mathrm{~KB} \\ (\operatorname{seg} 0-\mathrm{B}) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0200 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 128 \mathrm{~KB} \\ (\operatorname{seg} 0-A) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0004 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0002 \\ 0000 \end{gathered}$ | 256 KB <br> Internal <br> SRAM <br> (seg 0) <br> Shadow <br> Area | $\begin{gathered} 128 \mathrm{~KB} \\ (\operatorname{seg} 0-B) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0000 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 128 \mathrm{~KB} \\ (\operatorname{seg} 0-A) \end{gathered}$ |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |

Table 4. CODE AREA (CORTEX-M3) - REMAPPED (REMAP[1:0]=2'B11)

| Address | Master / Slave |  | Cortex-M3-0 |  |  | Cortex-M3-1 |  |  | DMAC | USB20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { System- } \\ \text { Bus } \end{gathered}$ | I-Bus | D-Bus | $\begin{gathered} \text { System- } \\ \text { Bus } \end{gathered}$ | I-Bus | D-Bus |  |  |
| $\begin{gathered} \hline 0 \times 1 \mathrm{C00} \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} \hline 0 \times 1 \mathrm{~A} 00 \\ 0000 \end{gathered}$ | External memory 1 |  |  |  |  |  |  | $\bigcirc$ |  |  |
| $\begin{gathered} \hline 0 \times 1800 \\ 0000 \end{gathered}$ | External memory 0 |  |  |  |  |  |  | $\bigcirc$ |  |  |
| $\begin{gathered} \hline 0 \times 0600 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0500 \\ 0000 \end{gathered}$ | S-Flash I/F(Memory, Cache) |  |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0254 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} \hline 0 \times 0250 \\ 0000 \end{gathered}$ | 256 KB Internal ROM |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} \hline 0 \times 0243 \\ 7000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0240 \\ 0000 \end{gathered}$ | 220 KB Internal SRAM (seg 9) |  |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 023 F \\ 8000 \end{gathered}$ | 32 KB Internal SRAM (seg 8) |  |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 023 \mathrm{C} \\ 0000 \end{gathered}$ | 480 KB Internal SRAM (seg 7) | $\begin{gathered} 224 \mathrm{~KB} \\ (\operatorname{seg} 7-B) \end{gathered}$ |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0238 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 256 \mathrm{~KB} \\ (\operatorname{seg} 7-\mathrm{A}) \end{gathered}$ |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0220 \\ 0000 \end{gathered}$ | 1536KB Internal SRAM (seg 6) |  |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 021 \mathrm{~A} \\ 0000 \end{gathered}$ | 768 KB <br> Internal <br> SRAM <br> (seg 5) | $\begin{gathered} 384 \mathrm{~KB} \\ (\operatorname{seg} 5-\mathrm{B}) \end{gathered}$ |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0214 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 384 \mathrm{~KB} \\ (\operatorname{seg} 5-\mathrm{A}) \end{gathered}$ |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 0210 \\ 0000 \end{gathered}$ | $\begin{aligned} & \text { 256KB Internal SRAM } \\ & (\text { seg 4) } \\ & \hline \end{aligned}$ |  |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 020 \mathrm{C} \\ 0000 \end{gathered}$ | 256KB Internal SRAM (seg 3) |  |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0208 \\ 0000 \end{gathered}$ | 256KB Internal SRAM (seg 2) |  |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} \hline 0 \times 0204 \\ 0000 \end{gathered}$ | 256KB Internal SRAM (seg 1) |  |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0202 \\ 0000 \end{gathered}$ | 256 KB <br> Internal <br> SRAM <br> (seg 0) | $\begin{gathered} 128 \mathrm{~KB} \\ (\operatorname{seg} 0-B) \\ \hline \end{gathered}$ |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0200 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 128 \mathrm{~KB} \\ (\operatorname{seg} 0-\mathrm{A}) \end{gathered}$ |  |  |  |  | $\bigcirc$ |  |  |  |
| $\begin{gathered} 0 \times 0000 \\ 0000 \end{gathered}$ | External memory 0 Shadow Area |  |  |  |  |  |  | $\bigcirc$ |  |  |

SRAM Area (Cortex-M3)
Table 5. SRAM AREA (CORTEX-M3)

| Address | Master / Slave |  | Cortex-M3-0 |  |  | Cortex-M3-1 |  |  | DMAC | USB20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | SystemBus | I-Bus | D-Bus | SystemBus | I-Bus | D-Bus |  |  |
| $\begin{gathered} 0 \times 2600 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 2500 \\ 0000 \end{gathered}$ | S-Flash I/F (Memory, Cache) |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |
| $\begin{gathered} 0 \times 2400 \\ 0000 \end{gathered}$ | (Memory | I/F <br> Cache) | $\bigcirc$ |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |
| $\begin{gathered} 0 \times 2043 \\ 7000 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 2040 \\ 0000 \end{gathered}$ | 220 KB Internal SRAM (seg 9) Shadow area |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |
| $\begin{gathered} 0 \times 203 F \\ 8000 \end{gathered}$ | 32 KB Internal SRAM (seg 8) Shadow area |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |
| $\begin{gathered} 0 \times 203 C \\ 0000 \end{gathered}$ | 480 KB <br> Internal SRAM (seg 7) Shadow area | $\begin{gathered} 224 \text { KB } \\ (\text { seg 7-B) } \end{gathered}$ | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 2038 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 256 \mathrm{~KB} \\ (\operatorname{seg} 7-A) \end{gathered}$ | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 2020 \\ 0000 \end{gathered}$ | 1536 KB Internal SRAM (seg 6) Shadow area |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 201 \mathrm{~A} \\ 0000 \end{gathered}$ | 768 KB <br> Internal SRAM <br> (seg 5) <br> Shadow area | $\begin{gathered} 384 \mathrm{~KB} \\ (\operatorname{seg} 5-B) \end{gathered}$ | - |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 2014 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 384 \mathrm{~KB} \\ (\operatorname{seg} 5-A) \end{gathered}$ | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 2010 \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 4) Shadow area |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 200 \mathrm{C} \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 3) Shadow area |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 2008 \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 2) Shadow area |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 2004 \\ 0000 \end{gathered}$ | 256 KB Internal SRAM (seg 1) Shadow area |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 2002 \\ 0000 \end{gathered}$ | 256 KB <br> Internal SRAM <br> (seg 0) <br> Shadow area | $\begin{gathered} 128 \mathrm{~KB} \\ (\operatorname{seg} 0-B) \end{gathered}$ | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 2000 \\ 0000 \end{gathered}$ |  | $\begin{gathered} 128 \mathrm{~KB} \\ (\operatorname{seg} 0-A) \end{gathered}$ | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |

Other Areas (Cortex-M3)
Table 6. OTHER AREAs (CORTEX-M3)


LC823455

Table 6. OTHER AREAs (CORTEX-M3) (continued)

| Address | Master / Slave | Cortex-M3-0 |  |  | Cortex-M3-1 |  |  | DMAC | USB20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { System- } \\ \text { Bus } \end{gathered}$ | I-Bus | D-Bus | $\begin{gathered} \text { System- } \\ \text { Bus } \end{gathered}$ | I-Bus | D-Bus |  |  |
| $\begin{gathered} \hline 0 \times 4008 \\ 6000 \end{gathered}$ | PORT5 | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4008 \\ 5000 \end{gathered}$ | PORT4 | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4008 \\ 4000 \end{gathered}$ | PORT3 | $\bigcirc$ |  |  | - |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4008 \\ 3000 \end{gathered}$ | PORT2 | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4008 \\ 2000 \end{gathered}$ | PORT1 | ○ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 4008 \\ 1000 \end{gathered}$ | PORT0 | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4008 \\ 0000 \end{gathered}$ | System Controller | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4006 \\ 5000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4006 \\ 4000 \end{gathered}$ | Audio Controls | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 4006 \\ 3000 \end{gathered}$ | MP3 Encoder | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4006 \\ 2000 \end{gathered}$ | MP3 Decoder | $\bigcirc$ |  |  | - |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4006 \\ 1000 \end{gathered}$ | Audio Functions | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 4006 \\ 0000 \end{gathered}$ | Audio Buffer | $\bigcirc$ |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |
| $\begin{gathered} \hline 0 \times 4004 \\ \text { D000 } \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |
| $\begin{gathered} 0 \times 4004 \\ \mathrm{C} 000 \end{gathered}$ | SD2 | $\bigcirc$ |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |
| $\begin{gathered} \hline 0 \times 4004 \\ B 000 \end{gathered}$ | SD1 | $\bigcirc$ |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |
| $\begin{gathered} \hline 0 \times 4004 \\ \text { A000 } \end{gathered}$ | SD0 | $\bigcirc$ |  |  | - |  |  | $\bigcirc$ |  |
| $\begin{gathered} 0 \times 4004 \\ 9000 \end{gathered}$ | Plain Timer2 | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 4004 \\ 8000 \end{gathered}$ | Plain Timer1 | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4004 \\ 7000 \end{gathered}$ | Plain Timer0 | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4004 \\ 6000 \end{gathered}$ | Multiple Timer3 | $\bigcirc$ |  |  | - |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4004 \\ 5000 \end{gathered}$ | Multiple Timer2 | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 4004 \\ 4000 \end{gathered}$ | Multiple Timer1 | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4004 \\ 3000 \end{gathered}$ | Multiple Timer0 | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 4004 \\ 2000 \end{gathered}$ | Audio PLL | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4004 \\ 1000 \\ \hline \end{gathered}$ | System PLL | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4004 \\ 0000 \end{gathered}$ | OSC System | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |

Table 6. OTHER AREAs (CORTEX-M3) (continued)

| Address | Master / Slave | Cortex-M3-0 |  |  | Cortex-M3-1 |  |  | DMAC | USB20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { System- } \\ \text { Bus } \end{gathered}$ | I-Bus | D-Bus | $\begin{gathered} \text { System- } \\ \text { Bus } \end{gathered}$ | I-Bus | D-Bus |  |  |
| $\begin{gathered} \hline 0 \times 4002 \\ 0000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4001 \\ 0000 \end{gathered}$ | USB2.0 FIFO | - |  |  | - |  |  |  |  |
| $\begin{gathered} 0 \times 4000 \\ 7000 \end{gathered}$ | Reserved |  |  |  |  |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4000 \\ 6000 \end{gathered}$ | DSP CMDIF | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4000 \\ 5000 \end{gathered}$ | MUTEX REG | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 4000 \\ 4000 \end{gathered}$ | DMAC | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 4000 \\ 3000 \end{gathered}$ | INTC | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4000 \\ 2000 \end{gathered}$ | USB2.0 CTL | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} 0 \times 4000 \\ 1000 \end{gathered}$ | S-Flash I/F | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |
| $\begin{gathered} \hline 0 \times 4000 \\ 0000 \end{gathered}$ | External MEM CTL | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |

1. Access from internal peripheral bus(AHB/APB)

## LPDSP32

Table 7. LPDSP32 - DMA

| Address | Master / Slave |  | LPDSP32 |
| :---: | :---: | :---: | :---: |
|  |  |  | DMA |
| 0x40 0000 | Reserved |  |  |
| 0x3F 8000 | 32 KB Internal SRAM (seg 8) |  | $\bigcirc$ |
| 0x3C 0000 | 480 KB Internal SRAM (seg 7) | 224 KB (seg 7-B) | $\bigcirc$ |
| 0x38 0000 |  | 256 KB (seg 7-A) | $\bigcirc$ |
| 0x20 0000 | 1536 KB Internal SRAM (seg 6) |  | $\bigcirc$ |
| 0x1A 0000 | 768 KB Internal SRAM (seg 5) | $384 \mathrm{~KB}(\operatorname{seg} 5-B)$ | $\bigcirc$ |
| 0x140000 |  | $384 \mathrm{~KB}(\operatorname{seg} 5-\mathrm{A})$ | $\bigcirc$ |
| 0x10 0000 | 256 KB Internal SRAM (seg 4) |  | $\bigcirc$ |
| 0x0C 0000 | 256 KB Internal SRAM (seg 3) |  | $\bigcirc$ |
| 0x08 0000 | 256 KB Internal SRAM (seg 2) |  | $\bigcirc$ |
| 0x04 0000 | 256 KB Internal SRAM (seg 1) |  | $\bigcirc$ |
| 0x02 0000 | 256 KB Internal SRAM (seg 0) | 128 KB (seg 0-B) | $\bigcirc$ |
| 0x00 0000 |  | 128 KB (seg 0-A) | $\bigcirc$ |

Table 8. LPDSP32 - DMB

| Address | Master / Slave |  | LPDSP32 |
| :---: | :---: | :---: | :---: |
|  |  |  | DMB |
| 0xC0 0000 | Reserved |  |  |
| 0xBF 8000 | 32 KB Internal SRAM (seg 8) |  | $\bigcirc$ |
| 0xBC 0000 | 480 KB Internal SRAM (seg 7) | 224 KB (seg 7-B) | $\bigcirc$ |
| 0xB8 0000 |  | 256 KB (seg 7-A) | $\bigcirc$ |
| 0xA0 0000 | 1536 KB Internal SRAM (seg 6) |  | $\bigcirc$ |
| 0x9A 0000 | 768 KB Internal SRAM (seg 5) | $384 \mathrm{~KB}(\operatorname{seg} 5-B)$ | $\bigcirc$ |
| 0x940000 |  | 384 KB (seg 5-A) | $\bigcirc$ |
| 0x90 0000 | 256 KB Internal SRAM (seg 4) |  | $\bigcirc$ |
| 0x8C 0000 | 256 KB Internal SRAM (seg 3) |  | $\bigcirc$ |
| 0x88 0000 | 256 KB Internal SRAM (seg 2) |  | $\bigcirc$ |
| 0x84 0000 | 256 KB Internal SRAM (seg 1) |  | $\bigcirc$ |
| 0x82 0000 | 256 KB Internal SRAM (seg 0) | 128 KB (seg 0-B) | $\bigcirc$ |
| 0x80 0000 |  | 128 KB (seg 0-A) | $\bigcirc$ |

Table 9. LPDSP32 - DMIO

| Address | Master / Slave | LPDSP32 |
| :---: | :---: | :---: |
|  |  | DMIO |
| 0xFO 2000 | Reserved |  |
| 0xFO 1000 | PSRAM I/F | $\bigcirc$ |
| 0xF0 0000 | SDRAM CTRL | $\bigcirc$ |
| 0xD0 0000 | SDRAM Memory Area | $\bigcirc$ |
| 0xC6 5000 | Reserved |  |
| 0xC6 4000 | Audio Controls | $\bigcirc$ |
| 0xC6 3000 | MP3 Encoder | $\bigcirc$ |
| 0xC6 2000 | MP3 Decoder | $\bigcirc$ |
| 0xC6 1000 | Audio Functions | $\bigcirc$ |
| 0xC6 0000 | Audio Buffer | $\bigcirc$ |
| 0xC4 A000 | Reserved |  |
| 0xC4 9000 | Plain Timer2 | $\bigcirc$ |
| 0xC4 8000 | Plain Timer1 | $\bigcirc$ |
| 0xC4 7000 | Plain Timer0 | $\bigcirc$ |
| 0xC4 6000 | Multiple Timer3 | $\bigcirc$ |
| 0xC4 5000 | Multiple Timer2 | ○ |
| 0xC4 4000 | Multiple Timer1 | $\bigcirc$ |
| 0xC4 3000 | Multiple Timer0 | $\bigcirc$ |
| 0xC4 2000 | Audio PLL | $\bigcirc$ |
| 0xC4 1000 | System PLL | $\bigcirc$ |
| 0xC4 0000 | OSC System | $\bigcirc$ |
| 0xC0 7000 | Reserved |  |
| 0xC0 6000 | DSP CMDIF | $\bigcirc$ |
| 0xC0 5000 | MUTEX REG | $\bigcirc$ |
| 0xC0 4000 | DMAC | $\bigcirc$ |
| 0xC0 3000 | INTC | $\bigcirc$ |
| 0xC0 0000 | Reserved |  |

LC823455

Table 10. LPDSP32 - PM

| Address | Master / Slave |  | LPDSP32 |
| :---: | :---: | :---: | :---: |
|  |  |  | PM |
| 0x50 3332 | Reserved |  |  |
| 0x50 0000 | 32 KB Internal SRAM (seg 8) |  | - |
| 0x4B 0000 | Reserved |  |  |
| 0x480000 | 480 KB Internal SRAM (seg 7) | 224 KB (seg 7-B) |  |
|  |  | 256 KB (seg 7-A) |  |
| 0x419998 | Reserved |  |  |
| 0x38 0000 | 1536 KB Internal SRAM (seg 6) |  |  |
| $0 \times 34$ CCCC | Reserved |  |  |
| 0x30 0000 | 768 KB Internal SRAM (seg 5) | 384 KB (seg 5-B) |  |
|  |  | 384 KB (seg 5-A) |  |
| 0x29 9998 | Reserved |  |  |
| 0x28 0000 | 256 KB Internal SRAM (seg 4) |  | $\bigcirc$ |
| 0x21 9998 | Reserved |  |  |
| 0x20 0000 | 256 KB Internal SRAM (seg 3) |  | $\bigcirc$ |
| 0x19 9998 | Reserved |  |  |
| 0x18 0000 | 256 KB Internal SRAM (seg 2) |  | ○ |
| 0x11 9998 | Reserved |  |  |
| 0x10 0000 | 256 KB Internal SRAM (seg 1) |  | $\bigcirc$ |
| 0x09 9998 | Reserved |  |  |
| 0x08 0000 | 256 KB Internal SRAM (seg 0) | 128 KB (seg 0-B) | $\bigcirc$ |
|  |  | 128 KB (seg 0-A) | - |
| 0x01 6000 | Reserved |  |  |
| 0x00 0000 | 220 KB Internal SRAM (seg 9) |  | $\bigcirc$ |

2. PM of LPDSP32 cannot access internal SRAM seg5, 6, and 7 .

LC823455

## TERMINAL FUNCTIONS

## XA: Package Code = "XA", RB: Package Code = "RB", (RB is under planning).

Table 11. TERMINAL FUNCTIONS

| Terminal Name | Polarity | Direction | Function |  | Available( $\circ$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplexed <br> Function |  |  |  | 10 POWER | XA | RB |

JTAG/SWD

| TDO | - | 0 | JTAG test data output | VddSD1 | $\bigcirc$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SDWP1 | Pos | 1 | SD I/F Ch1 write protect |  | $\bigcirc$ | $\bigcirc$ |
| GPIO21 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT21 | - | 1 | External Interrupt 2-bit1 |  | $\bigcirc$ | $\bigcirc$ |
| TDI | - | 1 | JTAG test data input | VddSD1 | $\bigcirc$ | $\bigcirc$ |
| SDCD1 | Neg | 1 | SD I/F Ch1 detect |  | $\bigcirc$ | $\bigcirc$ |
| SWO | - | 0 | serial wire view data |  | $\bigcirc$ | $\bigcirc$ |
| GPIO20 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT20 | - | 1 | External Interrupt 2-bit0 |  | $\bigcirc$ | $\bigcirc$ |
| TMS | - | 1 | JTAG test data select | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| SDWP2 | Pos | 1 | SD I/F Ch2 write protect |  | $\bigcirc$ | $\bigcirc$ |
| GPIO28 | - | B | GPIO |  | $\bigcirc$ | - |
| EXTINT28 | - | 1 | External Interrupt 2-bit8 |  | $\bigcirc$ | $\bigcirc$ |
| TCK | Pos | I | JTAG test clock | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| SDCD2 | Neg | 1 | SD I/F Ch2 detect |  | $\bigcirc$ | $\bigcirc$ |
| GPIO29 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT29 | - | 1 | External Interrupt 2-bit9 |  | $\bigcirc$ | $\bigcirc$ |
| SWDCLK | Pos | 1 | Serial wire clock | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| DMCKO0B | - | 0 | Digital Mic Ch0 Clock B Output |  | $\bigcirc$ | $\bigcirc$ |
| GPIO58 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT58 | - | 1 | External Interrupt 5-bit8 |  | $\bigcirc$ | $\bigcirc$ |
| SWDIO | - | B | Serial wire Data | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| DMDINOB | - | 1 | Digital Mic Ch0 Data B Input |  | $\bigcirc$ | $\bigcirc$ |
| GPIO59 | - | B | GPIO |  | $\bigcirc$ | - |
| EXTINT59 | - | 1 | External Interrupt 5-bit9 |  | $\bigcirc$ | $\bigcirc$ |
| Sum |  |  |  |  | 6 | 6 |

RTC

| XIN32K | Pos | I | 32.768 KHz XTAL Input (XTRTC) | VddRTC | $\circ$ | $\circ$ |
| :---: | :---: | :---: | :--- | :--- | :---: | :---: |
| XOUT32K | - | O | $32.768 \mathrm{KHzXTAL} \mathrm{Output} \mathrm{(XTRTC)}$ | VddRTC | $\circ$ | $\circ$ |
| VDET | Neg | I | RTC power detect Input | VddRTC | $\circ$ | $\circ$ |
| RTCINT | Neg | O | RTC Interrupt Output (Normal: Hiz, Inter- <br> rupt enabled:Low Output) | VddRTC | $\circ$ | $\circ$ |
| BACKUPB | Neg | I | RTC backup mode input <br> Bonded with VDET internally for "XA" | VddRTC |  | $\circ$ |
| KEYINT[2] | - | I | RTC KEY input can be used when Keylnt <br> RTC mode | VddRTC |  |  |
| KEYINT[1:0] | - | I | RTC KEY input can be used when KeyInt <br> RTC mode | VddRTC | $\circ$ | $\circ$ |

Table 11. TERMINAL FUNCTIONS (continued)

| Terminal Name | Polarity | Direction | Function |  | Available() |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplexed Function |  |  |  | 10 POWER | XA | RB |

RTC

| RTCMODE | - | I | RTC mode input (Note 3) <br> Set General or KeyInt RTC mode <br> RTCMODE = <br> "0" : KeyInt RTC mode <br> "1": General RTC mode <br> Bonded to "0" internally for "XA" | VddRTC |  |  |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| VddRTC | - | P | RTC power supply |  |  |  |
| VssRTC | - | P | RTC ground | $\circ$ | $\circ$ | $\circ$ |

EXTERNAL INTERRUPT/GPIO

| SDRADDR12 | - | 0 | SDRAM address | Vdd2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GPIO2A | - | B | GPIO |  |  |  |
| EXTINT2A | - | 1 | External Interrupt 2-bit10 |  |  |  |
| SCL1 | - | 0 | I2C ch1 Clock (open drain output ) | Vdd2 | $\bigcirc$ | - |
| GPIO2B | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT2B | - | 1 | External Interrupt 2-bit11 |  | $\bigcirc$ | $\bigcirc$ |
| SDA1 | - | B | I2C ch1 Data (open drain output) | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIO2C | - | B | GPIO |  | $\bigcirc$ | - |
| EXTINT2C | - | 1 | External Interrupt 2-bit12 |  | $\bigcirc$ | - |
| SDRADDR11 | - | 0 | SDRAM address | Vdd2 | $\bigcirc$ | ○ |
| DMCKO0A | - | 0 | Digital Mic ChO Clock A Output |  | $\bigcirc$ | - |
| GPIO2D | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT2D | - | 1 | External Interrupt 2-bit13 |  | $\bigcirc$ | ○ |
| EXTINT2E | - | 1 | External Interrupt 2-bit14 | Vdd2 | $\bigcirc$ | - |
| GPIO2E | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT2F | - | I | External Interrupt 2-bit15 | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIO2F | - | B | GPIO <br> * During Internal ROM boot, this terminal is used as the boot monitor signal. |  | $\bigcirc$ | - |
| Sum |  |  |  |  | 5 | 5 |

SPI (SERIAL I/F CHO)

| SCK0 | Neg | B | Serial I/F Ch0 Clock | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GPIO1D | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT1D | - | I | External Interrupt 1-bit13 |  | $\bigcirc$ | - |
| SDIO | - | 1 | Serial I/F Ch0 Data Input | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIO1E | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT1E | - | 1 | External Interrupt 1-bit14 |  | $\bigcirc$ | $\bigcirc$ |
| SDO0 | - | 0 | Serial I/F Ch0 Data Output | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIO1F | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT1F | - | I | External Interrupt 1-bit15 |  | $\bigcirc$ | $\bigcirc$ |
| Sum |  |  |  |  | 3 | 3 |

## S-FLASH I/F / SD I/F CHO (Note 4)

| SFCK | Neg | O | Serial Flash I/F Clock <br> (QSPI Clock) | Vdd2 | $\circ$ | $\circ$ |
| :---: | :---: | :---: | :--- | :--- | :--- | :---: |

Table 11. TERMINAL FUNCTIONS (continued)

| Terminal Name | Polarity | Direction | Function |  | Available( $\circ$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplexed <br> Function |  |  |  | 10 POWER | XA | RB |

S-FLASH I/F / SD I/F CHO (Note 4)

| GPIOOD | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EXTINTOD | - | 1 | External Interrupt 0-bit13 |  | $\bigcirc$ | $\bigcirc$ |
| SDCLK0 | - | 0 | SD I/F Ch0 Clock Output |  | $\bigcirc$ | $\bigcirc$ |
| SFDI(QIO0) | - | I(B) | Serial Flash I/F Data input (QSPI Data 0) | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIOOE | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINTOE | - | I | External Interrupt 0-bit14 |  | $\bigcirc$ | $\bigcirc$ |
| SDAT00 | - | B | SD I/F Ch0 Data0 |  | $\bigcirc$ | $\bigcirc$ |
| SFDO(QIO1) | - | O(B) | Serial Flash I/F Data output (QSPI Data 1) | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIOOF | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINTOF | - | I | External Interrupt 0-bit15 |  | $\bigcirc$ | $\bigcirc$ |
| SDAT01 | - | B | SD I/F Ch0 Data1 |  | $\bigcirc$ | $\bigcirc$ |
| SFWP(QIO2) | Neg | O(B) | Serial Flash I/F write protect (QSPI Data 2) | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIO11 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT11 | - | I | External Interrupt 1-bit1 |  | $\bigcirc$ | $\bigcirc$ |
| SDAT02 | - | B | SD I/F Ch0 Data2 |  | $\bigcirc$ | $\bigcirc$ |
| SFHOLD(QIO3) | Neg | O(B) | Serial Flash I/F hold (QSPI Data 3) | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIO12 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT12 | - | 1 | External Interrupt 1-bit2 |  | $\bigcirc$ | $\bigcirc$ |
| SDAT03 | - | B | SD I/F Ch0 Data3 |  | $\bigcirc$ | $\bigcirc$ |
| Sum |  |  |  |  | 5 | 5 |

I2C

| SCLO | - | 0 | I2C ch0 Clock (open drain output) | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GPIO07 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT07 | - | I | External Interrupt 0-bit7 |  | $\bigcirc$ | $\bigcirc$ |
| SDA0 | - | B | I2C ch0 Data (open drain output) | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIO08 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT08 | - | 1 | External Interrupt 0-bit8 |  | $\bigcirc$ | $\bigcirc$ |
| Sum |  |  |  |  | 2 | 2 |

Table 11. TERMINAL FUNCTIONS (continued)

| Terminal Name | Polarity | Direction | Function |  | Available( $)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplexed <br> Function |  |  |  | 10 POWER | XA | RB |

UART

| TXD1 | - | 0 | UART Ch1 transmit Data | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SDAT20 | - | B | SD I/F Ch2 Data 0 |  | $\bigcirc$ | $\bigcirc$ |
| GPIO04 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT04 | - | I | External Interrupt 0-bit4 |  | $\bigcirc$ | $\bigcirc$ |
| RXD1 | - | I | UART Ch1 receive Data | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| SDAT21 | - | B | SD I/F Ch2 Data 1 |  | $\bigcirc$ | $\bigcirc$ |
| GPIO05 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT05 | - | I | External Interrupt 0-bit5 |  | $\bigcirc$ | $\bigcirc$ |
| CTS1 | Neg | 1 | UART Ch1 clear to send | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| SDAT22 | - | B | SD I/F Ch2 Data 2 |  | $\bigcirc$ | $\bigcirc$ |
| RXD0 | - | I | UART Ch0 receive Data |  | $\bigcirc$ | $\bigcirc$ |
| GPIO56 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT56 | - | I | External Interrupt 5-bit6 |  | $\bigcirc$ | $\bigcirc$ |
| RTS1 | Neg | 0 | UART Ch1 request to send | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| SDAT23 | - | B | SD I/F Ch2 Data 3 |  | $\bigcirc$ | $\bigcirc$ |
| TXD0 | - | 0 | UART Ch0 transmit Data |  | $\bigcirc$ | $\bigcirc$ |
| GPIO57 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT57 | - | I | External Interrupt 5-bit7 |  | $\bigcirc$ | $\bigcirc$ |
| TXD2 | - | 0 | UART Ch2 transmit Data | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| TIOCA10 | - | B | MTM1 Ch0A <br> - target signal of pulse-length-reader function <br> - output of sentinel-inform-function <br> - output of PWM output |  | $\bigcirc$ | $\bigcirc$ |
| GPIOOB | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINTOB | - | I | External Interrupt 0-bit11 |  | $\bigcirc$ | $\bigcirc$ |
| RXD2 | - | I | UART Ch2 receive Data | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| TIOCA11 | - | B | MTM1 Ch1A <br> - target signal of pulse-length-reader function <br> - output of sentinel-inform-function <br> - output of PWM output |  | $\bigcirc$ | $\bigcirc$ |
| GPIOOC | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINTOC | - | 1 | External Interrupt 0-bit12 |  | $\bigcirc$ | $\bigcirc$ |
| Sum |  |  |  |  | 6 | 6 |

TIMER

| TIOCA00 | - | B | MTMO ChOA <br> - target signal of pulse-length-reader function <br> - output of sentinel-inform-function <br> - output of PWM output | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SDCLK2 | - | 0 | SD I/F Ch2 Clock Output |  | $\bigcirc$ | $\bigcirc$ |
| PHIO | - | 0 | System Clock Output 0 |  | $\bigcirc$ | $\bigcirc$ |
| GPIO09 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT09 | - | I | External Interrupt 0-bit9 |  | $\bigcirc$ | $\bigcirc$ |

Table 11. TERMINAL FUNCTIONS (continued)

| Terminal Name | Polarity | Direction | Function |  | Available( $)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplexed <br> Function |  |  |  | 10 POWER | XA | RB |

TIMER

| TIOCA01 | - | B | MTM0 Ch1A <br> - target signal of pulse-length-reader function <br> - output of sentinel-inform-function <br> - output of PWM output | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SDCMD2 | - | B | SD I/F Ch2 command line |  | $\bigcirc$ | $\bigcirc$ |
| PHI1 | - | O | System Clock Output 1 |  | $\bigcirc$ | $\bigcirc$ |
| GPIOOA | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINTOA | - | I | External Interrupt 0-bit10 |  | $\bigcirc$ | $\bigcirc$ |
| TIOCB00 | - | B | MTM0 Ch0B <br> - target signal of pulse-length-reader function <br> - output of sentinel-inform-function | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| DIN1 | - | I | PCM1 Data Input |  | $\bigcirc$ | $\bigcirc$ |
| DMDIN0A | - | I | Digital Mic Ch0 Data A Input |  | $\bigcirc$ | $\bigcirc$ |
| GPIO02 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT02 | - | I | External Interrupt 0-bit2 |  | $\bigcirc$ | $\bigcirc$ |
| TIOCB01 | - | B | MTM0 Ch1B <br> - target signal of pulse-length-reader function <br> - output of sentinel-inform-function | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| SFQSCS | Neg | 0 | Serial Flash I/F QSPI chip select During Serial Flash Boot, this is used as chip select of Serial Flash |  | $\bigcirc$ | $\bigcirc$ |
| GPIO03 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT03 | - | I | External Interrupt 0-bit3 |  | $\bigcirc$ | $\bigcirc$ |
| SDCMD0 | - | B | SD I/F Ch0 command line |  | $\bigcirc$ | $\bigcirc$ |
| TCLKA0 | - | I | MTM0 external Clock A | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| BCK1 | - | B | PCM1 bit Clock |  | $\bigcirc$ | $\bigcirc$ |
| GPIO00 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT00 | - | I | External Interrupt 0-bit0 |  | $\bigcirc$ | $\bigcirc$ |
| TCLKB0 | - | I | MTM0 external Clock B | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| LRCK1 | - | B | PCM1 LR Clock |  | $\bigcirc$ | $\bigcirc$ |
| GPIO01 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT01 | - | 1 | External Interrupt 0-bit1 |  | $\bigcirc$ | $\bigcirc$ |
| Sum |  |  |  |  | 6 | 6 |

PCM I/F

| MCLK0 | Pos | B | PCM0 maser Clock | Vdd2 | $\circ$ | $\circ$ |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| MCLK1 | Pos | B | PCM1 master Clock |  | $\circ$ | $\circ$ |
| GPIO18 | - | B | GPIO |  |  | $\circ$ |
| EXTINT18 | - | I | External Interrupt 1-bit8 |  | $\circ$ |  |
| BCK0 | - | B | PCM0 bit Clock |  | $\circ$ | $\circ$ |
| DMCKO0B | - | O | Digital Mic Ch0 Clock B Output |  | $\circ$ | $\circ$ |
| GPIO19 | - | B | GPIO |  | $\circ$ | $\circ$ |
| EXTINT19 | - | I | External Interrupt 1-bit9 |  | $\circ$ | $\circ$ |
|  |  |  | $\circ$ | $\circ$ |  |  |

Table 11. TERMINAL FUNCTIONS (continued)

| Terminal Name | Polarity | Direction | Function |  | Available( $\circ$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplexed <br> Function |  |  |  | 10 POWER | XA | RB |

PCM I/F

| LRCK0 | - | B | PCM0 LR Clock | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DMDINOB | - | I | Digital Mic Ch0 Data B Input |  | $\bigcirc$ | $\bigcirc$ |
| GPIO1A | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT1A | - | I | External Interrupt 1-bit10 |  | $\bigcirc$ | $\bigcirc$ |
| DIN0 | - | I | PCM0 Data Input | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| DMDINOA | - | I | Digital Mic Ch0 Data A Input |  | $\bigcirc$ | $\bigcirc$ |
| GPIO1B | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT1B | - | I | External Interrupt 1-bit11 |  | $\bigcirc$ | $\bigcirc$ |
| DOUT0 | - | 0 | PCM0 Data Output | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| DMCKOOA | - | 0 | Digital Mic Ch0 Clock A Output |  | $\bigcirc$ | $\bigcirc$ |
| GPIO1C | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT1C | - | I | External Interrupt 1-bit12 |  | $\bigcirc$ | $\bigcirc$ |
| BCK1 | - | B | PCM1 bit Clock | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIO13 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT13 | - | 1 | External Interrupt 1-bit3 |  | $\bigcirc$ | $\bigcirc$ |
| LRCK1 | - | B | PCM1 LR Clock | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIO14 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT14 | - | I | External Interrupt 1-bit4 |  | $\bigcirc$ | $\bigcirc$ |
| DOUT1 | - | 0 | PCM1 Data Output | Vdd2 | $\bigcirc$ | $\bigcirc$ |
| GPIO15 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT15 | - | 1 | External Interrupt 1-bit5 |  | $\bigcirc$ | $\bigcirc$ |
| Sum |  |  |  |  | 8 | 8 |

SD IF

| SDCLK0 | - | 0 | SD I/F Ch0 Clock Output | Vdd2 |  | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SDCMD0 | - | B | SD I/F Ch0 command line | Vdd2 |  | $\bigcirc$ |
| SDAT0[3:0] | - | B | SD I/F Ch0 Data | Vdd2 |  | $\bigcirc$ |
| SDCLK1 | - | 0 | SD I/F Ch1 Clock Output | VddSD1 | $\bigcirc$ | $\bigcirc$ |
| GPIO22 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT22 | - | 1 | External Interrupt 2-bit2 |  | $\bigcirc$ | $\bigcirc$ |
| SDCMD1 | - | B | SD I/F Ch1 command line | VddSD1 | $\bigcirc$ | $\bigcirc$ |
| GPIO23 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT23 | - | I | External Interrupt 2-bit3 |  | $\bigcirc$ | $\bigcirc$ |
| SDAT1[3:0] | - | B | SD I/F Ch1 Data | VddSD1 | $\bigcirc$ | $\bigcirc$ |
| GPIO2[7:4] | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT2[7:4] | - | I | External Interrupt 2-bit7 to bit4 |  | $\bigcirc$ | $\bigcirc$ |
| Sum |  |  |  |  | 6 | 12 |

Table 11. TERMINAL FUNCTIONS (continued)

| Terminal Name | Polarity | Direction | Function |  | Available() |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplexed Function |  |  |  | 10 POWER | XA | RB |

PSEUDO SRAM

| PSM_SCK | - | O | P-SRAM I/F Clock Output | Vdd2 |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| PSM_CS | Neg | O | P-SRAM I/F chip select Output | Vdd2 |  |  |
| PSM_SDI(DAT0) | - | I(B) | P-SRAM I/F Data input(QPI Data0) | Vdd2 |  |  |
| PSM_SDO(DAT1) | - | O(B) | P-SRAM I/F Data output(QPI Data1) | Vdd2 |  |  |
| PSM_DAT2 | - | B | P-SRAM I/F QPI Data 2 | Vdd2 |  |  |
| PSM_DAT3 | - | B | P-SRAM I/F QPI Data 3 | Vdd2 |  |  |
| Sum |  |  |  |  |  | 0 |

SDRAM I/F

| SDRCLK | Neg | O | SDRAM Clock Output | Vdd2 |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| SDRCKE | Pos | O | SDRAM Clock enable Output | Vdd2 |  |  |
| SDRCS | Neg | O | SDRAM chip select Output | Vdd2 |  |  |
| SDRWE | Neg | O | SDRAM write enable Output | Vdd2 |  |  |
| SDRCAS | Neg | O | SDRAM CAS Output | Vdd2 |  |  |
| SDRRAS | Neg | O | SDRAM RAS Output | Vdd2 |  |  |
| SDRDQM[1:0] | Pos | O | SDRAM Data mask byte lane select | Vdd2 |  |  |
| SDRADDR[10:0] | - | O | SDRAM address (Note 5) | Vdd2 |  |  |
| SDRBA[1:0] | - | O | SDRAM bank select | Vdd2 |  |  |
| SDRDATA[15:0] | - | B | SDRAM Data | Vdd2 |  |  |
| $\quad$ Sum |  | 0 | 0 |  |  |  |

EXTERNAL MEMORY I/F

| NCSO | Neg | 0 | chip select0 | Vdd2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GPIO06 | - | B | GPIO |  |  |  |
| EXTINT06 | -- | I | External Interrupt 0-bit6 |  |  |  |
| NCS1 | Neg | 0 | chip select1 | Vdd2 | (Note 6) | (Note 6) |
| RXD0 | - | I | UART Ch0 receive Data |  | $\bigcirc$ | $\bigcirc$ |
| GPIO10 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT10 | - | 1 | External Interrupt 1-bit0 |  | $\bigcirc$ | $\bigcirc$ |
| NRD | Neg | O | read enable | Vdd2 | (Note 6) | (Note 6) |
| GPIO17 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT17 | - | I | External Interrupt 1-bit7 |  | $\bigcirc$ | $\bigcirc$ |
| NWRENWRL | Neg | 0 | write enable, write enable low | Vdd2 | (Note 6) | (Note 6) |
| DIN0 | - | I | PCM0 Data Input |  | $\bigcirc$ | $\bigcirc$ |
| GPIO30 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT30 | - | I | External Interrupt 3-bit0 |  | $\bigcirc$ | $\bigcirc$ |
| NHBNWRH | Neg | 0 | high byte select, write enable high | Vdd2 | (Note 6) | (Note 6) |
| TXD0 | - | 0 | UART Ch0 transmit Data |  | $\bigcirc$ | $\bigcirc$ |
| DOUT0 | - | 0 | PCM0 Data Output |  | $\bigcirc$ | $\bigcirc$ |
| GPIO31 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT31 | - | 1 | External Interrupt 3-bit1 |  | $\bigcirc$ | $\bigcirc$ |
| NLBEXA0 | - | 0 | low byte select, address0 | Vdd2 | (Note 6) | (Note 6) |
| GPIO16 | - | B | GPIO |  | $\bigcirc$ | $\bigcirc$ |
| EXTINT16 | - | 1 | External Interrupt 1-bit6 |  | $\bigcirc$ | $\bigcirc$ |

Table 11. TERMINAL FUNCTIONS (continued)

| Terminal Name | Polarity | Direction | Function |  | Available( $)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplexed <br> Function |  |  |  | 10 POWER | XA | RB |

EXTERNAL MEMORY I/F

| EXA[20:15] | - | 0 | address | Vdd2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GPIO4[5:0] | - | B | GPIO |  |  |  |
| EXTINT4[5:0] | - | I | External Interrupt 4-bit5 to bit0 |  |  |  |
| EXA[14:9] | - | 0 | address | Vdd2 |  |  |
| GPIO3[F:A] | - | B | GPIO |  |  |  |
| EXTINT3[F:A] | - | 1 | External Interrupt 3-bit15 to bit10 |  |  |  |
| EXA[8:5] | - | 0 | address | Vdd2 |  |  |
| GPIO3[9:6] | - | B | GPIO |  |  |  |
| EXTINT3[9:6] | - | 1 | External Interrupt 3-bit9 to bit6 |  |  |  |
| EXA4 | - | 0 | address | Vdd2 |  |  |
| DOUT1 | - | 0 | PCM1 Data Output |  |  |  |
| GPIO35 | - | B | GPIO |  |  |  |
| EXTINT35 | - | I | External Interrupt 3-bit5 |  |  |  |
| EXA3 | - | 0 | address | Vdd2 |  | (Note 6) |
| DIN1 | - | 1 | PCM1 Data Input |  |  | $\bigcirc$ |
| GPIO34 | - | B | GPIO |  |  | $\bigcirc$ |
| EXTINT34 | - | 1 | External Interrupt 3-bit4 |  |  | $\bigcirc$ |
| EXA[2:1] | - | 0 | address | Vdd2 |  |  |
| GPIO3[3:2] | - | B | GPIO |  |  |  |
| EXTINT3[3:2] | - | I | External Interrupt 3-bit3 to bit2 |  |  |  |
| EXD[7:0] | - | B | Data | Vdd2 |  |  |
| GPIO4[D:6] | - | B | GPIO |  |  |  |
| EXTINT4[D:6] | - | 1 | External Interrupt 4-bit13 to bit6 |  |  |  |
| EXD[15:10] | - | B | Data | Vdd2 |  |  |
| GPIO5[5:0] | - | B | GPIO |  |  |  |
| EXTINT5[5:0] | - | 1 | External Interrupt 5-bit5 to bit0 |  |  |  |
| EXD[9:8] | - | B | Data | Vdd2 |  |  |
| GPIO4[F:E] | - | B | GPIO |  |  |  |
| EXTINT4[F:E] | - | 1 | External Interrupt 4-bit15 to bit14 |  |  |  |
| Sum |  |  |  |  | 5 | 6 |

XTAL, PLL

| XIN1 | - | I | XTAL input (XT1) | VddXT1 | $\circ$ | $\circ$ |
| :---: | :---: | :---: | :--- | :--- | :---: | :---: |
| XOUT1 | - | O | XTAL output (XT1) | VddXT1 | $\circ$ | $\circ$ |
| VddXT1 | - | P | XTAL power supply (XT1) | - | $\circ$ | $\circ$ |
| VssXT1 | - | P | XTAL ground (XT1) | - | $\circ$ | $\circ$ |
| XTALINFO[1: 0] | - | B | XTALINFO[1:0] $=$ <br> $" 00 ": 24 ~ M H z ~$ <br> $" 01 ": 12 ~ M H z ~$ <br> $" 10 ": 19.2 ~ M H z ~$ <br> $" 11 ": ~ r e s e r v e d ~$ <br> Used for determining clock frequency set- <br> ting during internal ROM boot. <br> Bonding "00" internally. |  |  |  |

Table 11. TERMINAL FUNCTIONS (continued)

| Terminal Name | Polarity | Direction | Function |  | Available( $)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplexed <br> Function |  |  |  | 10 POWER | XA | RB |

XTAL, PLL

| VCNT1 | - | O | PLL1 VCO control <br> Only internal loop filter. | AVddPLL1 |  |  |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| AVddPLL1 | - | P | PLL1 analog power supply | - | $\circ$ | $\circ$ |
| AVssPLL1 | - | P | PLL1 analog power ground | - | $\circ$ | $\circ$ |
| VCNT2 | - | O | PLL2 VCO control <br> Only internal loop filter. | AVddPLL2 |  |  |
| AVddPLL2 | - | P | PLL2 analog power supply | - | $\circ$ | $\circ$ |
| AVssPLL2 | - | P | PLL2 analog power ground | - | $\circ$ | $\circ$ |
| Sum |  |  |  |  |  |  |

## USB-PHY

| USBDP | - | B | USB D+ | AVddUSBPHY2 | 0 | 0 |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| USBDM | - | B | USB D- | AVddUSBPHY2 | 0 |  |
| USBEXT02 | - | B | USB reference resistor | 0 |  |  |
| USBVBUS | - | I | USB 5V VBUS detection | AVddUSBPHY18 | 0 | 0 |
| USBID | - | B | USB identifier | - | 0 |  |
| DVddUSBPHY1 | - | P | USB-PHY 1.0V digital power supply | 0 |  |  |
| AVddUSBPHY2 | - | P | USB-PHY 3.3V analog power supply | - | - | 0 |
| AVddUSBPHY18 | - | P | USB-PHY 1.8V analog power supply | - | 0 | 0 |
| AVssUSBPHY | - | P | USB-PHY ground | - | 0 | 0 |

## 12 BIT ADC

| SIN[7: 3] | - | I | ADC input ch7-3 | AVddADC |  | $\circ$ |
| :---: | :---: | :---: | :--- | :--- | :--- | :---: |
| SIN[2: 0] | - | I | ADC input ch2-0 | AVddADC | $\circ$ | $\circ$ |
| AVddADC | - | P | ADC analog power supply | - | $\circ$ | $\circ$ |
| AVssADC | - | P | ADC analog power ground | - | $\circ$ | $\circ$ |
| Sum |  |  |  |  |  |  |

## CLASS-D AMP

| LOUT | - | O | Lch Class D AMP Output | AVddDAMPL | $\circ$ | $\circ$ |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| GPLOUT | - | O | General purpose Output (GPO) |  | AVddDAMPR | $\circ$ |
| ROUT | - | O | Rch Class D AMP Output |  |  |  |
| GPROUT | - | O | General purpose Output (GPO) | $\circ$ | $\circ$ |  |
| AVddDAMPL | - | P | Lch Class D AMP analog power supply | - | $\circ$ | $\circ$ |
| AVddDAMPR | - | P | Rch Class D AMP analog <br> power supply | - | $\circ$ | $\circ$ |
| AVssDAMPL | - | P | Lch Class D AMP analog power ground | - | $\circ$ | $\circ$ |
| AVssDAMPR | - | P | Rch Class D AMP analog <br> power ground | - | $\circ$ | $\circ$ |

## OTHER, POWER

| BMODE[1: 0] | - | B | Boot mode select | Vdd2 | $\circ$ | $\circ$ |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| TEST | Pos | I | test mode <br> Connect to ground. | VddRTC | $\circ$ | $\circ$ |
| NRES | Neg | I | SoC reset input | Vdd2 | $\circ$ | $\circ$ |

Table 11. TERMINAL FUNCTIONS (continued)

| Terminal Name | Polarity | Direction | Function |  | Available( $)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplexed <br> Function |  |  |  | 10 POWER | XA | RB |

OTHER, POWER

OTHER, POWER

| 1 O 18 V | - | 1 | 1.8 V IO range select for I/O of Vdd2 <br> " 0 " : 3.3 V IO operation <br> "1": 1.8 V IO operation <br> When setting " 1 ", don't supply any voltage over the 1.8 V voltage range to Vdd . | Vdd1 | $\bigcirc$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vdd1 | - | P | Digital core power supply | - | $\begin{aligned} & \circ \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 6 \end{aligned}$ |
| Vdd2 | - | P | Digital IO power supply | - | $\begin{aligned} & \hline 0 \\ & 6 \end{aligned}$ | $\begin{aligned} & \circ \\ & 7 \end{aligned}$ |
| VddSD1 | - | P | Digital IO power supply(SDI/F ch1) | - | $\begin{aligned} & \circ \\ & 1 \end{aligned}$ | $\begin{aligned} & \circ \\ & 1 \end{aligned}$ |
| Vss1 | - | P | Digital core power ground | - | $6$ | $\begin{aligned} & \circ \\ & 6 \\ & 6 \end{aligned}$ |
| Vss2 | - | P | Digital IO power ground | - | $\begin{aligned} & \circ \\ & 7 \end{aligned}$ |  |
| Sum |  |  |  |  | 31 | 33 |
| All Sum |  |  |  |  | 120 | 136 |

3. Set according to the General RTC mode or Keylnt RTC mode.
4. S-Flash I/F / SD I/F Ch0 includes SFQSCS / SDCMD0 in Timer.
5. SDRAM address bit is 13 bit including SDRADDR [12:11].

6 . This function is not available.

## LC823455

## Signals Handled by Pin Multiplex Function

The pin multiplex function can be used to assign low-speed signals to any of GPIOs. The table below shows
the signal functions that can be multiplexed and the GPIOs that can be assigned.

Table 12. PIN MULTIPLEX FUNCTIONS

| Number | Module name | Signal name | Function | Assigned GPIO |
| :---: | :---: | :---: | :---: | :---: |
| 0 | I2C0 | SCLO | I2C ch0 Clock | GPIO00 to $0 F$ GPIO10 to 1F GPIO20 to 2F GPIO30 to 3F GPIO40 to 4F GPIO50 to 59 |
| 1 |  | SDA0 | I2C ch0 Data |  |
| 2 | I2C1 | SCL1 | I2C ch1 Clock |  |
| 3 |  | SDA1 | I2C ch1 Data |  |
| 4 | SPIO | SCK0 | Serial I/F Ch0 Clock |  |
| 5 |  | SDIO | Serial I/F Ch0 Data Input |  |
| 6 |  | SDO0 | Serial I/F Ch0 Data Output |  |
| 7 | SPI1 | SCK1 | Serial I/F Ch1 Clock |  |
| 8 |  | SDI1 | Serial I/F Ch1 Data Input |  |
| 9 |  | SDO1 | Serial I/F Ch1 Data Output |  |
| 10 | MTM0 | TCLKA0 | MTM0 external Clock A |  |
| 11 |  | TCLKB0 | MTM0 external Clock B |  |
| 12 |  | TIOCA00 | MTM0 Ch0A |  |
| 13 |  | TIOCA01 | MTM0 Ch1A |  |
| 14 |  | TIOCB00 | MTM0 Ch0B |  |
| 15 |  | TIOCB01 | MTM0 Ch1B |  |
| 16 | MTM1 | TCLKA1 | MTM1 external Clock A |  |
| 17 |  | TCLKB1 | MTM1 external Clock B |  |
| 18 |  | TIOCA10 | MTM1 Ch0A |  |
| 19 |  | TIOCA11 | MTM1 Ch1A |  |
| 20 |  | TIOCB10 | MTM1 Ch0B |  |
| 21 |  | TIOCB11 | MTM1 Ch1B |  |
| 22 | UARTO | RXD0 | UART Ch0 receive Data |  |
| 23 |  | TXD0 | UART Ch0 transmit Data |  |
| 24 | UART1 | RXD1 | UART Ch1 receive Data |  |
| 25 |  | TXD1 | UART Ch1 transmit Data |  |
| 26 |  | CTS1 | UART Ch1 clear to send |  |
| 27 |  | RTS1 | UART Ch1 request to send |  |
| 28 | UART2 | RXD2 | UART Ch2 receive Data |  |
| 29 |  | TXD2 | UART Ch2 transmit Data |  |
| 30 |  | CTS2 | UART Ch2 clear to send |  |
| 31 |  | RTS2 | UART Ch2 request to send |  |
| 32 | DMIC0 | DMCKO0 | Digital Mic Ch0 Clock Output |  |
| 33 |  | DMDIN0 | Digital Mic Ch0 Data Input |  |
| 34 | DMIC1 | DMCKO1 | Digital Mic Ch1 Clock Output |  |
| 35 |  | DMDIN1 | Digital Mic Ch1 Data Input |  |
| 36 | OSC | WICPOWERDOWN | Power control for WIC Sleep |  |
| 37 | Reserved | Reserved | Reserved |  |

## Boot Mode

The available boot modes are determined by the values on the BMODE[1:0] terminal.

Table 13. BOOT MODE

| IPL mode | BMODE1 | BMODE0 | Explanation |
| :---: | :---: | :---: | :---: |
| Physical Boot USB | $\begin{gathered} \hline \mathrm{PD} \\ 470 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \hline \mathrm{PD} \\ 470 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (EMMC Physical Boot with USB download) <br> (SD card I/F Ch0 + USB Device + EXTINT2F) |
|  |  |  | IPL2 is transferred to boot partition1 area of eMMC via USB from PC. Using Boot operation mode of eMMC, IPL2(program) is copied to internal SRAM from boot partition1 area of eMMC connected to SDCH0 and is executed. XT1 must be connected in this mode to boot the ROM. The connection of XTRTC is arbitrary. |
| Physical Boot SD | $\begin{gathered} \hline \mathrm{PD} \\ 470 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \mathrm{PU} \\ 470 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (EMMC Physical Boot with SD Ch1 download) (SD card I/F Ch0 + SD card I/F Ch1 + EXTINT2F) |
|  |  |  | IPL2 is transferred to boot partition1 area of eMMC from SDCH1. Using Boot operation mode of eMMC, IPL2(program) is copied to internal SRAM from boot partition1 area of eMMC connected to SDCH0 and is executed. Either XT1 or XTRTC is required to boot the ROM. |
| User Area Boot USB | $\begin{gathered} \hline \mathrm{PD} \\ 1 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \hline \text { PU or PD } \\ 470 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (User Area Boot with USB download) <br> (SD card I/F Ch0 + USB Device + EXTINT2F) |
|  |  |  | IPL2 is transferred to user area of eMMC via USB from PC. <br> IPL2(program) is copied to internal SRAM from user area of eMMC connected to SDCHO and is executed. <br> XT1 must be connected in this mode to boot the ROM. <br> The connection of XTRTC is arbitrary. |
| User Area Boot SD | $\begin{gathered} \mathrm{PU} \\ 470 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \hline \mathrm{PD} \\ 1 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (User Area Boot with SD Ch1 download) (SD card I/F Ch0 + SD card I/F Ch1 + EXTINT2F) |
|  |  |  | IPL2 is transferred to user area of eMMC from SDCH1. <br> IPL2(program) is copied to internal SRAM from user area of eMMC connected to SDCHO and is executed. <br> Either XT1 or XTRTC is required to boot the ROM. |
| SPI Boot USB | $\begin{gathered} \mathrm{PU} \\ 470 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \mathrm{PU} \\ 470 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (External Serial Flash SPI Boot with USB download) (S-FLASH I/F + USB Device + EXTINT2F ) |
|  |  |  | IPL2 is transferred to user area of S-FLASH via USB from PC. <br> IPL2(program) is copied to internal SRAM from user area of S-FLASH and is executed. <br> XT1 must be connected in this mode to boot the ROM. <br> The connection of XTRTC is arbitrary. |
| $\begin{aligned} & \hline \text { SPI Boot } \\ & \text { SD } \end{aligned}$ | $\begin{gathered} \hline \mathrm{PD} \\ 470 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \hline \mathrm{PU} \\ 1 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (External Serial Flash SPI Boot with SD Ch1 download) (S-FLASH I/F + SDcard I/F Ch1 + EXTINT2F) |
|  |  |  | IPL2 is transferred to user area of S-FLASH from SDCH1. <br> IPL2(program) is copied to internal SRAM from user area of S-FLASH and is executed. <br> Either XT1 or XTRTC is required to boot the ROM. |
| QSPI Boot USB | $\begin{gathered} \hline \mathrm{PU} \\ 1 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \mathrm{PU} \\ 470 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot <br> (External Serial Flash QSPI Boot with USB download) <br> (S-Flash I/F(QSPI) + USB Device + EXTINT2F) |
|  |  |  | The IPL supports the direct write of the program using the DD command from USB. In this mode, the CPU fetches Serial Flash connected to S/Flash IF directly. XT1 must be connected in this mode to boot the ROM. The connection of XTRTC is arbitrary. |

Table 13. BOOT MODE (continued)

| IPL mode | BMODE1 | BMODE0 | Explanation |
| :---: | :---: | :---: | :---: |
| QSPI Boot SD | $\begin{gathered} \hline \mathrm{PU} \\ 1 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \mathrm{PD} \\ 470 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot <br> (External Serial Flash QSPI Boot with SD Ch1 download) (S-Flash I/F(QSPI) + SD card I/F Ch1 + EXTINT2F) |
|  |  |  | IPL2 is transferred to S-FLASH from SDCH1. <br> In this mode, the CPU fetches from Serial Flash connected to S/Flash IF directly. Either XT1 or XTRTC is required to boot the ROM. |
| User Area Delete | $\begin{gathered} \hline \mathrm{PD} \\ 1 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \hline \mathrm{PU} \\ 1 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (User Area IPL2 deletion) ( SD card I/F Ch0 + EXTINT2F) |
|  |  |  | It comes to be able to write IPL2 again at User Area Boot. Either XT1 or XTRTC is necessary to boot the ROM. |
| Partition Delete | $\begin{gathered} \hline \mathrm{PD} \\ 470 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \hline \mathrm{PD} \\ 1 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (Partition Area IPL2 deletion) (SD card I/F Ch0 + EXTINT2F) |
|  |  |  | It comes to be able to write IPL2 again at eMMC Physical Boot. Either XT1 or XTRTC is necessary to boot the ROM. |
| SPI All Erase | $\begin{gathered} \mathrm{PU} \\ 470 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \hline \mathrm{PU} \\ 1 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (All external Serial Flash SPI area deletion) ( S-Flash I/F, + EXTINT2F ) |
|  |  |  | All of Serial Flash is deleted. <br> Please select it when you use Serial Flash with SPI. <br> Either XT1 or XTRTC is required to boot the ROM. |
| SDCHO All Erase | $\begin{gathered} \hline \mathrm{PD} \\ 1 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \hline \mathrm{PD} \\ 1 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (All area deletion) (SD card I/F Ch0 + EXTINT2F) |
|  |  |  | All of eMMC is deleted. The partition area is also erased, which takes time. When eMMC corresponds to Trim, Trim is done. <br> Either XT1 or XTRTC is required to boot the ROM. |
| QSPI All Erase | $\begin{gathered} \hline \mathrm{PU} \\ 1 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \hline \mathrm{PD} \\ 1 \mathrm{k} \Omega \end{gathered}$ | Internal ROM boot (All external Serial Flash QSPI area deletion) (S-Flash I/F(QSPI) + EXTINT2F) |
|  |  |  | All of Serial Flash is deleted. <br> Please use it when you use Serial Flash in the fetch mode of QSPI. Either XT1 or XTRTC is required to boot the ROM. |
| External ROM Boot | $\begin{gathered} \mathrm{PU} \\ 470 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \mathrm{PD} \\ 470 \mathrm{k} \Omega \end{gathered}$ | N/A |
|  |  |  | N/A |
| Hi-z | $\begin{gathered} \hline \mathrm{PU} \\ 1 \mathrm{k} \Omega \end{gathered}$ | $\begin{gathered} \hline \mathrm{PU} \\ 1 \mathrm{k} \Omega \end{gathered}$ | External memory I/F terminal are Hiz <br> EXA[20:1], EXD[15:0], NCS[1:0], NRD, NWRENWRL, NHBNWRH, NLBEXA0 <br> SD card I/F Ch0 terminal are Hiz <br> SDCLKO, SDCMDO, SDATO[3:0] <br> S-Flash(QSPI) terminal are Hiz <br> SFQSCS, SFCK, SFDI(QIOO), SFDO(QIO1), SFWP(QIO2), SFHOLD(QIO3) <br> Either XT1 or XTRTC is required to boot the ROM. |

## Boot Port

The ports used while booting are described below.

- There is no dedicated SDCH0 pin in the WLP package. Therefore, when booting from eMMC, the terminals SFCK, SFQSCS, SFDO, SFDI, SFWP, and SFHOLD must be switched to SDCLK0, SDCMD0, SDAT00, SDAT01, SDAT02, and SDAT03. The target is Physical Boot USB • Physical Boot SD • User Area Boot USB • User Area Boot SD • User Area Delete, Partition Delete, SDCH 0 All Erase
- SD Card SDCH1 uses only CMD, DATA, and CLK. The terminals CD and WP are not used. These three
terminals are controlled only when writing IPL2 from SDCH1
- SPI Boot / SPI All Erase uses only SFCK, SFDO, SFDI and SFQSCS switched from TIOCB01. SFHOLD and SFWP (The function is different according to the device) are not used
- QSPI Boot / QSPI All Erase uses SFCK, SFDO, SFDI, SFHOLD, SFWP and SFQSCS switched from TIOCB01

Table 14. GPIOs USED DURING IPL
( RB is under planning.)

| IPL mode | SDCH0 |  |
| :---: | :---: | :---: |
|  | Shared (for XA) | Dedicated (for RB) |
| Physical Boot USB | P2F(error notification) <br> POD(SDCLKO), P0E(SDAT00), P0F(SDAT01), <br> P11(SDAT02), P12(SDAT03), P03(SCMD0) | P2F(error notification) |
| Physical Boot SD | P2F(error notification), <br> P22(SDCLK1), P23(SDCMD1), P24(SDDATA10), <br> P25(SDDATA11), P26(SDDATA12), <br> P27(SDDATA13), P0D(SDCLK0), P0E(SDAT00), <br> P0F(SDAT01), P11(SDAT02), P12(SDAT03) <br> P03(SCMDO) | P2F(error notification), <br> P22(SDCLK1), P23(SDCMD1), <br> P24(SDDATA10), P25(SDDATA11), <br> P26(SDDATA12), P27(SDDATA13) |
| User Area Boot USB | P2F(error notification), <br> POD(SDCLKO), P0E(SDAT00), P0F(SDAT01), <br> P11(SDAT02), P12(SDAT03), P03(SCMD0) | P2F(error notification) |
| User Area Boot SD | P2F(error notification) <br> P0D(SDCLK0), P0E(SDAT00), P0F(SDAT01), <br> P11(SDAT02), P12(SDAT03), P03(SCMD0), <br> P22(SDCLK1), P23(SDCMD1), P24(SDDATA10), <br> P25(SDDATA11), <br> P26(SDDATA12), P27(SDDATA13) | P2F(error notification), <br> P22(SDCLK1), P23(SDCMD1), <br> P24(SDDATA10), P25(SDDATA11), <br> P26(SDDATA12), P27(SDDATA13) |
| SPI Boot USB | P2F(error notification) <br> P0D(SFCK), P03(SFQSCS), P0F(SFDO), <br> P0E(SFDI) | P2F(error notification), <br> P0D(SFCK), P03(SFQSCS), P0F(SFDO), P0E(SFDI) |
| SPI Boot SD | P2F(error notification), <br> P0D(SFCK), P03(SFQSCS) P0F(SFDO), <br> P0E(SFDI), P22(SDCLK1), P23(SDCMD1), <br> P24(SDDATA10), P25(SDDATA11), <br> P26(SDDATA12), P27(SDDATA13) | P2F(error notification), <br> P0D(SFCK), P03(SFQSCS) P0F(SFDO), P0E(SFDI), <br> P22(SDCLK1), P23(SDCMD1), P24(SDDATA10), <br> P25(SDDATA11), <br> P26(SDDATA12), P27(SDDATA13) |
| QSPI Boot USB | P2F(error notification), <br> P0D(SFCK), P03(SFQSCS), POF(SFDO), <br> P0E(SFDI), P11(SFWP), P12(SFHOLD) | P2F(error notification), <br> POD(SFCK), P03(SFQSCS), POF(SFDO), P0E(SFDI), <br> P11(SFWP), P12(SFHOLD) |
| QSPI Boot SD | P2F(error notification) <br> P0D(SFCK), P03(SFQSCS), P0F(SFDO), <br> P0E(SFDI), P011 (SFWP), P12(SFHOLD), <br> P22(SDCLK1), P23(SDCMD1), P24(SDDATA10), <br> P25(SDDATA11), P26(SDDATA12), <br> P27(SDDATA13) | P2F(error notification) <br> P0D(SFCK), P03(SFQSCS), P0F(SFDO), P0E(SFDI), <br> P011(SFWP), P12(SFHOLD), P22(SDCLK1), P23(SDCMD1), <br> P24(SDDATA10), P25(SDDATA11), <br> P26(SDDATA12), P27(SDDATA13) |
| UserArea Delete | P2F(error notification), <br> POD(SDCLKO), P0E(SDAT00), P0F(SDAT01), <br> P11(SDAT02), P12(SDAT03), P03(SCMD0) | P2F(error notification) |
| Partition Delete | P2F(error notification), <br> P0D(SDCLK0), P0E(SDAT00), P0F(SDAT01), <br> P11(SDAT02), P12(SDAT03), P03(SCMD0) | P2F(error notification) |
| SPI Erase | P2F(error notification), <br> POD(SFCK), P03(SFQSCS), P0F(SPIOUT), <br> P0E(SFDI) | P2F(error notification), <br> P0D(SFCK), P03(SFQSCS), P0F(SPIOUT), P0E(SFDI) |
| SDCH0 All Erase | P2F(error notification), <br> P0D(SDCLK0), P0E(SDAT00), P0F(SDAT01), <br> P11(SDAT02), P12(SDAT03), P03(SCMD0) | P2F(error notification) |
| QSPI All Erase | P2F(error notification), <br> P0D(SFCK), P03(SFQSCS), P0F(SFDO), <br> P0E(SFDI), P11(SFWP), P12(SFHOLD) | ```P2F(error notification), P0D(SFCK), P03(SFQSCS), P0F(SFDO), P0E(SFDI), P11(SFWP), P12(SFHOLD)``` |
| External ROM Boot | N/A | N/A |
| HI-z |  | SDCLK0 is set to the Hi-z input. |

7. In this table, "Pxx" means "GPIOxx". For example "P2F" means "GPIO2F".

## SDIF Pullup

If using the SDIF port during boot mode, internal PullUp resistors are used (SDCMD0, SDAT0[3:0] / SDCMD1, SDAT1[3:0]). Therefore, external PullUp resistors are not required on the board.

## SFQSCS Pullup

If using SFQSCS during boot mode, the initial condition for terminal P03 relative to SFQSCS is Pull-Up. After terminal P03 is switched to SFQSCS, the Pull-Up is released.

## GPIO2F

During boot mode, GPIO2F provides notification of the beginning of USB connection, notification of the
termination of USB connection, as well as error notification with High/Low of the terminal.

When errors occur during boot sequences, for example writing of IPL2, GPIO2F reports the sort of error. Moreover, GPIO2F can indicate the status of USB connection and the completion of USB file transfer. Additionally, Delete Mode, completion of Erase, and status of Erase can also be reported through a sequence of Low/High.

For more detail about the behavior of this port used during boot, refer to the "IPL detail" chapter in the "LC823455 Sample Software Reference".

## PIN ASSIGNMENT

Table 15. PIN ASSIGNMENT

| $\mathrm{I} / \mathrm{O}$ |  |
| :---: | :---: |
| I | Input |
| O | Output |
| B | Bidirectional |
| P | Power |
| G | Ground |

$X A$ : Package Code = "XA", RB: Package Code = "RB", (RB is under planning).
Table 16.

| RB BGA136 |  | XA <br> WLP120 |  | PIN NAME | 1/0 | Input Type | Output Type | Drive | PU/PD | $\begin{gathered} 10 \\ \text { Pwr Grp } \end{gathered}$ | 10 <br> Circuit Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Ball | No. | Ball |  |  |  |  |  |  |  |  |
| - | - | - | - | Vdd2 | P |  |  |  |  |  |  |
| - | - | - | - | Vss2 | G |  |  |  |  |  |  |
| - | - | - | - | $\begin{gathered} \text { EXD0/ } \\ \text { GPIO46/ } \\ \text { EXTINT46 } \end{gathered}$ | B/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 3 \text { ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { EXA1/ } \\ \text { GPIO32/ } \\ \text { EXTINT32 } \end{gathered}$ | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { EXA11/ } \\ \text { GPIO3C/ } \\ \text { EXTINT3C } \end{gathered}$ | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { EXA12/ } \\ \text { GPIO3D/ } \\ \text { EXTINT3D } \end{gathered}$ | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { EXA13/ } \\ \text { GPIO3E/ } \\ \text { EXTINT3E } \end{gathered}$ | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { EXA14/ } \\ \text { GPIO3F/ } \\ \text { EXTINT3F } \end{gathered}$ | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 3 \text { ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| 1 | R15 | 1 | L10 | Vdd1 | P |  |  |  |  |  |  |
| 2 | R16 | 2 | H8 | $\begin{gathered} \text { NRD/ } \\ \text { GPIO17/ } \\ \text { EXTINT17 } \end{gathered}$ | $\begin{gathered} \mathrm{O} / \\ \mathrm{B} / \\ \mathrm{I} \end{gathered}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| 3 | P15 | 3 | K9 | SWDIO/ DMDIN0B/ GPIO59/ EXTINT59 | $\begin{aligned} & \mathrm{B} / \\ & \text { I/ } \\ & \mathrm{B} / \\ & \text { I } \end{aligned}$ | Schmitt | 3-State | 2 mA | PU | Vdd2 | $3 \mathrm{ISU} / 3 \mathrm{~T} 2$ |
| 4 | P16 | 4 | G7 | $\begin{gathered} \text { NLBEXA0/ } \\ \text { GPIO16/ } \\ \text { EXTINT16 } \end{gathered}$ | $\begin{gathered} \mathrm{O} / \\ \mathrm{B} / \\ \mathrm{I} \end{gathered}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { EXD2/ } \\ \text { GPIO48/ } \\ \text { EXTINT48 } \end{gathered}$ | $\begin{gathered} \mathrm{B} / \\ \mathrm{B} / \\ \mathrm{I} \end{gathered}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { EXA2/ } \\ \text { GPIO33/ } \\ \text { EXTINT33 } \end{gathered}$ | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| 5 | N15 | 5 | L9 | Vss2 | G |  |  |  |  |  |  |
| - | - | - | - | $\begin{gathered} \text { EXA6/ } \\ \text { GPIO37/ } \\ \text { EXTINT37 } \end{gathered}$ | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { EXA7/ } \\ \text { GPIO38/ } \\ \text { EXTINT38 } \end{gathered}$ | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { SDRADDR12/ } \\ \text { GPIO2A/ } \\ \text { EXTINT2A } \end{gathered}$ | $\mathrm{O} /$ $\mathrm{B} /$ I | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |

Table 16. (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ |  |  |  | PIN NAME | 1/0 | Input Type | Output Type | Drive | PU/PD | $\begin{gathered} 10 \\ \text { Pwr Grp } \end{gathered}$ | 10 Circuit Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Ball | No. | Ball |  |  |  |  |  |  |  |  |
| 6 | N16 | 6 | J8 | $\begin{gathered} \text { TDI/ } \\ \text { SDCD1/ } \\ \text { SWO// } \\ \text { GPIO20/ } \\ \text { EXTINT20 } \end{gathered}$ | $\begin{aligned} & \hline \text { 1/ } \\ & \text { 1/ } \\ & \text { O/ } \\ & \text { B/ } \end{aligned}$ | Schmitt | 3-State | 2 mA | PU/PD | VddSD1 | 3ISUD/3T2 |
| 7 | M15 | 7 | K8 | $\begin{gathered} \text { TDO/ } \\ \text { SDWP1/ } \\ \text { GPIO21/ } \\ \text { EXTINT21 } \end{gathered}$ | $\begin{aligned} & \text { O/ } \\ & 1 / \\ & \text { B/ } \\ & \text { I } \end{aligned}$ | Schmitt | 3-State | 2 mA | PU/PD | VddSD1 | 3ISUD/3T2 |
| 8 | M16 | 8 | L8 | VddSD1 | P |  |  |  |  |  |  |
| 9 | L15 | 9 | H7 | SDCMD1/ GPIO23/ EXTINT23 | $\begin{aligned} & \hline \mathrm{B} / \\ & \mathrm{B} / \\ & 1 \end{aligned}$ | cmos | 3-State | $\begin{gathered} 2 / 4 / 8 / 10 \\ \mathrm{~mA} \end{gathered}$ | PU/PD | VddSD1 | $\begin{gathered} \text { 3ICUD/3T2 } \\ (4)(8)(10) \end{gathered}$ |
| 10 | L16 | 10 | J7 | SDAT10/ GPIO24/ EXTINT24 | $\begin{aligned} & \hline \mathrm{B} / \\ & \mathrm{B} / \end{aligned}$ | cmos | 3-State | 2/4/8/10mA | PU/PD | VddSD1 | 3ICUD/3T2 <br> (4)(8)(10) |
| 11 | K12 | 11 | K7 | $\begin{gathered} \text { SDAT11/ } \\ \text { GPIO25/ } \\ \text { EXTINT25 } \end{gathered}$ | $\begin{aligned} & \hline \mathrm{B} / \\ & \mathrm{B} / \\ & 1 \end{aligned}$ | cmos | 3-State | 2/4/8/10mA | PU/PD | VddSD1 | 3ICUD/3T2 <br> (4)(8)(10) |
| 12 | J15 | 12 | L7 | Vss2 | G |  |  |  |  |  |  |
| 13 | K16 | 13 | F5 | $\begin{gathered} \text { SDAT12/ } \\ \text { GPIO26/ } \\ \text { EXTINT26 } \end{gathered}$ | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{B} / \\ & \text { I } \end{aligned}$ | CMOS | 3-State | 2/4/8/10mA | PU/PD | VddSD1 | 3ICUD/3T2 <br> (4)(8)(10) |
| 14 | J12 | 14 | G6 | $\begin{aligned} & \text { SDAT13/ } \\ & \text { GPIO27/ } \\ & \text { EXTINT27 } \end{aligned}$ | $\begin{aligned} & \hline \mathrm{B} / \\ & \text { B/ } \\ & 1 \end{aligned}$ | CMOS | 3-State | 2/4/8/10mA | PU/PD | VddSD1 | 3ICUD/3T2 <br> (4)(8)(10) |
| 15 | K15 | 15 | H6 | $\begin{aligned} & \text { SDCLK1/ } \\ & \text { GPIO22/ } \\ & \text { EXTINT22 } \end{aligned}$ | $\begin{aligned} & \hline \mathrm{O} / \\ & \mathrm{B} / \\ & 1 \end{aligned}$ | cmos | 3-State | 2/4/8/10mA | PU/PD | VddSD1 | 3ICUD/3T2 <br> (4)(8)(10) |
| 16 | J16 | 16 | L6 | Vss1 | G |  |  |  |  |  |  |
| 17 | H12 | - | - | RTCMODE | 1 | CMOS | - | - | - | VddRTC | 11 C |
| 18 | H15 | 17 | K6 | VddRTC | P |  |  |  |  |  |  |
| 19 | H16 | 18 | J5 | XIN32K | 1 | X | - | - | - | VddRTC | X |
| 20 | G15 | 19 | K5 | VssRTC | G |  |  |  |  |  |  |
| 21 | G16 | 20 | L5 | XOUT32K | 0 | - | X | - | - | VddRTC | X |
| - | - | - | - | Keyint2 | 1 | CMOS | - | - | PD | VddRTC | 1ICD |
| 22 | F15 | - | - | BACKUPB | I | CMOS | - | - | - | VddRTC | 1IC |
| 23 | F16 | 21 | J6 | VDET | 1 | cmos | - | - | - | VddRTC | 1IC |
| 24 | E16 | 22 | H5 | RTCINT (Note 8) | 0 | - | OD | $0.3 \mathrm{~mA}-\mathrm{OD}$ | - | VddRTC | OD3 |
| 25 | G12 | 23 | G5 | Keyint0 | 1 | CMOS | - | - | PD | VddRTC | 1 ICD |
| 26 | E15 | 24 | H4 | TEST | 1 | CMOS | - | - | - | VddRTC | 1IC |
| 27 | F12 | 25 | L4 | Keyint1 | 1 | CMOS | - | - | PD | VddRTC | 1 ICD |
| 28 | D15 | 26 | K4 | AVddPLL1 | P |  |  |  |  |  |  |
| - | - | - | - | VCNT1 | 0 | - | 1A | - | - | AVddPLL1 | 1A |
| 29 | D16 | 27 | J4 | AVssPLL1 | G |  |  |  |  |  |  |
| 30 | C15 | 28 | K3 | AVddPLL2 | P |  |  |  |  |  |  |
| - | - | - | - | VCNT2 | 0 | - | 1A | - | - | AVddPLL2 | 1A |
| 31 | C16 | 29 | L3 | AVssPLL2 | G |  |  |  |  |  |  |
| - | - | - | - | Vss1 | G |  |  |  |  |  |  |
| - | - | - | - | Vdd2 | P |  |  |  |  |  |  |
| - | - | - | - | Vss2 | G |  |  |  |  |  |  |
| - | - | - | - | $\begin{gathered} \text { EXD4/ } \\ \text { GPIO4A/ } \\ \text { EXTINT4A } \end{gathered}$ | $\begin{aligned} & \hline \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | EXD5/ GPIO4B/ EXTINT4B | $\begin{aligned} & \hline \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| 32 | B15 | 30 | L2 | Vdd1 | P |  |  |  |  |  |  |

Table 16. (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ |  |  |  | PIN NAME | 1/0 | Input Type | Output Type | Drive | PU/PD | $\underset{\text { Pwr Grp }}{10}$ | $\begin{gathered} 10 \\ \text { Circuit Type } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Ball | No. | Ball |  |  |  |  |  |  |  |  |
| - | - | - | - | EXD6/ GPIO4C/ EXTINT4C | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | EXA19/ GPIO44/ EXTINT44 | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{B} / \\ & 1 \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 (4)(8) |
| - | - | - | - | $\begin{gathered} \text { EXA20/ } \\ \text { GPIO45/ } \\ \text { EXTINT45 } \end{gathered}$ | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{B} / \\ & 1 \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 (4)(8) |
| - | - | - | - | EXD7/ GPIO4D/ EXTINT4D | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { EXD8/ } \\ \text { GPIO4E/ } \\ \text { EXTINT4E } \end{gathered}$ | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 (4)(8) |
| 33 | B14 | 31 | L1 | Vss1 | G |  |  |  |  |  |  |
| - | - | - | - | EXD11/ GPIO51/ EXTINT51 | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | EXD12/ GPIO52/ EXTINT52 | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| - | - | - | - | EXD13/ GPIO53/ EXTINT53 | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 (4)(8) |
| - | - | - | - | EXD14/ GPIO54/ EXTINT54 | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 (4)(8) |
| - | - | - | - | Vss2 | G |  |  |  |  |  |  |
| 34 | A16 | 32 | K2 | DOUT1/ GPIO15/ EXTINT15 | $\begin{aligned} & \text { O/ } \\ & \text { B/ } \\ & \text { I } \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| - | - | - | - | EXD9/ GPIO4F/ EXTINT4F | $\begin{aligned} & \hline \text { B/ } \\ & \text { B/ } \\ & 1 \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| - | - | - | - | $\begin{gathered} \text { EXD10/ } \\ \text { GPIO50/ } \\ \text { EXTINT50 } \end{gathered}$ | $\begin{aligned} & \hline \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| 35 | B16 | 33 | K1 | Vdd2 | P |  |  |  |  |  |  |
| - | - | - | - | $\begin{gathered} \text { EXD15/ } \\ \text { GPIO55/ } \\ \text { EXTINT55 } \end{gathered}$ | $\begin{aligned} & \text { B/ } \\ & \text { B/ } \\ & 1 \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| 36 | A15 | 34 | J3 | BCK1/ GPIO13/ EXTINT13 | $\begin{aligned} & \hline \mathrm{B} / \\ & \mathrm{B} / \\ & 1 \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 37 | A14 | 35 | G4 | MCLKO/ <br> MCLK1/ <br> GPIO18/ <br> EXTINT18 | $\begin{aligned} & \hline \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 38 | A13 | 36 | J2 | LRCK1/ GPIO14/ EXTINT14 | $\begin{aligned} & \text { B/ } \\ & \text { B/ } \\ & 1 \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 39 | B13 | 37 | J1 | Vss2 | G |  |  |  |  |  |  |
| - | - | - | - | Vdd2 | P |  |  |  |  |  |  |
| 40 | B12 | 38 | H3 | BCK0/ DMCKOOB/ GPIO19/ EXTINT19 | $\begin{aligned} & \hline \mathrm{B} / \\ & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 41 | A12 | 39 | G3 | LRCK0/ DMDINOB/ GPIO1A/ EXTINT1A | $\begin{aligned} & \hline \mathrm{B} / \\ & 1 / \\ & \mathrm{B} / \\ & \text { I } \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 42 | B11 | 40 | H2 | DIN0/ DMDINOA GPIO1B/ EXTINT1B | $\begin{aligned} & \text { I/ } \\ & \text { I/ } \\ & \text { B/ } \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| - | - | - | - | Vss2 | G |  |  |  |  |  |  |

Table 16. (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ |  | $\begin{gathered} \text { XA } \\ \text { WLP120 } \end{gathered}$ |  | PIN NAME | I/O | Input Type | Output Type | Drive | PU/PD | $\begin{gathered} 10 \\ \text { Pwr Grp } \end{gathered}$ | 10 Circuit Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Ball | No. | Ball |  |  |  |  |  |  |  |  |
| - | - | - | - | XTALINFO1 | B | Schmitt | 3-State | 2/4/8 mA | PU | Vdd2 | 3ISU/3T2 <br> (4)(8) |
| - | - | - | - | Vdd2 | P |  |  |  |  |  |  |
| 43 | A11 | 41 | H1 | DOUTO DMCKOOA GPIO1C/ EXTINT1C | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{O} / \\ & \mathrm{B} / \\ & 1 \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 44 | A10 | 42 | F4 | BMODE0 | B | Schmitt | 3-State | 2 mA | PU/PD | Vdd2 | 3ISUD/3T2 |
| 45 | B10 | 43 | F3 | BMODE1 | B | Schmitt | 3-State | 2 mA | PU/PD | Vdd2 | 3ISUD/3T2 |
| - | - | - | - | SDRADDR1 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | EXA4/ <br> DOUT1/ GPIO35/ EXTINT35 | $\begin{aligned} & \hline \mathrm{O} / \\ & \mathrm{O} / \\ & \mathrm{B} / \\ & \hline \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| - | - | - | - | SDRADDR0 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| 46 | B9 | 44 | G1 | NRES | 1 | Schmitt | - | - | - | Vdd2 | 315 |
| 47 | A9 | 45 | G2 | AVssDAMPR | G |  |  |  |  |  |  |
| 48 | A8 | 46 | F1 | $\begin{aligned} & \text { ROUT/ } \\ & \text { GPROUT } \end{aligned}$ | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{O} \end{aligned}$ | - | 1A | - | - | AVddDAMPR | 1A |
| 49 | A7 | 47 | F2 | AVddDAMPR | P |  |  |  |  |  |  |
| 50 | A6 | 48 | E2 | AVddDAMPL | P |  |  |  |  |  |  |
| 51 | A5 | 49 | E1 | $\begin{aligned} & \text { LOUT/ } \\ & \text { GPLOUT } \end{aligned}$ | $\begin{aligned} & \hline \mathrm{O} \\ & 0 \end{aligned}$ | - | 1A | - | - | AVddDAMPL | 1A |
| 52 | A4 | 50 | D2 | AVssDAMPL | G |  |  |  |  |  |  |
| 53 | B8 | 51 | D1 | Vss1 | G |  |  |  |  |  |  |
| - | - | - | - | SDRADDR2 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | SDRADDR3 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| 54 | E12 | 52 | E3 | SCL1/ GPIO2B/ EXTINT2B | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{B} / \\ & \text { I } \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 55 | E11 | 53 | E4 | $\begin{gathered} \text { SDA1/ } \\ \text { GPIO2C/ } \\ \text { EXTINT2C } \end{gathered}$ | $\begin{aligned} & \hline \mathrm{B} / \\ & \mathrm{B} / \\ & \text { I } \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 56 | E10 | 54 | D3 | SDRADDR11// DMCKO0A/ GPIO2D/ EXTINT2D | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{O} / \\ & \mathrm{B} / \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| - | - | - | - | SDRDATAO | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 31 C D / 3 T 2 \\ (4)(8) \end{gathered}$ |
| 57 | B7 | 55 | C1 | Vdd1 | P |  |  |  |  |  |  |
| - | - | - | - | SDRDATA1 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 31 C D / 3 T 2 \\ (4)(8) \end{gathered}$ |
| 58 | E9 | 56 | C2 | $\begin{gathered} \text { TCLKAO/ } \\ \text { BCK1/ } \\ \text { GPIO000 } \\ \text { EXTINT00 } \end{gathered}$ | 1/ B/ B/ 1 | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 59 | E8 | 57 | D4 | TCLKB0/ LRCK1/ GPIO01/ EXTINT01 | $\begin{aligned} & \hline \text { I/ } \\ & \text { B/ } \\ & \text { B/ } \\ & 1 \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 60 | E7 | 58 | C3 | NHBNWRH/ <br> TXD0/ DOUT0/ GPIO31/ EXTINT31 | $\begin{aligned} & \hline \mathrm{O} / \\ & \mathrm{O} / \\ & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| - | - | - | - | Vdd2 | P |  |  |  |  |  |  |
| 61 | B5 | 59 | B1 | Vss2 | G |  |  |  |  |  |  |
| - | - | - | - | PSM_DAT2 | B | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | $\begin{gathered} \text { 3ICUD/3T2 } \\ (4)(8)(10) \end{gathered}$ |

Table 16. (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ |  | $\begin{gathered} \text { XA } \\ \text { WLP120 } \end{gathered}$ |  | PIN NAME | I/O | Input Type | Output Type | Drive | PU/PD | $\begin{gathered} 10 \\ \text { Pwr Grp } \end{gathered}$ | 10 <br> Circuit Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Ball | No. | Ball |  |  |  |  |  |  |  |  |
| - | - | - | - | $\begin{gathered} \text { PSM_SDO } \\ \text { (DAT1) } \end{gathered}$ | O(B) | CMOS | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 (4)(8)(10) |
| - | - | - | - | PSM_DAT3 | B | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| - | - | - | - | SDRADDR4 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | SDRDATA4 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | 3ICD/3T2 <br> (4)(8) |
| - | - | - | - | SDRDATA14 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | 3ICD/3T2 <br> (4)(8) |
| 62 | B6 | 60 | A1 | Vdd2 | P |  |  |  |  |  |  |
| - | - | - | - | Vdd2 | P |  |  |  |  |  |  |
| - | - | - | - | SDRDATA2 | B | CMOS | 3-State | 2/4/8 mA | PD | Vdd2 | 3ICD/3T2 <br> (4)(8) |
| - | - | - | - | SDRDATA3 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | 3ICD/3T2 <br> (4)(8) |
| - | - | - | - | SDRDATA15 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 3 I C D / 3 T 2 \\ (4)(8) \end{gathered}$ |
| - | - | - | - | PSM SDI (DATO) | I(B) | CMOS | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| - | - | - | - | PSM_CS | 0 | CMOS | 3-State | 2/4/8/10mA | PU/PD | Vdd2 | $\begin{gathered} 3 \text { ICUD/3T2 } \\ (4)(8)(10) \end{gathered}$ |
| - | - | - | - | PSM_SCK | 0 | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| - | - | - | - | SDRADDR7 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | SDRDATA5 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | 3ICD/3T2 <br> (4)(8) |
| - | - | - | - | SDRDATA13 | B | CMOS | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 3 I C D / 3 T 2 \\ (4)(8) \end{gathered}$ |
| 63 | B4 | 61 | A2 | Vss2 | G |  |  |  |  |  |  |
| 64 | A2 | 62 | B2 | $\begin{gathered} \text { EXTINT2E/GPIO } \\ 2 \mathrm{E} \end{gathered}$ | 1/B | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | $\begin{gathered} \text { 3ISUD/3T2 } \\ \text { (4)(8) } \end{gathered}$ |
| 65 | A1 | 63 | B3 | NCS1/ RXD0/ GPIO10/ EXTINT10 | $\begin{aligned} & \hline \mathrm{O} / \\ & 1 / \\ & \mathrm{B} / \\ & \text { I } \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU | Vdd2 | $\begin{gathered} \text { 3ISU/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | SDRDATA12 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 3 I C D / 3 T 2 \\ (4)(8) \end{gathered}$ |
| - | - | - | - | SDRDATA6 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 3 I C D / 3 T 2 \\ (4)(8) \end{gathered}$ |
| - | - | - | - | SDRDATA7 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 3 I C D / 3 T 2 \\ (4)(8) \end{gathered}$ |
| 66 | B3 | 64 | A3 | Vss1 | G |  |  |  |  |  |  |
| - | - | - | - | SDRDATA8 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 3 \mathrm{CD} / 3 \mathrm{~T} 2 \\ (4)(8) \end{gathered}$ |
| 67 | B2 | 65 | C4 | $\begin{aligned} & \text { EXTINT2F/ } \\ & \text { GPIO2F } \end{aligned}$ | $\begin{aligned} & \hline 1 / \\ & B \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 68 | B1 | 66 | B4 | TCK/ SDCD2/ GPIO29/ EXTINT29 | $\begin{aligned} & 1 / \\ & 1 / \\ & \text { B/ } \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| - | - | - | - | SDRDATA9 | B | cmos | 3-State | 2/4/8 mA | PD | Vdd2 | 3ICD/3T2 <br> (4)(8) |
| 69 | A3 | 67 | A4 | Vdd2 | P |  |  |  |  |  |  |
| - | - | - | - | SDRDATA11 | B | CMOS | 3-State | 2/4/8 mA | PD | Vdd2 | 3ICD/3T2 (4)(8) |

Table 16. (continued)

| RB BGA136 |  | XA <br> WLP120 |  | PIN NAME | I/O | Input Type | Output Type | Drive | PU/PD | $\begin{gathered} 10 \\ \text { Pwr Grp } \end{gathered}$ | 10 <br> Circuit Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Ball | No. | Ball |  |  |  |  |  |  |  |  |
| - | - | - | - | SDRDATA10 | B | CMOS | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} 3 \mathrm{ICD} / 3 \mathrm{~T} 2 \\ (4)(8) \end{gathered}$ |
| 70 | C2 | 68 | D5 | $\begin{gathered} \text { TIOCA01/ } \\ \text { SDCMD2/ } \\ \text { PHI1/ } \\ \text { GPIO0A/ } \\ \text { EXTINT0A } \end{gathered}$ | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{O} / \\ & \mathrm{B} / \\ & \text { I } \end{aligned}$ | CMOS | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | $\begin{gathered} \hline \text { 3ICUD/3T2 } \\ (4)(8)(10) \end{gathered}$ |
| 71 | C1 | 69 | C5 | $\begin{gathered} \text { TXD1/ } \\ \text { SDAT20/ } \\ \text { GPIO04/ } \\ \text { EXTINT04 } \end{gathered}$ | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{B} / \\ & \text { I } \end{aligned}$ | CMOS | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 $(4)(8)(10)$ |
| 72 | D2 | 70 | B5 | RXD1/ <br> SDAT21/ <br> GPIO05/ <br> EXTINT05 | $\begin{aligned} & \text { I/ } \\ & \text { B/ } \\ & \text { B/ } \\ & \text { I } \end{aligned}$ | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| - | - | - | - | Vss2 | G |  |  |  |  |  |  |
| 73 | D1 | 71 | A5 | Vdd1 | P |  |  |  |  |  |  |
| 74 | E6 | 72 | E5 | $\begin{gathered} \text { CTS1/ } \\ \text { SDAT22/ } \\ \text { RXD0/ } \\ \text { GPIO56/ } \\ \text { EXTINT56 } \end{gathered}$ | $\begin{aligned} & \text { I/ } \\ & \text { B/ } \\ & \text { 1/ } \\ & \text { B/ } \end{aligned}$ | CMOS | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | $\begin{gathered} \hline \text { 3ICUD/3T2 } \\ (4)(8)(10) \end{gathered}$ |
| 75 | E5 | 73 | C6 | RTS1/ <br> SDAT23/ <br> TXD0/ <br> GPIO57/ <br> EXTINT57 | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| 76 | E2 | 74 | B6 | $\begin{aligned} & \text { TIOCA00/ } \\ & \text { SDCLK2/ } \\ & \text { PHIO/ } \\ & \text { GPIO09/ } \\ & \text { EXTINT09 } \end{aligned}$ | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{O} / \\ & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 (4)(8)(10) |
| - | - | - | - | SDRADDR5 | O | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | SDRADDR6 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | SDRADDR9 | $\bigcirc$ | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| 77 | H9 | 75 | A6 | Vdd2 | P |  |  |  |  |  |  |
| 78 | E1 | 76 | D6 | TMS/ SDWP2/ GPIO28/ EXTINT28 | $\begin{gathered} \text { I/ } \\ \text { I/ } \\ \text { B/ } \\ \text { I } \end{gathered}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 79 | F5 | 77 | E6 | TXD2/ <br> TIOCA10/ <br> GPIOOB/ <br> EXTINTOB | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 80 | F2 | 78 | D7 | $\begin{gathered} \text { RXD2/ } \\ \text { TIOCA11/ } \\ \text { GPIO0C/ } \\ \text { EXTINT0C } \end{gathered}$ | $\begin{aligned} & \text { I/ } \\ & \text { B/ } \\ & \text { B/ } \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| - | - | - | - | SDRBA1 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | SDRBAO | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| 81 | F1 | 79 | A7 | Vss2 | G |  |  |  |  |  |  |
| - | - | - | - | SDRADDR10 | $\bigcirc$ | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| 82 | G5 | 80 | B7 | $\begin{gathered} \text { SFCK/ } \\ \text { GPIOOD/ } \\ \text { EXTINTOD/ } \\ \text { SDCLK0 } \end{gathered}$ | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{I} / \\ & \mathrm{O} \end{aligned}$ | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 $(4)(8)(10)$ |
| 83 | G2 | 81 | C7 | TIOCB01/ SFQSCS/ GPIO03/ EXTINT03/ SDCMD0 | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{I} / \\ & \mathrm{B} \end{aligned}$ | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 $(4)(8)(10)$ |
| 84 | G1 | 82 | E7 | $\begin{gathered} \text { SFDO(QIO1)/ } \\ \text { GPIO0F/ } \\ \text { EXTINT0F/ } \\ \text { SDAT01 } \end{gathered}$ | $\begin{gathered} \mathrm{O}(\mathrm{~B}) / \\ \mathrm{B} / \\ \text { I/ } \\ \mathrm{B} \end{gathered}$ | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| - | - | - | - | SDRRAS | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| 85 | H8 | 83 | A8 | Vdd2 | P |  |  |  |  |  |  |

Table 16. (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ |  |  |  | PIN NAME | 1/0 | Input Type | Output Type | Drive | PU/PD | $\begin{gathered} 10 \\ \text { Pwr Grp } \end{gathered}$ | 10 Circuit Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Ball | No. | Ball |  |  |  |  |  |  |  |  |
| 86 | H5 | 84 | B8 | $\begin{gathered} \hline \text { SFDI(QIOO)/ } \\ \text { GPIOOE/ } \\ \text { EXTINTOE/ } \\ \text { SDATOO } \end{gathered}$ | $\begin{gathered} \hline \mathrm{I}(\mathrm{~B}) / \\ \mathrm{B} / \\ 1 / \\ \mathrm{B} \end{gathered}$ | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| 87 | H2 | 85 | C8 | SFWP(QIO2)/ GPIO11/ EXTINT11/ SDAT02 | $\begin{gathered} \mathrm{O}(\mathrm{~B}) / \\ \mathrm{B} / \\ 1 / \\ \mathrm{B} \end{gathered}$ | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| 88 | H1 | 86 | D8 | SFHOLD(QIO3)/ GPIO12/ EXTINT12/ SDAT03 | $\begin{gathered} \mathrm{O}(\mathrm{~B}) / \\ \mathrm{B} / \\ 1 / \\ \mathrm{B} \end{gathered}$ | CMOS | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| 89 | L2 | 87 | A9 | Vss1 | G |  |  |  |  |  |  |
| - | - | - | - | SDRWE | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | SDRCKE | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| 90 | J5 | 88 | B9 | $\begin{gathered} \text { TIOCB00/ } \\ \text { DIN1/ } \\ \text { DMDINOA/ } \\ \text { GPIO00/ } \\ \text { EXTINT02 } \end{gathered}$ | $\begin{aligned} & \hline \mathrm{B} / \\ & 1 / \\ & 1 / \\ & \mathrm{B} / \\ & 1 \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| - | - | - | - | SDRCLK | 0 | - | 3-State | 2/4/8/10 mA | - | Vdd2 | 3T2(4)(8)(10) |
| - | - | - | - | SDRCS | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| 91 | M2 | 89 | A10 | 1018 V | 1 | 1A | - | - | - | Vdd1 | 1A |
| - | - | - | - | Vss1 | G |  |  |  |  |  |  |
| 92 | J2 | - | - | SDAT02 | B | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| 93 | $J 1$ | - | - | SDAT03 | B | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| 94 | K5 | - | - | SDAT01 | B | cMOS | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| 95 | K2 | - | - | Vdd2 | P |  |  |  |  |  |  |
| 96 | L1 | - | - | Vss2 | G |  |  |  |  |  |  |
| 97 | M1 | 90 | A11 | Vdd1 | P |  |  |  |  |  |  |
| - | - | - | - | SDRDQM1 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| 98 | K1 | - | - | SDATOO | B | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | 3ICUD/3T2 <br> (4)(8)(10) |
| 99 | L6 | - | - | SDCLK0 | 0 | - | 3-State | 2/4/8/10 mA | - | Vdd2 | 3T2(4)(8)(10) |
| 100 | L5 | - | - | SDCMDO | B | cmos | 3-State | 2/4/8/10 mA | PU/PD | Vdd2 | $\begin{gathered} 3 \text { ICUD/3T2 } \\ (4)(8)(10) \end{gathered}$ |
| - | - | - | - | SDRADDR8 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | SDRCAS | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | Vdd2 | P |  |  |  |  |  |  |
| - | - | - | - | Vss2 | G |  |  |  |  |  |  |
| 101 | N1 | 91 | B11 | SINO | 1 | 3A | - | - | - | AvddADC | 3A |
| 102 | P1 | 92 | B10 | SIN1 | 1 | 3A | - | - | - | AvddADC | 3A |
| 103 | R1 | 93 | C9 | SIN2 | I | 3A | - | - | - | AvddADC | 3A |
| 104 | N2 | 94 | C11 | AVddADC | P |  |  |  |  |  |  |
| 105 | P2 | - | - | SIN3 | 1 | 3A | - | - | - | AvddADC | 3A |
| 106 | R2 | - | - | SIN4 | 1 | 3 A | - | - | - | AvddADC | 3A |
| 107 | P3 | - | - | SIN5 | 1 | 3 A | - | - | - | AvddADC | 3A |
| 108 | R3 | - | - | SIN6 | 1 | 3A | - | - | - | AvddADC | 3A |
| 109 | P4 | - | - | SIN7 | 1 | 3A | - | - | - | AvddADC | 3A |
| 110 | R4 | 95 | C10 | AVssADC | G |  |  |  |  |  |  |
| 111 | P5 | 96 | E8 | AVssUSBPHY | G |  |  |  |  |  |  |

Table 16. (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ |  | XA <br> WLP120 |  | PIN NAME | I/O | Input Type | Output Type | Drive | PU/PD | $\begin{gathered} 10 \\ \text { Pwr Grp } \end{gathered}$ | $10$ <br> Circuit Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Ball | No. | Ball |  |  |  |  |  |  |  |  |
| 112 | R5 | 97 | D11 | USBEXT02 | B | 3A | 3A | - | - | AVddUSBPHY18 | 3A |
| 113 | P6 | 98 | D9 | AVddUSBPHY2 | P |  |  |  |  |  |  |
| 114 | R6 | 99 | D10 | USBDM | B | 3A | 3A | - | - | AVddUSBPHY2 | 3A |
| 115 | P7 | 100 | E9 | AVssUSBPHY | G |  |  |  |  |  |  |
| 116 | R7 | 101 | E10 | USBDP | B | 3A | 3A | - | - | AVddUSBPHY2 | 3A |
| 117 | P8 | 102 | F8 | DVddUSBPHY1 | P |  |  |  |  |  |  |
| 118 | R8 | 103 | F9 | USBVBUS | 1 |  | - | - | - |  |  |
| 119 | P9 | 104 | F10 | AVddUSBPHY18 | P |  |  |  |  |  |  |
| 120 | R9 | 105 | F11 | USBID | B | 3A | 3 A | - | - | AVddUSBPHY18 | 3A |
| 121 | R10 | 106 | G8 | VddXT1 | P |  |  |  |  |  |  |
| 122 | R11 | 107 | G9 | XIN1 | 1 | X | - | - | - | VddXT1 | X |
| 123 | P10 | 108 | G10 | VssXT1 | G |  |  |  |  |  |  |
| 124 | P11 | 109 | G11 | XOUT1 | 0 | - | X | - | - | VddXT1 | X |
| - | - | - | - | Vss1 | G |  |  |  |  |  |  |
| - | - | - | - | Vdd1 | P |  |  |  |  |  |  |
| - | - | - | - | Vdd2 | P |  |  |  |  |  |  |
| - | - | - | - | XTALINFOO | B | Schmitt | 3-State | 2/4/8 mA | PU | Vdd2 | 3ISU/3T2 <br> (4)(8) |
| - | - | - | - | Vss2 | G |  |  |  |  |  |  |
| 125 | L7 | 110 | F7 | $\begin{gathered} \text { SDO0/ } \\ \text { GPIO1F/ } \\ \text { EXTINT1F } \end{gathered}$ | $\begin{gathered} \mathrm{O} / \\ \mathrm{B} / \\ \mathrm{I} \end{gathered}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 126 | L8 | 111 | F6 | SCK0/ GPIO1D/ EXTINT1D | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{B} / \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| - | - | - | - | SDRDQM0 | 0 | - | 3-State | 2/4/8 mA | - | Vdd2 | 3T2(4)(8) |
| - | - | - | - | EXA15/ <br> GPIO40/ <br> EXTINT40 | $\begin{gathered} \mathrm{O} / \\ \mathrm{B} / \\ \mathrm{I} \end{gathered}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| 127 | R12 | 112 | H11 | Vdd1 | P |  |  |  |  |  |  |
| - | - | - | - | EXA10/ GPIO3B/ EXTINT3B | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| 128 | L12 | - | - | EXA3/ DIN1/ GPIO34/ EXTINT34 | $\begin{aligned} & \hline \mathrm{O} / \\ & \mathrm{l} / \\ & \mathrm{B} / \\ & \mathrm{l} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| - | - | - | - | EXA17/ <br> GPIO42/ <br> EXTINT42 | O/ B/ 1 | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| - | - | - | - | EXD3/ GPIO49/ EXTINT49 | B/ B/ 1 | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| - | - | - | - | EXA16/ GPIO41/ EXTINT41 | O/ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| - | - | - | - | EXA18/ GPIO43/ EXTINT43 | O/ B/ 1 | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 <br> (4)(8) |
| 129 | P12 | 113 | J11 | Vss2 | G |  |  |  |  |  |  |
| 130 | L9 | 114 | H10 | SCL0/ GPIO07/ EXTINT07 | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 131 | L10 | 115 | J10 | $\begin{aligned} & \text { SDIO/ } \\ & \text { GPIO1E/ } \\ & \text { EXTINT1E } \end{aligned}$ | $1 /$ B/ 1 | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 132 | L11 | 116 | H9 | SDA0/ GPIO08/ EXTINT08 | B/ B/ I | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |

Table 16. (continued)

| RB BGA136 |  | XA <br> WLP120 |  | PIN NAME | 1/0 | Input Type | Output Type | Drive | PU/PD | 10 Pwr Grp | 10 <br> Circuit Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Ball | No. | Ball |  |  |  |  |  |  |  |  |
| - | - | - | - | $\begin{gathered} \text { EXA9/ } \\ \text { GPIO3A/ } \\ \text { EXTINT3A } \end{gathered}$ | $\mathrm{O} /$ $\mathrm{B} /$ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { NCSO/ } \\ \text { GPIO06/ } \\ \text { EXTINT06 } \end{gathered}$ | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PU | Vdd2 | $\begin{gathered} \text { 3ISU/3T2 } \\ (4)(8) \end{gathered}$ |
| 133 | R13 | 117 | K11 | Vdd2 | P |  |  |  |  |  |  |
| - | - | - | - | $\begin{gathered} \text { EXD1/ } \\ \text { GPIO47/ } \\ \text { EXTINT47 } \end{gathered}$ | B/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | 3ISD/3T2 (4)(8) |
| - | - | - | - | $\begin{gathered} \text { EXA5/ } \\ \text { GPIO36/ } \\ \text { EXTINT36 } \end{gathered}$ | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| - | - | - | - | $\begin{gathered} \text { EXA8/ } \\ \text { GPIO39/ } \\ \text { EXTINT39 } \end{gathered}$ | O/ B/ I | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| 134 | P14 | 118 | J9 | NWRENWRL/ DIN0/ GPIO30/ EXTINT30 | $\begin{aligned} & \mathrm{O} / \\ & \mathrm{I} \\ & \mathrm{~B} / \\ & \mathrm{I} \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PD | Vdd2 | $\begin{gathered} \text { 3ISD/3T2 } \\ (4)(8) \end{gathered}$ |
| 135 | R14 | 119 | K10 | SWDCLK/ <br> DMCKOOB <br> GPIO58/ <br> EXTINT58 | $\begin{aligned} & \text { 1/ } \\ & \mathrm{O} / \\ & \mathrm{B} / \\ & \text { I } \end{aligned}$ | Schmitt | 3-State | 2/4/8 mA | PU/PD | Vdd2 | 3ISUD/3T2 <br> (4)(8) |
| 136 | P13 | 120 | L11 | Vss1 | G |  |  |  |  |  |  |

8. RTCINT (open drain Output) 3.6 V tolerant.

INPUT/OUTPUT CIRCUIT

| Attribute $: 3$ IS |  |  |
| :--- | :--- | :--- |
|  |  |  |


| Attribute : 1IC | Attribute : 1ICD |
| :--- | :--- |
|  |  |



Level Shifter
Figure 6. Input/Output Circuit

$\square$ Level Shifter
9. Vdd2, VddSD1 (IO Pwr Grp of Pin Assignment).
10. DRVcnt: 2/4/8 mA, 2/4/8/10 mA, etc. Drivability switch control signal.

Figure 6. Input/Output Circuit (continued)
$X A$ : Package Code = "XA", RB: Package Code = "RB", (RB is under planning).
Table 17. TERMINAL STATE TABLE

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ | $\begin{gathered} \text { XA } \\ \text { WLP120 } \end{gathered}$ | PIN NAME | Default Function (NRES = Low) (Note 11) | Terminal status NRES = Low(i) (Note 12) | Terminal status NRES = High(ii) (Note 12) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\bullet$ | - | TCLKA0/ BCK1/ GPIO00/ EXTINT00 | GPIO00 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | TCLKB0/ LRCK1/ GPIO01/ EXTINT01 | GPIO01 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{aligned} & \hline \text { TIOCB00/ } \\ & \text { DIN1/ } \\ & \text { DMDINOA/ } \\ & \text { GPIO02/ } \\ & \text { EXTINT02/ } \end{aligned}$ | GPIO02 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | TIOCB01/ SFQSCS/ GPIO03/ EXTINT03/ SDCMDO | GPIO03 | PU | PU (Note 13) |
| $\bullet$ | $\bullet$ | TXD1/ SDAT20/ GPIO04/ EXTINT04 | GPIO04 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | RXD1/ SDAT21/ GPIO05/ EXTINT05 | GPIO05 | Hiz | Hiz |
|  |  | NCS0/ GPIO06/ EXTINT06 | GPIO06 | Hiz | Hiz |
| $\bullet$ | - | $\begin{gathered} \text { SCLO/ } \\ \text { GPIO07/ } \\ \text { EXTINT07 } \end{gathered}$ | GPIO07 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{gathered} \text { SDA0/ } \\ \text { GPIO08/ } \\ \text { EXTINT08 } \end{gathered}$ | GPIO08 | Hiz | Hiz |
| $\bullet$ | - | $\begin{gathered} \hline \text { TIOCAOO/ } \\ \text { SDCLK2/ } \\ \text { PHIO/ } \\ \text { GPIOO9/ } \\ \text { EXTINT09 } \end{gathered}$ | GPIO09 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | TIOCA01/ SDCMD2/ PHI1/ GPIOOA/ EXTINTOA | GPIOOA | Hiz | Hiz |
| $\bullet$ | $\bullet$ | TXD2/ <br> TIOCA10/ GPIOOB/ EXTINTOB | GPIO0B | Hiz | Hiz |
| $\bullet$ | $\bullet$ | RXD2/ TIOCA11/ GPIOOC/ EXTINTOC | GPIOOC | Hiz | Hiz |
| $\bullet$ | $\bullet$ | SFCK/ GPIOOD/ EXTINTOD/ SDCLKO | GPIOOD | Hiz | Hiz |

Table 17. TERMINAL STATE TABLE (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ | $\begin{gathered} \text { XA } \\ \text { WLP120 } \end{gathered}$ | PIN NAME | Default Function (NRES = Low) (Note 11) | Terminal status NRES = Low(i) (Note 12) | Terminal status NRES = High(ii) (Note 12) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\bullet$ | $\bullet$ | SFDI(QIOO)/ GPIONE/ EXTINTOE/ SDAT00 | GPIO0E | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{gathered} \text { SFDO(QIO1)/ } \\ \text { GPIOOF/) } \\ \text { EXTINTOF/ } \\ \text { SDAT01 } \end{gathered}$ | GPIOOF | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{gathered} \text { NCS1/ } \\ \text { RXD0/ } \\ \text { GPIO10/ } \\ \text { EXTINT10 } \end{gathered}$ | GPIO10 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{gathered} \hline \text { SFWP(QIO2)/ } \\ \text { GPIO111) } \\ \text { EXTINT11 } \\ \text { SDAT02 } \end{gathered}$ | GPIO11 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{gathered} \hline \text { SFHOLD(QIO3)/ } \\ \text { GPIO12/ } \\ \text { EXTINT12 } \\ \text { SDAT03 } \end{gathered}$ | GPIO12 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | BCK1/ GPIO13/ EXTINT13 | GPIO13 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | LRCK1/ GPIO14/ EXTINT14 | GPIO14 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | DOUT1/ GPIO15/ EXTINT15 | GPIO15 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | NLBEXA0/ GPIO16/ EXTINT16 | GPIO16 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | NRD/ GPIO17/ EXTINT17 | GPIO17 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | MCLKO/ MCLK1/ GPIO18/ EXTINT18 | GPIO18 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | BCKO/ DMCKOOB/ GPIO19/ EXTINT19 | GPIO19 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | LRCKO/ DMDINOB/ GPIO1A/ EXTINT1A | GPIO1A | Hiz | Hiz |
| $\bullet$ | $\bullet$ | DINO/ DMDINOA/ GPIO1B/ EXTINT1B | GPIO1B | Hiz | Hiz |
| $\bullet$ | $\bullet$ | DOUTO/ DMCKOOA GPIO1C/ EXTINT1C | GPIO1C | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{aligned} & \text { SCK0/ } \\ & \text { GPIO1D/ } \\ & \text { EXTINT1D } \end{aligned}$ | GPIO1D | Hiz | Hiz |

Table 17. TERMINAL STATE TABLE (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ | $\begin{gathered} \text { XA } \\ \text { WLP120 } \end{gathered}$ | PIN NAME | Default Function (NRES = Low) (Note 11) | Terminal status NRES = Low(i) (Note 12) | Terminal status NRES = High(ii) (Note 12) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\bullet$ | $\bullet$ | SDIO/ GPIO1E/ EXTINT1E | GPIO1E | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{gathered} \text { SDO0/ } \\ \text { GPIO1F/ } \\ \text { EXTINT1F } \end{gathered}$ | GPIO1F | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{gathered} \hline \text { TDI/ } \\ \text { SDCD1/ } \\ \text { SWO/ } \\ \text { GPIO20/ } \\ \text { EXTINT20 } \end{gathered}$ | GPIO20 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | TDO/ <br> SDWP1/ <br> GPIO21/ <br> EXTINT21 | GPIO21 | Hiz | Hiz |
| $\bullet$ | - | $\begin{aligned} & \text { SDCLK1/ } \\ & \text { GPIO22/ } \\ & \text { EXTINT22 } \end{aligned}$ | GPIO22 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{aligned} & \text { SDCMD1/ } \\ & \text { GPIO23/ } \\ & \text { EXTINT23 } \end{aligned}$ | GPIO23 | Hiz | Hiz |
| $\bullet$ | - | SDAT10/ GPIO24/ EXTINT24 | GPIO24 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{gathered} \text { SDAT11/ } \\ \text { GPIO25/ } \\ \text { EXTINT25 } \end{gathered}$ | GPIO25 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | SDAT12/ GPIO26/ EXTINT26 | GPIO26 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | SDAT13/ GPIO27/ EXTINT27 | GPIO27 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | TMS/ <br> SDWP2/ GPIO28/ EXTINT28 | GPIO28 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | TCK/ SDCD2/ GPIO29/ EXTINT29 | GPIO29 | Hiz | Hiz |
|  |  | $\begin{gathered} \hline \text { SDRADDR12/ } \\ \text { GPIO2A/ } \\ \text { EXTINT2A } \end{gathered}$ | GPIO2A | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{gathered} \text { SCL1/ } \\ \text { GPIO2B/ } \\ \text { EXTINT2B } \end{gathered}$ | GPIO2B | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{gathered} \text { SDA1/ } \\ \text { GPIO2C/ } \\ \text { EXTINT2C } \end{gathered}$ | GPIO2C | Hiz | Hiz |
| $\bullet$ | $\bullet$ | SDRADDR11/ <br> DMCKOOA/ <br> GPIO2D/ EXTINT2D | GPIO2D | Hiz | Hiz |
| $\bullet$ | $\bullet$ | $\begin{aligned} & \text { GPIO2E/ } \\ & \text { EXTINT2E } \end{aligned}$ | GPIO2E | Hiz | Hiz |

Table 17. TERMINAL STATE TABLE (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ | $\begin{gathered} \text { XA } \\ \text { WLP120 } \end{gathered}$ | PIN NAME | Default Function (NRES = Low) (Note 11) | Terminal status NRES = Low(i) (Note 12) | Terminal status NRES = High(ii) (Note 12) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\bullet$ | $\bullet$ | GPIO2F/ <br> EXTINT2F | GPIO2F | Hiz | Hiz (Note 14) |
| $\bullet$ | $\bullet$ | $\begin{gathered} \text { NWRENWRL/ } \\ \text { DINO/ } \\ \text { GPIO30/ } \\ \text { EXTINT30 } \end{gathered}$ | GPIO30 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | NHBNWRH/ <br> TXD0/ <br> DOUTO/ <br> GPIO31/ <br> EXTINT31 | GPIO31 | Hiz | Hiz |
|  |  | EXA1/ GPIO32/ EXTINT32 | GPIO32 | Hiz | Hiz |
|  |  | EXA2/ GPIO33/ EXTINT33 | GPIO33 | Hiz | Hiz |
| $\bullet$ |  | EXA3/ DIN1/ GPIO34/ EXTINT34 | GPIO34 | Hiz | Hiz |
|  |  | EXA4/ <br> DOUT1/ GPIO35/ EXTINT35 | GPIO35 | Hiz | Hiz |
|  |  | $\begin{gathered} \text { EXA5/ } \\ \text { GPIO36/ } \\ \text { EXTINT36 } \end{gathered}$ | GPIO36 | Hiz | Hiz |
|  |  | EXA6/ GPIO37/ EXTINT37 | GPIO37 | Hiz | Hiz |
|  |  | EXA7/ GPIO38/ EXTINT38 | GPIO38 | Hiz | Hiz |
|  |  | EXA8/ GPIO39/ EXTINT39 | GPIO39 | Hiz | Hiz |
|  |  | EXA9/ GPIO3A/ EXTINT3A | GPIO3A | Hiz | Hiz |
|  |  | $\begin{gathered} \text { EXA10/ } \\ \text { GPIO3B/ } \\ \text { EXTINT3B } \end{gathered}$ | GPIO3B | Hiz | Hiz |
|  |  | EXA11/ GPIO3C/ EXTINT3C | GPIO3C | Hiz | Hiz |
|  |  | $\begin{gathered} \text { EXA12/ } \\ \text { GPIO3D/ } \\ \text { EXTINT3D } \end{gathered}$ | GPIO3D | Hiz | Hiz |
|  |  | EXA13/ GPIO3E/ EXTINT3E | GPIO3E | Hiz | Hiz |
|  |  | EXA14/ GPIO3F/ EXTINT3F | GPIO3F | Hiz | Hiz |

Table 17. TERMINAL STATE TABLE (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ | $\begin{gathered} \text { XA } \\ \text { WLP120 } \end{gathered}$ | PIN NAME | Default Function (NRES = Low) (Note 11) | Terminal status NRES = Low(i) (Note 12) | Terminal status NRES = High(ii) (Note 12) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | EXA15/ GPIO40/ EXTINT40 | GPIO40 | Hiz | Hiz |
|  |  | EXA16/ GPIO41/ EXTINT41 | GPIO41 | Hiz | Hiz |
|  |  | EXA17/ GPIO42/ EXTINT42 | GPIO42 | Hiz | Hiz |
|  |  | EXA18/ GPIO43/ EXTINT43 | GPIO43 | Hiz | Hiz |
|  |  | EXA19/ GPIO44/ EXTINT44 | GPIO44 | Hiz | Hiz |
|  |  | EXA20/ GPIO45/ EXTINT45 | GPIO45 | Hiz | Hiz |
|  |  | $\begin{gathered} \text { EXD0/ } \\ \text { GPIO46/ } \\ \text { EXTINT46 } \end{gathered}$ | GPIO46 | Hiz | Hiz |
|  |  | EXD1/ GPIO47/ EXTINT47 | GPIO47 | Hiz | Hiz |
|  |  | $\begin{gathered} \text { EXD2/ } \\ \text { GPIO48/ } \\ \text { EXTINT48 } \end{gathered}$ | GPIO48 | Hiz | Hiz |
|  |  | $\begin{gathered} \text { EXD3/ } \\ \text { GPIO49/ } \\ \text { EXTINT49 } \end{gathered}$ | GPIO49 | Hiz | Hiz |
|  |  | EXD4/ GPIO4A/ EXTINT4A | GPIO4A | Hiz | Hiz |
|  |  | EXD5/ GPIO4B/ EXTINT4B | GPIO4B | Hiz | Hiz |
|  |  | $\begin{gathered} \text { EXD6/ } \\ \text { GPIO4C/ } \\ \text { EXTINT4C } \end{gathered}$ | GPIO4C | Hiz | Hiz |
|  |  | EXD7/ GPIO4D/ EXTINT4D | GPIO4D | Hiz | Hiz |
|  |  | EXD8/ GPIO4E/ EXTINT4E | GPIO4E | Hiz | Hiz |
|  |  | EXD9/ GPIO4F/ EXTINT4F | GPIO4F | Hiz | Hiz |
|  |  | $\begin{gathered} \text { EXD10/ } \\ \text { GPIO50/ } \\ \text { EXTINT50 } \end{gathered}$ | GPIO50 | Hiz | Hiz |
|  |  | EXD11/ <br> GPIO51/ EXTINT51 | GPIO51 | Hiz | Hiz |

Table 17. TERMINAL STATE TABLE (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ | $\begin{gathered} \text { XA } \\ \text { WLP120 } \end{gathered}$ | PIN NAME | Default Function (NRES = Low) (Note 11) | Terminal status NRES = Low(i) (Note 12) | Terminal status NRES = High(ii) (Note 12) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | EXD12/ GPIO52/ EXTINT52 | GPIO52 | Hiz | Hiz |
|  |  | EXD13/ GPIO53/ EXTINT53 | GPIO53 | Hiz | Hiz |
|  |  | EXD14/ GPIO54/ EXTINT54 | GPIO54 | Hiz | Hiz |
|  |  | $\begin{gathered} \hline \text { EXD15/ } \\ \text { GPIO55/ } \\ \text { EXTINT55 } \end{gathered}$ | GPIO55 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | CTS1/ SDAT22/ RXD0/ GPIO56/ EXTINT56 | GPIO56 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | RTS1/ SDAT23/ TXD0/ GPIO57/ EXTINT57 | GPIO57 | Hiz | Hiz |
|  |  | PSM_CS | PSM_CS | PD | PD |
|  |  | PSM_SDI(DAT0) | PSM_SDI(DAT0) | PD | PD |
|  |  | PSM_SDO(DAT1) | PSM_SDO(DAT1) | PD | PD |
|  |  | PSM_DAT2 | PSM_DAT2 | PD | PD |
|  |  | PSM_DAT3 | PSM_DAT3 | PD | PD |
|  |  | PSM_SCK | PSM_SCK | PD | PD |
| $\bullet$ |  | SDAT00 | SDAT00 | Hiz | Hiz |
| $\bullet$ |  | SDAT01 | SDAT01 | Hiz | Hiz |
| $\bullet$ |  | SDAT02 | SDAT02 | Hiz | Hiz |
| $\bullet$ |  | SDAT03 | SDAT03 | Hiz | Hiz |
| - |  | SDCLK0 | SDCLK0 | Low | Low |
| - |  | SDCMD0 | SDCMD0 | Hiz | Hiz |
|  |  | SDRADDR0 | SDRADDR0 | Low | Low |
|  |  | SDRADDR1 | SDRADDR1 | Low | Low |
|  |  | SDRADDR10 | SDRADDR10 | Low | Low |
|  |  | SDRADDR2 | SDRADDR2 | Low | Low |
|  |  | SDRADDR3 | SDRADDR3 | Low | Low |
|  |  | SDRADDR4 | SDRADDR4 | Low | Low |
|  |  | SDRADDR5 | SDRADDR5 | Low | Low |
|  |  | SDRADDR6 | SDRADDR6 | Low | Low |
|  |  | SDRADDR7 | SDRADDR7 | Low | Low |
|  |  | SDRADDR8 | SDRADDR8 | Low | Low |
|  |  | SDRADDR9 | SDRADDR9 | Low | Low |
|  |  | SDRBA0 | SDRBAO | Low | Low |
|  |  | SDRBA1 | SDRBA1 | Low | Low |

Table 17. TERMINAL STATE TABLE (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ | $\begin{gathered} \text { XA } \\ \text { WLP120 } \end{gathered}$ | PIN NAME | Default Function (NRES = Low) (Note 11) | Terminal status NRES = Low(i) (Note 12) | Terminal status NRES = High(ii) (Note 12) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SDRCAS | SDRCAS | High | High |
|  |  | SDRCKE | SDRCKE | High | High |
|  |  | SDRCLK | SDRCLK | Low | Low |
|  |  | SDRCS | SDRCS | High | High |
|  |  | SDRDATA0 | SDRDATA0 | Hiz | Hiz |
|  |  | SDRDATA1 | SDRDATA1 | Hiz | Hiz |
|  |  | SDRDATA10 | SDRDATA10 | Hiz | Hiz |
|  |  | SDRDATA11 | SDRDATA11 | Hiz | Hiz |
|  |  | SDRDATA12 | SDRDATA12 | Hiz | Hiz |
|  |  | SDRDATA13 | SDRDATA13 | Hiz | Hiz |
|  |  | SDRDATA14 | SDRDATA14 | Hiz | Hiz |
|  |  | SDRDATA15 | SDRDATA15 | Hiz | Hiz |
|  |  | SDRDATA2 | SDRDATA2 | Hiz | Hiz |
|  |  | SDRDATA3 | SDRDATA3 | Hiz | Hiz |
|  |  | SDRDATA4 | SDRDATA4 | Hiz | Hiz |
|  |  | SDRDATA5 | SDRDATA5 | Hiz | Hiz |
|  |  | SDRDATA6 | SDRDATA6 | Hiz | Hiz |
|  |  | SDRDATA7 | SDRDATA7 | Hiz | Hiz |
|  |  | SDRDATA8 | SDRDATA8 | Hiz | Hiz |
|  |  | SDRDATA9 | SDRDATA9 | Hiz | Hiz |
|  |  | SDRDQM0 | SDRDQM0 | High | High |
|  |  | SDRDQM1 | SDRDQM1 | High | High |
|  |  | SDRRAS | SDRRAS | High | High |
|  |  | SDRWE | SDRWE | High | High |
| $\bullet$ | $\bullet$ | SWDCLK/ DMCKOOB/ GPIO58/ EXTINT58 | SWDCLK | Hiz | Hiz |
| $\bullet$ | $\bullet$ | SWDIO/ DMDIN0B/ GPIO59/ EXTINT59 | SWDIO | Hiz | Hiz |
| $\bullet$ | $\bullet$ | NRES | NRES | Hiz | Hiz |
| - | - | TEST | TEST | Hiz | Hiz |
|  |  | XTALINFO0 | XTALINFO0 | Hiz | Hiz |
|  |  | XTALINFO1 | XTALINFO1 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | BMODE0 | BMODE0 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | BMODE1 | BMODE1 | Hiz | Hiz |
| $\bullet$ | $\bullet$ | 1 O 18 V | 1 O 18 V | Hiz | Hiz |
| $\bullet$ |  | RTCMODE | RTCMODE | Hiz | Hiz |
| $\bullet$ | $\bullet$ | KEYINT0 | KEYINT0 | PD | PD |
| $\bullet$ | $\bullet$ | USBDM | USBDM | Low | Low |
| $\bullet$ | $\bullet$ | KEYINT1 | KEYINT1 | PD | PD |

Table 17. TERMINAL STATE TABLE (continued)

| $\begin{gathered} \text { RB } \\ \text { BGA136 } \end{gathered}$ | $\begin{gathered} \text { XA } \\ \text { WLP120 } \end{gathered}$ | PIN NAME | Default Function (NRES = Low) (Note 11) | Terminal status NRES = Low(i) (Note 12) | Terminal status NRES = High(ii) (Note 12) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | KEYINT2 | KEYINT2 | PD | PD |
| $\bullet$ |  | BACKUPB | BACKUPB | Hiz | Hiz |
| $\bullet$ | $\bullet$ | RTCINT | RTCINT | -(Not Determined) | -(Not Determined) |
| - | - | VDET | VDET | Hiz | Hiz |
| $\bullet$ | $\bullet$ | LOUT/ GPLOUT | LOUT | Hiz | Hiz |
| $\bullet$ | $\bullet$ | ROUT/ GPROUT | ROUT | Hiz | Hiz |
| $\bullet$ | $\bullet$ | USBDP | USBDP | Low | Low |
| $\bullet$ | $\bullet$ | USBID | USBID | Hiz | Hiz |
| $\bullet$ | $\bullet$ | USBEXT02 | USBEXT02 | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ | $\bullet$ | USBVBUS | USBVBUS | Hiz | Hiz |
|  |  | VCNT1 | VCNT1 | -(Not Applicable) | -(Not Applicable) |
|  |  | VCNT2 | VCNT2 | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ | $\bullet$ | SIN0 | SIN0 | -(Not Applicable) | -(Not Applicable) |
| - | - | SIN1 | SIN1 | -(Not Applicable) | -(Not Applicable) |
| - | - | SIN2 | SIN2 | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ |  | SIN3 | SIN3 | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ |  | SIN4 | SIN4 | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ |  | SIN5 | SIN5 | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ |  | SIN6 | SIN6 | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ |  | SIN7 | SIN7 | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ | $\bullet$ | XIN1 | XIN1 | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ | $\bullet$ | XIN32K | XIN32K | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ | $\bullet$ | XOUT1 | XOUT1 | -(Not Applicable) | -(Not Applicable) |
| $\bullet$ | $\bullet$ | XOUT32K | XOUT32K | -(Not Applicable) | -(Not Applicable) |

*"•" Means a port is available for each package. "PD" means pull down.
11. Default function is port function set by NRES = Low.
12. NRES = High(ii) occurs just after NRES = Low(i).
13. This terminal is configured as an output terminal with PU disabled, and used as QSCS for the SPI I/F chip select during serial flash boot mode. 14. This terminal is configured as an output terminal and used as the boot monitor port during Internal ROM boot.

## ELECTRICAL SPECIFICATION

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be
indicated by the Electrical Characteristics if operated under different conditions.

Table 18. MAXIMUM RATINGS (*VSS* $=0 \mathrm{~V}$ )

| Item | Symbol | Condition | Ratings | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Maximum power supply voltage | Vdd1 <br> VddXT1 <br> AVddPLL1 <br> AVddPLL2 <br> VddRTC |  | -0.3 to 1.2 | V |
|  | DVddUSBPHY1 |  | -0.3 to 1.2 | V |
|  | AVddADC AVddUSBPHY18 AVddDAMPL AVddDAMPR |  | -0.3 to 2.0 | V |
|  | Vdd2 VddSD1 AVddUSBPHY2 |  | -0.3 to 3.65 | V |
| Input voltage | VI |  | $\begin{gathered} -0.3 \text { to } \\ * V^{*} d^{\star}+0.3 \end{gathered}$ | V |
|  | VIUSB1 | USBDP,USBDM terminal | -0.3 to 6.0 | V |
|  | VIUSB2 | USBVBUS terminal | -0.3 to 6.0 | V |
| Operating ambient temperature | Topr |  | -20 to +65 | ${ }^{\circ} \mathrm{C}$ |
| Ambient temperature of preservation | Tstg |  | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 19. RECOMMENDATION OPERATING CONDITIONS ( $\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0} \mathbf{~} \mathbf{C}$ to $+65^{\circ} \mathrm{C}$ )

| Item | Symbol | Condition | Low voltage operation <br> (Note 15) |  |  | High voltage operation (Note 15) |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Typ | Max |  |
| Power supply voltage | Vdd1 |  | 0.95 | 1.0 | 1.155 | 1.05 | 1.1 | 1.155 | V |
|  | VddXT1 |  | 0.95 | 1.0 | 1.155 | same as left |  |  | V |
|  | AVddPLL1 |  | 0.95 | 1.0 | 1.155 | same as left |  |  | V |
|  | AVddPLL2 |  | 0.95 | 1.0 | 1.155 | same as left |  |  | V |
|  | VddRTC | (Note 16) | 0.765 |  | 0.90 | same as left |  |  | V |
|  |  |  | 0.90 | 1.0 | 1.155 | same as left |  |  | V |
|  | Vdd2 | (Note 17) | 2.7 | 3.3 | 3.6 | same as left |  |  | V |
|  |  | (Note 17) | 1.7 | 1.8 | 1.95 | same as left |  |  | V |
|  | VddSD1 | (Note 18) | 2.7 | 3.3 | 3.6 | same as left |  |  | V |
|  |  | (Note 18) | 1.7 | 1.8 | 1.95 | same as left |  |  | V |
|  | AVddADC |  | 1.7 | 1.8 | 1.95 | same as left |  |  | V |
|  | DVddUSBPHY1 | (Note 19) | 0.93 | 1.0 | 1.1 | same as left |  |  | V |
|  |  | (Note 20) | 0.93 | 1.0 | 1.155 | same as left |  |  | V |
|  | AVddUSBPHY2 | (Note 19) | 3.07 | 3.3 | 3.6 | same as left |  |  | V |
|  |  | (Note 20) | 2.7 | 3.3 | 3.6 | same as left |  |  | V |
|  | AVddUSBPHY18 | (Note 19) | 1.7 | 1.8 | 1.95 | same as left |  |  | V |
|  |  | (Note 20) | 1.7 | 1.8 | 1.95 | same as left |  |  | V |
|  | AVddDAMPL |  | 0.95 | 1.5 | 1.65 | same as left |  |  | V |
|  |  | (Note 21) | 0.95 | 1.5 | 1.95 | same as left |  |  | V |
|  | AVddDAMPR |  | 0.95 | 1.5 | 1.65 | same as left |  |  | V |
|  |  | (Note 21) | 0.95 | 1.5 | 1.95 | same as left |  |  | V |
| Input range | VIN |  | 0 |  | *Vdd** | same as left |  |  | V |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
15. Follow the operating frequency specifications because the operating frequency ranges are specified according to the operating voltage ranges.
16. APB clock needs 57.5 MHz or less.
17. 1 O terminals operating at Vdd 2 need to be specified for the IO voltage range of either 3.3 V or 1.8 V according to the Vdd2 voltage by using the IO 18 V terminal. When setting 1.8 VIO interface, even for extremely short period, don't supply not only the 3.3 V voltage range but also any voltage over the 1.8 V voltage range to Vdd 2 .
18. IO terminals operating at VddSD1 need to be specified for the IO voltage range of either 3.3 V or 1.8 V according to the VddSD1 voltage by setting a register "System Controller" described in the "System Functions User's Manual". When setting 1.8 V 1 O interface, even for extremely short period, don't supply not only the 3.3 V voltage range but also any voltage over the 1.8 V voltage range to VddSD 1 .
19. While USB is used (including USB suspend mode).
20. While USB is not used.
21. While used as GPO (general purpose output) the output of which can be controlled by registers.

The power domains of Vdd1, DVddUSBPHY1, AVddPLL1, AVddPLL2, VddXT1 are divided, and different voltages can be supplied.
The power domains of Vdd2, VddSD1, AVddADC, AVddUSBPHY2, AVdd USBPHY18, AvddDAMPL = AVddDAMPR are divided, and difference voltages can be supplied.
If power is supplied to one of the power supply pins above, all the other power supply pins should also be supplied.
However, DVddUSBPHY1, AVddUSBPHY18 and AVddUSBPHY2 can all be turned off to reduce leakage current while USB is not used. In addition, VddRTC can be supplied if BACKUPB is set to low, while other power supply pins are not supplied.

Table 20. RECOMMENDED OPERATING CONDITIONS

| Item | Symbol | Function | Low voltage operation |  |  | High voltage operation |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Typ | Max |  |
| Xtal Input frequency | Fxin1 | System, Audio clock (XT1 oscillator) | 12 MHz or 19.2 MHz or 24 MHz Tolerance: $\pm 50 \mathrm{ppm}$ or less |  |  | same as left |  |  | - |
|  | FxinRTC | RTC clock (XTRTC oscillator) | 32.768 kHzTolerance : $\pm 50 \mathrm{ppm}$ or less |  |  | same as left |  |  | - |
|  | Frc | RC (RC oscillator) | $\begin{gathered} 0.4 \\ \text { (Note 25) } \end{gathered}$ | $\begin{gathered} 1 \\ (\text { Note } 25) \end{gathered}$ | $\begin{gathered} 2 \\ (\text { Note 25) } \end{gathered}$ | same as left |  |  | MHz |
| Time for Xtal stable | Txin1 |  |  |  | $\begin{gathered} 3 \\ (\text { Note 26) } \end{gathered}$ | same as left |  |  | ms |
|  | TxinRTC |  |  |  | $\begin{gathered} 1000 \\ (\text { Note 26) } \end{gathered}$ | same as left |  |  | ms |
| Internal clock frequency | Farm | Cortex-M3 | 0 |  | 115 | 0 |  | 170 | MHz |
|  | Fanb | AHB | 0 |  | 115 | 0 |  | 170 | MHz |
|  | Fapb | APB | 0 |  | 115 | 0 |  | 170 | MHz |
|  | Fdsp | DSP | 0 |  | 115 | 0 |  | 170 | MHz |
|  | Faud (Note 22) | AUDCLK(768fs) | 0 | 33.8688 | 147.456 | same as left |  |  | MHz |
|  | Fdec | DECCLK (Note 23) (MP3 Decoder) | 0 | 16.9344 | 73.728 | same as left |  |  | MHz |
|  | Fenc | ENCCLK (Note 24) (MP3 Encoder) | 0 | 8.4672 | 36.864 | same as left |  |  | MHz |

22. Audio blocks run on a clock of 256 * Fs (sampling frequency).

However, Class-D AMP, etc. run at 384 * Fs (sampling frequency).
These clocks are generated from 768 * Fs (Base Clock) divided by 3 and 2 respectively.
23.MP3 Decoder runs on a clock of 384 * Fs(sampling frequency of MPEG1 mode).

It runs on the clock of the same frequency as MPEG1 mode during MPEG2 / 2.5 mode. For example, even when operating in MPEG2 / 2.5 mode( $F s=22.05$ / 11.025 KHz as an example), please supply $16.9344 \mathrm{MHz}(=384 * 44.1 \mathrm{KHz}$ ) clock which is the same clock frequency as MPEG1 mode.
24.MP3 Encoder runs on a clock of 192 * Fs(sampling frequency of MPEG1 mode).

It runs on the clock of the same frequency as MPEG1 mode during MPEG2 / 2.5 mode. For example, even when operating in MPEG2 / 2.5
mode( $\mathrm{Fs}=22.05$ / 11.025 KHz as an example), please supply $8.4672 \mathrm{Mhz}(=192$ * 44.1 KHz ) clock which is the same clock frequency as MPEG1 mode.
25. $\mathrm{V} \mathrm{dd} 1=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Ta}=-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
26. It is a reference level in $\mathrm{Ta}=25^{\circ} \mathrm{C}$. Adjustment is necessary by the situation of the set.

Table 21. DC CHARACTERISTICS
(Vdd2 = 2.7 V to 3.6 V, VddSD1 = 2.7 V to 3.6 V, VddRTC $=0.765 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ )

| Item | Symbol | Pin | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input H voltage | $\mathrm{V}_{\mathrm{IH}}$ | (1)(2)(4) | CMOS | $0.7 \times$ Vdd2 |  |  | V |
|  |  | (3) |  | $0.7 \times$ VddSD1 |  |  | V |
|  |  | (6)(8) | Schmitt | $0.75 \times$ Vdd2 |  |  | V |
|  |  | (7) |  | $0.75 \times$ VddSD1 |  |  | V |
|  |  | (5)(9) | CMOS | $0.7 \times$ VddRTC |  |  | V |
| Input L voltage | $\mathrm{V}_{\text {IL }}$ | (1)(2)(4) | CMOS |  |  | $0.25 \times \mathrm{Vdd} 2$ | V |
|  |  | (3) |  |  |  | $0.25 \times$ VddSD1 | V |
|  |  | (6)(8) | Schmitt |  |  | $0.2 \times$ Vdd2 | V |
|  |  | (7) |  |  |  | $0.2 \times$ VddSD1 | V |
|  |  | (5)(9) | CMOS |  |  | $0.2 \times$ VddRTC | V |
| Output H voltage | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{aligned} & (10)(11)(12) \\ & (14)(15)(17) \end{aligned}$ | $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$ | Vdd2 - 0.4 |  |  | V |
|  |  | (13)(16) |  | VddSD1-0.4 |  |  | V |
|  |  | $\begin{gathered} \hline(10) \\ (14)(15)(17) \end{gathered}$ | $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$ | Vdd2 - 0.4 |  |  | V |
|  |  | (16) |  | VddSD1-0.4 |  |  | V |
|  |  | $\begin{gathered} \hline(10) \\ (14)(15)(17) \end{gathered}$ | $\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ | Vdd2-0.4 |  |  | V |
|  |  | (16) |  | VddSD1-0.4 |  |  | V |
|  |  | (14)(15)(17) | $\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$ | Vdd2 - 0.4 |  |  | V |
|  |  | (16) |  | VddSD1-0.4 |  |  | V |
| Output L voltage | $\mathrm{V}_{\mathrm{OL}}$ | $\begin{aligned} & (10)(11)(12) \\ & (14)(15)(17) \end{aligned}$ | $\mathrm{IOL}=2 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | (13)(16) |  |  |  | 0.4 | V |
|  |  | $\begin{gathered} (10) \\ (14)(15)(17) \end{gathered}$ | $\mathrm{IOL}=4 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | (16) |  |  |  | 0.4 | V |
|  |  | $\begin{gathered} (10) \\ (14)(15)(17) \end{gathered}$ | $\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | (16) |  |  |  | 0.4 | V |
|  |  | (14)(15)(17) | $\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | (16) |  |  |  | 0.4 | V |
|  |  | (18) | $\mathrm{I}_{\text {OL }}=0.3 \mathrm{~mA}$ |  |  | 0.3 | V |
| Pull-up resistor | Rup | (20)(21) |  | 30 |  | 150 | $\mathrm{k} \Omega$ |
|  |  | (22) |  | 25 |  | 80 | $\mathrm{k} \Omega$ |
|  |  | (23) |  | 18 |  | 50 | $\mathrm{k} \Omega$ |
| Pull-down resistor | Rdn | (26) | $\begin{gathered} \text { VddRTC }= \\ 0.765 \text { to } 0.90 \mathrm{~V} \end{gathered}$ | 180 |  | 720 | $\mathrm{k} \Omega$ |
|  |  |  | $\begin{gathered} \text { VddRTC }= \\ 0.90 \text { to } 1.155 \mathrm{~V} \end{gathered}$ | 93 |  | 280 | k $\Omega$ |
|  |  | (19)(21) |  | 30 |  | 150 | $\mathrm{k} \Omega$ |
|  |  | (22) |  | 25 |  | 80 | $\mathrm{k} \Omega$ |
|  |  | (23) |  | 18 |  | 50 | $\mathrm{k} \Omega$ |
| Input leak current | IIL | $\begin{aligned} & \text { (1)(2)(3) } \\ & (4)(5)(6) \\ & (7)(8)(9) \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \mathrm{VI}=\mathrm{Vdd}^{*} \\ \text { or } \\ \mathrm{VI}=\mathrm{Vss} \end{gathered}$ | -10 |  | 10 | $\mu \mathrm{A}$ |

Table 21. DC CHARACTERISTICS (continued)
(Vdd2 = 2.7 V to 3.6 V , VddSD1 $=2.7 \mathrm{~V}$ to 3.6 V , $\mathrm{VddRTC}=0.765 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ )

| Item | Symbol | Pin | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output leak current | IOZ | $(11)(12)$ <br> $(13)(14)(15)$ <br> $(16)(18)(27)$ | HiZ output | -10 |  | 10 | $\mu \mathrm{~A}$ |
|  |  |  |  |  |  |  |  |

Table 22. DC CHARACTERISTICS
$(\mathrm{Vdd} 2=1.7 \mathrm{~V}$ to 1.95 V , VddSD1 $=1.7 \mathrm{~V}$ to 1.95 V , $\mathrm{AVddDAMPL}=0.95 \mathrm{~V}$ to 1.95 V , $\mathrm{AVddDAMPR}=0.95 \mathrm{~V}$ to 1.95 V , $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ )

| Item | Symbol | Pin | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input H voltage | $\mathrm{V}_{\mathrm{IH}}$ | (1)(2)(4) | CMOS | $0.7 \times \mathrm{Vdd} 2$ |  |  | V |
|  |  | (3) |  | $0.7 \times$ VddSD1 |  |  | V |
|  |  | (6)(8) | Schmitt | $0.75 \times$ Vdd2 |  |  | V |
|  |  | (7) |  | $0.75 \times$ VddSD1 |  |  | V |
| Input L voltage | VIL | (1)(2)(4) | CMOS |  |  | $0.3 \times \mathrm{Vdd} 2$ | V |
|  |  | (3) |  |  |  | $0.3 \times$ VddSD1 | V |
|  |  | (6)(8) | Schmitt |  |  | $0.25 \times \mathrm{Vdd} 2$ | V |
|  |  | (7) |  |  |  | $0.25 \times$ VddSD1 | V |
| Output H voltage | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{aligned} & (10)(11)(12) \\ & (14)(15)(17) \end{aligned}$ | $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$ | Vdd2 - 0.4 |  |  | V |
|  |  | (13)(16) |  | VddSD1-0.4 |  |  | V |
|  |  | $\begin{gathered} \hline(10) \\ (14)(15)(17) \end{gathered}$ | $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$ | Vdd2 - 0.4 |  |  | V |
|  |  | (16) |  | VddSD1-0.4 |  |  | V |
|  |  | (14)(15)(17) | $\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ | Vdd2-0.4 |  |  | V |
|  |  | (16) |  | VddSD1-0.4 |  |  | V |
|  |  | (14)(15)(17) | $\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$ | Vdd2-0.4 |  |  | V |
|  |  | (16) |  | VddSD1-0.4 |  |  | V |
|  |  | (24) | $\begin{gathered} \hline \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ (\text { Note } 27) \end{gathered}$ | AVddDAMPL-0.4 |  |  | V |
|  |  | (25) | $\begin{gathered} \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ \text { (Note 27) } \end{gathered}$ | AVddDAMPR - 0.4 |  |  | V |
| Output L voltage | $\mathrm{V}_{\text {OL }}$ | $\begin{aligned} & (10)(11)(12) \\ & (14)(15)(17) \end{aligned}$ | $\mathrm{l} \mathrm{OL}=2 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | (13)(16) |  |  |  | 0.4 | V |
|  |  | $\begin{gathered} (10) \\ (14)(15)(17) \\ \hline \end{gathered}$ | $\mathrm{l} \mathrm{OL}=4 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | (16) |  |  |  | 0.4 | V |
|  |  | $\begin{gathered} (10) \\ (14)(15)(17) \\ \hline \end{gathered}$ | $\mathrm{l} \mathrm{OL}=8 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | (16) |  |  |  | 0.4 | V |
|  |  | (14)(15)(17) | $\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | (16) |  |  |  | 0.4 | V |
|  |  | (24) | $\mathrm{l} \mathrm{OL}=8 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | (25) | $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ |  |  | 0.4 | V |
| Pull-up resistor | Rup | (20)(21) |  | 30 |  | 200 | $\mathrm{k} \Omega$ |
|  |  | (22) |  | 25 |  | 80 | k $\Omega$ |
|  |  | (23) |  | 18 |  | 50 | k $\Omega$ |
| Pull-down resistor | Rdn | (19)(21) |  | 30 |  | 200 | $\mathrm{k} \Omega$ |
|  |  | (22) |  | 25 |  | 80 | $\mathrm{k} \Omega$ |
|  |  | (23) |  | 18 |  | 50 | k $\Omega$ |

Table 22. DC CHARACTERISTICS (continued)
$(\mathrm{Vdd2}=1.7 \mathrm{~V}$ to 1.95 V , $\mathrm{VddSD} 1=1.7 \mathrm{~V}$ to 1.95 V , $\mathrm{AVddDAMPL}=0.95 \mathrm{~V}$ to 1.95 V , $\mathrm{AVddDAMPR}=0.95 \mathrm{~V}$ to 1.95 V ,
$\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ )

| Item | Symbol | Pin | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input leak current | $I_{\text {IL }}$ | $\begin{gathered} \hline(1)(2)(3) \\ (4)(6) \\ (7)(8) \end{gathered}$ | $\begin{gathered} \hline \mathrm{VI}=\mathrm{Vdd}{ }^{*} \\ \text { or } \\ \mathrm{VI}=\mathrm{Vss} \end{gathered}$ | -10 |  | 10 | $\mu \mathrm{A}$ |
| Output leak current | $\mathrm{I}_{\mathrm{OZ}}$ | $\begin{gathered} \hline(11)(12) \\ (13)(14)(15) \\ (16)(27) \end{gathered}$ | HiZ output | -10 |  | 10 | $\mu \mathrm{A}$ |
|  |  | (24)(25) |  | -10 |  | 10 | $\mu \mathrm{A}$ |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
(1) SDRDATA15, SDRDATA14, SDRDATA13, SDRDATA12, SDRDATA11, SDRDATA10, SDRDATA9, SDRDATA8, SDRDATA7, SDRDATA6, SDRDATA5, SDRDATA4, SDRDATA3, SDRDATA2, SDRDATA1, SDRDATA0
(2) SDCLK2(GPIO09), SDCMD2(GPIO0A), SDAT23(GPIO57), SDAT22(GPIO56), SDAT21(GPIO05), SDAT20(GPIO04), PSM_SCK, PSM_CS, PSM SDI, PSM SDO, PSM_DAT2, PSM DAT3
(3) SDCLK1(GPIO 22 ), SDCMD̄1(GPIO23), SDAT13(GPIO27), SDAT12(GPIO26), SDAT11(GPIO25), SDAT10(GPIO24)
(4) SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00, SFCK(GPIO0D), SFDI(GPIO0E), SFDO(GPIO0F), SFWP(GPIO11), SFHOLD(GPIO12), TIOCB01(GPIO03)
(5) RTCMODE, VDET
(6) SDWP2(GPIO28), SDCD2(GPIO29), EXD0(GPIO46), EXD1(GPIO47), EXD2(GPIO48), EXD3(GPIO49), EXD4(GPIO4A), EXD5(GPIO4B), EXD6(GPIO4C), EXD7(GPIO4D), EXD8(GPIO4E), EXD9(GPIO4F), EXD10(GPIO50), EXD11(GPIO51), EXD12(GPIO52), EXD13(GPIO53), EXD14(GPIO54), EXD15(GPIO55), EXA1(GPIO32), EXA2(GPIO33), EXA3(GPIO34), EXA4(GPIO35), EXA5(GPIO36), EXA6(GPIO37), EXA7(GPIO38), EXA8(GPIO39), EXA9(GPIO3A), EXA10(GPIO3B), EXA11(GPIO3C), EXA12(GPIO3D), EXA13(GPIO3E), EXA14(GPIO3F), EXA15(GPIO40), EXA16(GPIO41), EXA17(GPIO42), EXA18(GPIO43), EXA19(GPIO44), EXA20(GPIO45), NRD(GPIO17), NLBEXA0(GPIO16), NHBNWRH(GPIO31), NCS1(GPIO10), NCS0(GPIO06), NWRENWRL(GPIO30), SWDIO(GPIO59), DOUT1(GPIO15), BCK1(GPIO13), MCLK0(GPIO18), LRCK1(GPIO14), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), XTALINFO1, DOUT0(GPIO1C), NRES, SCL1(GPIO2B), SDA1(GPIO2C), TCLKA0(GPIO00), TCLKB0(GPIO01), EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), TXD2(GPIO0B), RXD2(GPIO0C), TIOCB00(GPIO02), XTALINFO0, SDO0(GPIO1F), SCK0(GPIO1D), SCL0(GPIO07), SDI0(GPIO1E), SDA0(GPIO08), SWDCLK(GPIO58), SDRADDR12(GPIO2A), SDRADDR11(GPIO2D)
(7) SDWP1(GPIO21), SDCD1(GPIO20)
(8) BMODE0, BMODE1
(9) Keyint2, Keyint0, Keyint1, BACKUPB, TEST
(10) EXD0(GPIO46), EXD1(GPIO47), EXD2(GPIO48), EXD3(GPIO49), EXD4(GPIO4A), EXD5(GPIO4B), EXD6(GPIO4C), EXD7(GPIO4D), EXD8(GPIO4E), EXD9(GPIO4F), EXD10(GPIO50), EXD11(GPIO51), EXD12(GPIO52), EXD13(GPIO53), EXD14(GPIO54), EXD15(GPIO55), EXA1(GPIO32), EXA2(GPIO33), EXA3(GPIO34), EXA4(GPIO35), EXA5(GPIO36), EXA6(GPIO37), EXA7(GPIO38), EXA8(GPIO39), EXA9(GPIO3A), EXA10(GPIO3B), EXA11(GPIO3C), EXA12(GPIO3D), EXA13(GPIO3E), EXA14(GPIO3F), EXA15(GPIO40), EXA16(GPIO41), EXA17(GPIO42), EXA18(GPIO43), EXA19(GPIO44), EXA20(GPIO45), NRD(GPIO17), NLBEXA0(GPIO16), NHBNWRH(GPIO31), NCS1(GPIO10), NCS0(GPIO06), NWRENWRL(GPIO30), DOUT1(GPIO15), BCK1 (GPIO13), MCLK0(GPIO18), LRCK1 (GPIO14), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), XTALINFO1, DOUT0(GPIO1C), SCL1(GPIO2B), SDA1(GPIO2C), TCLKA0(GPIO00), TCLKB0(GPIO01), EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), TXD2(GPIO0B), RXD2(GPIO0C), TIOCB00(GPIO02), XTALINFO0, SDO0(GPIO1F), SCK0(GPIO1D), SCL0(GPIO07), SDIO(GPIO1E), SDA0(GPIO08), SWDCLK(GPIO58), SDRADDR0, SDRADDR1, SDRADDR2, SDRADDR3, SDRADDR4, SDRADDR5, SDRADDR6, SDRADDR7, SDRADDR8, SDRADDR9, SDRADDR10, SDRADDR11(GPIO2D), SDRADDR12(GPIO2A), SDRDATA0, SDRDATA1, SDRDATA2, SDRDATA3, SDRDATA4, SDRDATA5, SDRDATA6, SDRDATA7, SDRDATA8, SDRDATA9, SDRDATA10, SDRDATA11, SDRDATA12, SDRDATA13, SDRDATA14, SDRDATA15, SDRBA1, SDRBA0, SDRCKE, SDRCS, SDRWE, SDRCAS, SDRRAS, SDRDQM1, SDRDQM0, SDWP2(GPIO28), SDCD2(GPIO29)
(11) SWDIO(GPIO59)
(12) BMODE0, BMODE1
(13) SDWP1(GPIO21), SDCD1(GPIO20)
(14) SDCLK0, SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00, SFCK(GPIO0D), SFDI(GPIO0E), SFDO(GPIO0F), SFWP(GPIO11), SFHOLD(GPIO12), TIOCB01(GPIO03)
(15) SDCLK2(GPIO09), SDCMD2(GPIO0A), SDAT23(GPIO57), SDAT22(GPIO56), SDAT21(GPIO05), SDAT20(GPIO04), PSM_SCK, PSM_CS, PSM SDI, PSM SDO, PSM_DAT2, PSM DAT3
(16) SDCLK1(GPIO2̄2), SDCMD̄1(GPIO23), SDAT13(GPIO27), SDAT12(GPIO26), SDAT11(GPIO25), SDAT10(GPIO24),
(17) SDRCLK
(18) RTCINT
(19) EXD0(GPIO46), EXD1(GPIO47), EXD2(GPIO48), EXD3(GPIO49), EXD4(GPIO4A), EXD5(GPIO4B), EXD6(GPIO4C), EXD7(GPIO4D), EXD8(GPIO4E), EXD9(GPIO4F), EXD10(GPIO50), EXD11(GPIO51), EXD12(GPIO52), EXD13(GPIO53), EXD14(GPIO54), EXD15(GPIO55), EXA1(GPIO32), EXA2(GPIO33), EXA3(GPIO34), EXA4(GPIO35), EXA5(GPIO36), EXA6(GPIO37), EXA7(GPIO38), EXA8(GPIO39), EXA9(GPIO3A), EXA10(GPIO3B), EXA11(GPIO3C), EXA12(GPIO3D), EXA13(GPIO3E), EXA14(GPIO3F), EXA15(GPIO40), EXA16(GPIO41), EXA17(GPIO42), EXA18(GPIO43), EXA19(GPIO44), EXA20(GPIO45), NRD(GPIO17), NLBEXA0(GPIO16), NHBNWRH(GPIO31), NWRENWRL(GPIO30), SDRDATA0, SDRDATA1, SDRDATA2, SDRDATA3, SDRDATA4, SDRDATA5, SDRDATA6, SDRDATA7, SDRDATA8, SDRDATA9, SDRDATA10, SDRDATA11, SDRDATA12, SDRDATA13, SDRDATA14, SDRDATA15
(20) NCS1(GPIO10), NCS0(GPIO06), XTALINFO1, XTALINFO0, SWDIO(GPIO59)
(21) DOUT1(GPIO15), BCK1(GPIO13), MCLK0(GPIO18), LRCK1(GPIO14), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), DOUT0(GPIO1C), SCL1(GPIO2B), SDA1(GPIO2C), TCLKA0(GPIO00), TCLKB0(GPIO01), SDO0(GPIO1F), SCK0(GPIO1D), SCL0(GPIO07), SDIO(GPIO1E), SDA0(GPIO08), EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), TXD2(GPIO0B), RXD2(GPIO0C), TIOCB00(GPIO02), SWDCLK(GPIO58), SDWP1(GPIO21), SDCD1(GPIO20), SDRADDR11(GPIO2D), SDRADDR12(GPIO2A), SDWP2(GPIO28), SDCD2(GPIO29)
(22) SDCLK1(GPIO22), SDCMD1(GPIO23), SDAT13(GPIO27), SDAT12(GPIO26), SDAT11(GPIO25), SDAT10(GPIO24), SDCLK2(GPIO09), SDCMD2(GPIO0A), SDAT23(GPIO57), SDAT22(GPIO56), SDAT21(GPIO05), SDAT20(GPIO04), PSM_SCK, PSM_CS, PSM_SDI, PSM_SDO, PSM_DAT2, PSM_DAT3, BMODE0, BMODE1
(23) SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00, SFCK(GPIO0D), SFDI(GPIO0E), SFDO(GPIO0F), SFWP(GPIO11), SFHOLD(GPIO12), TIOCB01(GPIO03)
(24) LOUT(used as GPLOUT)
(25) ROUT(used as GPROUT)
(26) Keyint0, Keyint1, Keyint2
(27) EXD0(GPIO46), EXD1(GPIO47), EXD2(GPIO48), EXD3(GPIO49), EXD4(GPIO4A), EXD5(GPIO4B), EXD6(GPIO4C), EXD7(GPIO4D), EXD8(GPIO4E), EXD9(GPIO4F), EXD10(GPIO50), EXD11(GPIO51), EXD12(GPIO52), EXD13(GPIO53), EXD14(GPIO54), EXD15(GPIO55), EXA1(GPIO32), EXA2(GPIO33), EXA3(GPIO34), EXA4(GPIO35), EXA5(GPIO36), EXA6(GPIO37), EXA7(GPIO38), EXA8(GPIO39), EXA9(GPIO3A), EXA10(GPIO3B), EXA11(GPIO3C), EXA12(GPIO3D), EXA13(GPIO3E), EXA14(GPIO3F), EXA15(GPIO40), EXA16(GPIO41), EXA17(GPIO42), EXA18(GPIO43), EXA19(GPIO44), EXA20(GPIO45), NRD(GPIO17), NLBEXA0(GPIO16), NHBNWRH(GPIO31), NCS1(GPIO10), NCS0(GPIO06), NWRENWRL(GPIO30), DOUT1(GPIO15), BCK1(GPIO13), MCLK0(GPIO18), LRCK1(GPIO14), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), XTALINFO1, DOUTO(GPIO1C), SCL1(GPIO2B), SDA1(GPIO2C), TCLKA0(GPIO00), TCLKB0(GPIO01), EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), TXD2(GPIO0B), RXD2(GPIO0C), TIOCB00(GPIO02), XTALINFO0, SDO0(GPIO1F), SCK0(GPIO1D), SCL0(GPIO07), SDI0(GPIO1E), SDA0(GPIO08), SWDCLK(GPIO58), SDRADDR11(GPIO2D), SDRADDR12(GPIO2A), SDRDATA0, SDRDATA1, SDRDATA2, SDRDATA3, SDRDATA4, SDRDATA5, SDRDATA6, SDRDATA7, SDRDATA8, SDRDATA9, SDRDATA10, SDRDATA11, SDRDATA12, SDRDATA13, SDRDATA14, SDRDATA15, SDWP2(GPIO28), SDCD2(GPIO29)
27. Set DAMPCTL register as below.

- DZCTL: DSLEEP = 1. (don't care DSL value)
- DZINP: DZINP13 = 1, other DZINPx = 0

This DC characteristics can be applied while Class-D AMP used as GPO.

## PLL Characteristics

PLL1 (System)

Table 23. PLL1 (SYSTEM)
Vdd1 $\left(\right.$ Note 28) $=0.95$ to 1.155 V, AVddPLL1 (Note 28) $=0.95$ to $1.155 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

| Item | Symbol | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VCO control voltage | VCNT1 |  | 0 |  | AVddPLL1 | V |
| VCO highest oscillation frequency | Fmax |  | 400 |  |  | MHz |
| VCO lowest oscillation frequency | Fmin |  |  |  | 100 | MHz |
| Phase comparison frequency (Note 29) | Fref |  |  |  | 10 | MHz |
| PLL lock time (Note 29) | Tlock1 (Note 30) | Internal loop filter <br> Fref $=1.0 \mathrm{MHz}, 1.2 \mathrm{MHz}$ |  |  | 0.61 | ms |
|  | Tlock2 (Note 30) | External loop filter <br> Fref $=1.0 \mathrm{MHz}, 1.2 \mathrm{MHz}$ |  |  | 1.25 | ms |
| Jitter (Note 29) | Jitter | VCO frequency $=400 \mathrm{MHz}$ |  | $\pm 5.94$ | $\pm 10.1$ | \% |

28. Power up and power down timing of AVddPLL1 and Vdd1 should be as close as possible.
29. Electrical specifications are based on simulation results.
30. PLL lock time and appropriate LPF circuit depend on phase comparison frequency (Fref).

Table 24. PLL1 SETTING FOR XT1 OSCILLATION

| XT1 Frequency <br> $[\mathrm{MHz}]$ | VCO Frequency <br> [MHz] | PLL1 <br> Divide M | PLL1 <br> Multiply N | Phase Comparison <br> Frequency Fref [MHz] |
| :---: | :---: | :---: | :---: | :---: |
| 12 | 100 to 400 | 12 | 100 to 400 | 1.0 |
| 19.2 | 100.8 to 399.6 | 16 | 84 to 333 | 1.2 |
| 24 | 100 to 400 | 24 | 100 to 400 | 1.0 |

Table 25. LOOP FILTER FOR PLL1

| Loop filter | Xtal Oscillation, Fref | PLL1 <br> multiply N |  | $\begin{gathered} \text { S3 } \\ \text { (Note 31) } \end{gathered}$ | $\begin{gathered} \text { S2 } \\ \text { (Note 31) } \end{gathered}$ | S1 <br> (Note 31) | So <br> (Note 31) | R1[k $\Omega$ ] <br> (Note 31) <br> typ | R2[k $\Omega$ ] <br> (Note 31) <br> typ | $\begin{gathered} \hline \begin{array}{c} \text { C1[pF] } \\ \text { (Note 31) } \end{array} \\ \hline \text { typ } \end{gathered}$ | $\begin{gathered} \begin{array}{c} \text { C2[PF] } \\ \text { (Note 31) } \end{array} \\ \text { typ } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | min | max |  |  |  |  |  |  |  |  |
| Internal | $\mathrm{XT1}=12 \mathrm{MHz}$, | 1440 | - | 1 | 1 | 1 | 1 | - | - | - | - |
|  | $\begin{aligned} & \mathrm{XT1}=19.2 \mathrm{MHz}, \\ & \text { Fref }=1.2 \mathrm{MHz} \\ & \\ & \text { XT1 }=24 \mathrm{MHz}, \\ & \text { Fref }=1.0 \mathrm{MHz} \end{aligned}$ | 1008 | 1439 | 1 | 1 | 1 | 0 |  |  |  |  |
|  |  | 698 | 1007 | 1 | 1 | 0 | 1 |  |  |  |  |
|  |  | 485 | 697 | 1 | 1 | 0 | 0 |  |  |  |  |
|  |  | 338 | 484 | 1 | 0 | 1 | 1 |  |  |  |  |
|  |  | 234 | 337 | 1 | 0 | 1 | 0 |  |  |  |  |
|  |  | 163 | 233 | 1 | 0 | 0 | 1 |  |  |  |  |
|  |  | 114 | 162 | 1 | 0 | 0 | 0 |  |  |  |  |
|  |  | 80 | 113 | 0 | 1 | 1 | 1 |  |  |  |  |
|  |  | 55 | 79 | 0 | 1 | 1 | 0 |  |  |  |  |
|  |  | 38 | 54 | 0 | 1 | 0 | 1 |  |  |  |  |
|  |  | 27 | 37 | 0 | 1 | 0 | 0 |  |  |  |  |
|  |  | 19 | 26 | 0 | 0 | 1 | 1 |  |  |  |  |
|  |  | 13 | 18 | 0 | 0 | 1 | 0 |  |  |  |  |
|  |  | 9 | 12 | 0 | 0 | 0 | 1 |  |  |  |  |
|  |  | - | 8 | 0 | 0 | 0 | 0 |  |  |  |  |
| External | $\begin{aligned} & \mathrm{XT} 1=12 \mathrm{MHz}, \\ & \text { Fref }=1.0 \mathrm{MHz} \end{aligned}$ | - |  |  |  |  |  | - | $\begin{gathered} 6.8 \\ \text { (Note 32) } \end{gathered}$ | $\begin{gathered} 330 \\ \text { (Note 32) } \end{gathered}$ | 3300 (Note 32) |
|  | $\begin{aligned} & \text { XT1 }=19.2 \mathrm{MHz}, \\ & \text { Fref }=1.2 \mathrm{MHz} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{aligned} & \text { XT1 }=24 \mathrm{MHz}, \\ & \text { Fref }=1.0 \mathrm{MHz} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |

31. Regarding internal loop filter use, appropriate loop filter parameters need to be selected according to PLL1 multiply N value. Regarding external loop filter use, the loop filter parameters need to be attached externally.
32. Each value must be supplied by external resistor and capacitor. Refer to PLL1 (System) in Application.

Audio PLL

Table 26. AUDIO PLL
Vdd1 (Note 33) $=0.95$ to 1.155 V , AVddPLL2 (Note 33) $=0.95$ to $1.155 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

| Item | Symbol | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VCO control voltage | VCNT2 |  | 0 |  | AVddPLL2 | V |
| VCO highest oscillation frequency | Fmax |  | 150 |  |  | MHz |
| VCO lowest oscillation frequency | Fmin |  |  |  | 95 | MHz |
| Phase comparison frequency (Note 34) | Fref |  |  |  | 10 | MHz |
| PLL lock time (Note 34) | Tlock1 (Note 35) | Internal loop filter <br> Fref = $96 \mathrm{KHz}, 19.2 \mathrm{KHz}, 768 \mathrm{KHz}$, $153.6 \mathrm{KHz}, 192 \mathrm{KHz}, 38.4 \mathrm{KHz}$ |  |  | 15.4 | ms |
|  | Tlock2 (Note 35) | External loop filter Fref $=96 \mathrm{KHz}, 19.2 \mathrm{KHz}, 768 \mathrm{KHz}$, $153.6 \mathrm{KHz}, 192 \mathrm{KHz}, 38.4 \mathrm{KHz}$ |  |  | 7.7 | ms |
| Jitter (Note 34) | Jitter1 | VCO frequency $=98.304 \mathrm{MHz}$ |  | $\pm 2.88$ | $\pm 4.9$ | \% |
|  | Jitter2 | VCO frequency $=135.4752 \mathrm{MHz}$ |  | $\pm 3.41$ | $\pm 5.8$ | \% |
|  | Jitter3 | VCO frequency $=147.456 \mathrm{MHz}$ |  | $\pm 3.59$ | $\pm 6.1$ | \% |

[^1]Table 27. PLL2 SETTING FOR XT1 OSCILLATION

| XT1 Frequency [MHz] | VCO Frequency [MHz] (Note 36) | Sampling Frequency Fs | PLL2 <br> Divide M | PLL2 <br> Multiply N | Phase Comparison Frequency Fref [KHz] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 98.304 | 8 KHz | 125 | 1024 | 96 |
|  |  | 16 KHz |  |  |  |
|  |  | 32 KHz |  |  |  |
|  |  | 64 KHz |  |  |  |
|  |  | 128 KHz |  |  |  |
|  | 135.4752 | 11.025 KHz | 625 | 7056 | 19.2 |
|  |  | 22.05 KHz |  |  |  |
|  |  | 44.1 KHz |  |  |  |
|  |  | 88.2 KHz |  |  |  |
|  |  | 176.4 KHZ |  |  |  |
|  | 147.456 | 12 KHz | 125 | 1536 | 96 |
|  |  | 24 KHZ |  |  |  |
|  |  | 48 KHz |  |  |  |
|  |  | 96 KHz |  |  |  |
|  |  | 192 KHz |  |  |  |

Table 27. PLL2 SETTING FOR XT1 OSCILLATION (continued)

| XT1 Frequency [MHz] | VCO Frequency [MHz] (Note 36) | Sampling <br> Frequency Fs | PLL2 <br> Divide M | PLL2 <br> Multiply N | Phase Comparison Frequency Fref [KHz] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 19.2 | 98.304 | 8 KHz | 25 | 128 | 768 |
|  |  | 16 KHz |  |  |  |
|  |  | 32 KHz |  |  |  |
|  |  | 64 KHz |  |  |  |
|  |  | 128 KHz |  |  |  |
|  | 135.4752 | 11.025 KHz | 125 | 882 | 153.6 |
|  |  | 22.05 KHz |  |  |  |
|  |  | 44.1 KHz |  |  |  |
|  |  | 88.2 KHz |  |  |  |
|  |  | 176.4 KHZ |  |  |  |
|  | 147.456 | 12 KHz | 25 | 192 | 768 |
|  |  | 24 KHZ |  |  |  |
|  |  | 48 KHz |  |  |  |
|  |  | 96 KHz |  |  |  |
|  |  | 192 KHz |  |  |  |
| 24 | 98.304 | 8 KHz | 125 | 512 | 192 |
|  |  | 16 KHz |  |  |  |
|  |  | 32 KHz |  |  |  |
|  |  | 64 KHz |  |  |  |
|  |  | 128 KHz |  |  |  |
|  | 135.4752 | 11.025 KHz | 625 | 3528 | 38.4 |
|  |  | 22.05 KHz |  |  |  |
|  |  | 44.1 KHz |  |  |  |
|  |  | 88.2 KHz |  |  |  |
|  |  | 176.4 KHZ |  |  |  |
|  | 147.456 | 12 KHz | 125 | 768 | 192 |
|  |  | 24 KHZ |  |  |  |
|  |  | 48 KHz |  |  |  |
|  |  | 96 KHz |  |  |  |
|  |  | 192 KHz |  |  |  |

36. VCO frequency $=768 \times F s \times n(n=16,8,4,2$, and 1$)$

Table 28. PLL2 SETTING FOR BCLK

| BCLK Frequency [MHz] |  | VCO Frequency <br> [MHz] (Note 37) | $\begin{gathered} \text { Sampling } \\ \text { Frequency Fs } \end{gathered}$ | PLL2 <br> Divide M | PLL2 <br> Multiply N | Phase Comparison Frequency Fref [KHz] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32Fs | 0.256 | 98.304 | 8 KHz | 1 | 384 | 256 |
|  | 0.512 |  | 16 KHz | 2 |  |  |
|  | 1.024 |  | 32 KHz | 4 |  |  |
|  | 2.048 |  | 64 KHz | 8 |  |  |
|  | 4.096 |  | 128 KHz | 16 |  |  |
|  | 0.3528 | 135.4752 | 11.025 KHz | 1 | 384 | 352.8 |
|  | 0.7056 |  | 22.05 KHz | 2 |  |  |
|  | 1.4112 |  | 44.1 KHz | 4 |  |  |
|  | 2.8224 |  | 88.2 KHz | 8 |  |  |
|  | 5.6448 |  | 176.4 KHZ | 16 |  |  |
|  | 0.384 | 147.456 | 12 KHz | 1 | 384 | 384 |
|  | 0.768 |  | 24 KHZ | 2 |  |  |
|  | 1.536 |  | 48 KHz | 4 |  |  |
|  | 3.072 |  | 96 KHz | 8 |  |  |
|  | 6.144 |  | 192 KHz | 16 |  |  |
| 48Fs | 0.384 | 98.304 | 8 KHz | 1 | 256 | 384 |
|  | 0.768 |  | 16 KHz | 2 |  |  |
|  | 1.536 |  | 32 KHz | 4 |  |  |
|  | 3.072 |  | 64 KHz | 8 |  |  |
|  | 6.144 |  | 128 KHz | 16 |  |  |
|  | 0.5292 | 135.4752 | 11.025 KHz | 2 | 512 | 264.6 |
|  | 1.0584 |  | 22.05 KHz | 4 |  |  |
|  | 2.1168 |  | 44.1 KHz | 8 |  |  |
|  | 4.2336 |  | 88.2 KHz | 16 |  |  |
|  | 8.4672 |  | 176.4 KHZ | 32 |  |  |
|  | 0.576 | 147.456 | 12 KHz | 2 | 512 | 288 |
|  | 1.152 |  | 24 KHZ | 4 |  |  |
|  | 2.304 |  | 48 KHz | 8 |  |  |
|  | 4.608 |  | 96 KHz | 16 |  |  |
|  | 9.216 |  | 192 KHz | 32 |  |  |

Table 28. PLL2 SETTING FOR BCLK (continued)

| BCLK Frequency [MHz] |  | VCO Frequency <br> [MHz] (Note 37) | Sampling Frequency Fs | PLL2 Divide M | PLL2 Multiply N | Phase Comparison Frequency Fref [KHz] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64Fs | 0.512 | 98.304 | 8 KHz | 2 | 384 | 256 |
|  | 1.024 |  | 16 KHz | 4 |  |  |
|  | 2.048 |  | 32 KHz | 8 |  |  |
|  | 4.096 |  | 64 KHz | 16 |  |  |
|  | 8.192 |  | 128 KHz | 32 |  |  |
|  | 0.7056 | 135.4752 | 11.025 KHz | 2 | 384 | 352.8 |
|  | 1.4112 |  | 22.05 KHz | 4 |  |  |
|  | 2.8224 |  | 44.1 KHz | 8 |  |  |
|  | 5.6448 |  | 88.2 KHz | 16 |  |  |
|  | 11.2896 |  | 176.4 KHZ | 32 |  |  |
|  | 0.768 | 147.456 | 12 KHz | 2 | 384 | 384 |
|  | 1.536 |  | 24 KHZ | 4 |  |  |
|  | 3.072 |  | 48 KHz | 8 |  |  |
|  | 6.144 |  | 96 KHz | 16 |  |  |
|  | 12.288 |  | 192 KHz | 32 |  |  |

37. VCO frequency $=768 \times$ Fs $\times n(n=16,8,4,2$, and 1$)$

Table 29. LOOP FILTER FOR PLL2

|  |  | VCO | Fref | S3 | S2 | S1 | S0 | R1[k $\Omega$ ] <br> (Note 38) | $\mathrm{R} 2[\mathrm{k} \Omega]$ <br> (Note 38) | C1[pF] <br> (Note 38) | $\begin{gathered} \text { C2[pF] } \\ \text { (Note 38) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| filter | BCLK | [MHz] | [KHz] | (Note 38) | (Note 38) | (Note 38) | (Note 38) | typ | typ | typ | typ |
| Internal | $\begin{aligned} & \mathrm{XT} 1= \\ & 12 \mathrm{MHz} \end{aligned}$ | 98.304 | 96 | 0 | 1 | 1 | 0 | - | - | - |  |
|  |  | 135.4752 | 19.2 | 1 | 0 | 0 | 1 |  |  |  |  |
|  |  | 147.456 | 96 | 0 | 1 | 1 | 0 |  |  |  |  |
|  | $\begin{gathered} \text { XT1 }= \\ \text { 19.2 MHz } \end{gathered}$ | 98.304 | 768 | 0 | 0 | 1 | 0 |  |  |  |  |
|  |  | 135.4752 | 153.6 | 0 | 1 | 1 | 0 |  |  |  |  |
|  |  | 147.456 | 768 | 0 | 0 | 1 | 0 |  |  |  |  |
|  | $\begin{gathered} \mathrm{XT} 1= \\ 24 \mathrm{MHz} \end{gathered}$ | 98.304 | 192 | 0 | 1 | 0 | 1 |  |  |  |  |
|  |  | 135.4752 | 38.4 | 1 | 0 | 0 | 0 |  |  |  |  |
|  |  | 147.456 | 192 | 0 | 1 | 0 | 1 |  |  |  |  |
|  | $\begin{gathered} \text { BCLK = } \\ 32 F s \end{gathered}$ | 98.304 | 256 | 0 | 0 | 1 | 1 |  |  |  |  |
|  |  | 135.4752 | 352.8 | 0 | 0 | 1 | 1 |  |  |  |  |
|  |  | 147.456 | 384 | 0 | 0 | 1 | 1 |  |  |  |  |
|  | $\begin{gathered} \text { BCLK = } \\ 48 \mathrm{Fs} \end{gathered}$ | 98.304 | 384 | 0 | 0 | 1 | 1 |  |  |  |  |
|  |  | 135.4752 | 264.6 | 0 | 0 | 1 | 1 |  |  |  |  |
|  |  | 147.456 | 288 | 0 | 0 | 1 | 1 |  |  |  |  |
|  | $\begin{gathered} \text { BCLK }= \\ 64 \mathrm{Fs} \end{gathered}$ | 98.304 | 256 | 0 | 0 | 1 | 1 |  |  |  |  |
|  |  | 135.4752 | 352.8 | 0 | 0 | 1 | 1 |  |  |  |  |
|  |  | 147.456 | 384 | 0 | 0 | 1 | 1 |  |  |  |  |
| External | $\begin{aligned} & \mathrm{XT} 1= \\ & 12 \mathrm{MHz} \end{aligned}$ | 98.304 | 96 | - |  |  |  | - | $17.4$ <br> (Note 39) | 348 <br> (Note 39) | 19100 <br> (Note 39) |
|  |  | 135.4752 | 19.2 |  |  |  |  |  |  |  |  |
|  |  | 147.456 | 96 |  |  |  |  |  |  |  |  |
|  | $\begin{gathered} \text { XT1 }= \\ \text { 19.2 MHz } \end{gathered}$ | 98.304 | 768 |  |  |  |  | 5.97 <br> (Note 39) | 370 <br> (Note 39) | 20300 <br> (Note 39) |  |
|  |  | 135.4752 | 153.6 |  |  |  |  |  |  |  |  |
|  |  | 147.456 | 768 |  |  |  |  |  |  |  |  |
|  | $\begin{gathered} \mathrm{XT} 1= \\ 24 \mathrm{MHz} \end{gathered}$ | 98.304 | 192 |  |  |  |  | 12.3 <br> (Note 39) | 348 <br> (Note 39) | $\begin{gathered} 19300 \\ \text { (Note 39) } \end{gathered}$ |  |
|  |  | 135.4752 | 38.4 |  |  |  |  |  |  |  |  |
|  |  | 147.456 | 192 |  |  |  |  |  |  |  |  |

38. Regarding internal loop filter use, appropriate loop filter parameters must be selected according to this table. Regarding external loop filter use, the loop filter parameters need to be attached externally.
39. Each value need to be supplied by external resistor and capacitor. Refer to PLL2 (Audio) in Application.

External loop filter depends on XT1 frequency regardless of whether BCLK $=32$ Fs, 48Fs, or 64 Fs is used in PLL2.

## Class-D AMP

Table 30. CLASS-D AMP
(AvddDAMPL = AVddDAMPR $=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

| Item | Symbol | condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| On resistance | Ron | on resistance is set to minimum by <br> register (Note 40) |  | 0.61 | 2.57 | $\Omega$ |

40. Set 0x3ff00 to Drivability set register DZINP in "DAMPCTL" described in the "Audio Functions User's Manual".

## XTAL Characteristics

Table 31. XTAL CHARACTERISTICS
(Vdd1 (Note 41) $=0.95$ to 1.155 V , VddXT1 $=0.95$ to $1.155 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ )

| Item | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | Fmax | 12 |  | 24 | MHz |

41. Power up and power down timing of VddXT1 and Vdd1 should be as close as possible. Note that the oscillation frequency of XT1 that can be used with this product depends on the following table.

Table 32. XT1 FREQUENCY

| Function to be Used | Available Frequency of XT1 ( $r$ Means Available) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $12 \mathbf{~ M H z}$ | $19.2 \mathbf{~ M H z}$ | $\mathbf{2 4 ~ M H z}$ | Other than the left |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | (Note 42) |

42. The frequencies of XT 1 other than $12 \mathrm{MHz}, 19.2 \mathrm{MHz}$, and 24 MHz are not available, because some clock frequencies for PLL are determined internally based on the XTALINFO[1:0] terminal input during ROM boot.

XTALINFO[1:0] terminal input is set to 24 MHz internally.

## 12bit ADC Converter Characteristic

Table 33. 12BIT ADC CONVERTER CHARACTERISTIC
(Vdd1 $=0.95$ to 1.155 V, AVddADC $=1.70$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ )

| Item | Symbol | Condition | Min | Typ | Max | Unit | Pin applied |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADC power supply voltage | AVDH |  | 1.70 |  | 1.95 | V | AVddADC |
| ADC GND voltage | AVDL |  | 0 |  |  | V | AVssADC |
| Analog input voltage | SIN |  | AVDL |  | AVDH | V | SIN[7: 0] |
| ADC resolution | BIT |  |  |  | 12 | Bit | SIN[7: 0] |
| ADC operating clock frequency (Note 43) | Fclk | fSPEED = 0 (Note 44) |  |  | 16 | MHz |  |
|  |  | fSPEED = 1 (Note 44) |  |  | 3.2 | MHz |  |
| ADC conversion time | Tc |  | 22 |  |  | Cycle |  |
| ADC sample rate | Fs | fSPEED = 0 (Note 44) |  |  | 727 | KS/s |  |
|  |  | fSPEED = 1 (Note 44) |  |  | 145 | KS/s |  |
| Differential Linearity Error (Note 43) | DNL |  | -2 |  | 2 | LSB | SIN[7: 0] |
| Linearity Error (Note 43) | INL |  | -3 |  | 3 | LSB | SIN[7: 0] |

43. Electrical specifications are based on simulation results.
44. Speed control bit in "ADC" described in the "System Functions User's Manual ".

## USB2.0 PHY Characteristics

The USB-PHY supports the following standards.

- Universal Serial Bus Specification, Revision 2.0
- Battery Charging Specification, Revision 1.2 (ACA is not supported) XA and RB are available to Device only.


## AC CHARACTERISTICS

## Reset

- [Condition]

Vdd1 $=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Vdd} 2=1.7 \mathrm{~V}$ to 1.95 V or 2.7 V to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
External load 15 pF to 40 pF


Figure 7. AC Characteristic - Reset

Table 34.

| Item | Symbol | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resetting active period | tRESW1 | Time after Vdd* reaches to <br> recommended operating voltage | 400 | - | - | $\mu \mathrm{s}$ |

*Refer to the "INTC" chapter in the "System Functions User's Manual" for more detail if using noise filter, etc.

## External Interrupt

- [condition]

Vdd1 $=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Vdd} 2, \mathrm{VddSD} 1=1.7$ to 1.95 V or 2.7 V to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
External load 15 pF to 40 pF


Figure 8. AC Characteristic - External Interrupt

Table 35.

| Item | Symbol | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pulse width of external interrupt | tEXINTW | Set of interruption factor not use noise <br> filter function | 2 | - | - | T |

45. T: BASICCLK clock rate (frequency = Farm).

I2C

- [Condition]
$\mathrm{Vdd} 1=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Vdd} 2=1.7 \mathrm{~V}$ to 1.95 V or 2.7 V to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
External load 15 pF to 40 pF


Figure 9. AC Characteristic - I2C

Table 36.

| Item | Symbol | Standard mode |  | Full mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |
| SCL frequency | fSCL | 0 | 100 | 0 | 400 | kHz |
| Hold time START (repetition) condition (After this period, the first clock pulse is generated.) | tHD;STA | 4.0 | - | 0.6 | - | us |
| Low period of SCL | tLOW | 4.7 | - | 1.3 | - | $\mu \mathrm{s}$ |
| High period of SCL | tHIGH | 4.0 | - | 0.6 | - | $\mu \mathrm{s}$ |
| Setup time of repetition START condition | tSU;STA | 4.7 | - | 0.6 | - | $\mu \mathrm{s}$ |
| Data hold time: (for master in accordance with CBUS) | tHD;DAT | 5.0 | 3.45 | 0 | 0.9 | $\mu \mathrm{s}$ |
| Data setup time | tSU;DAT | 250 | - | 100 | - | ns |
| Rise time SDA and SCL | Tr | - | 1000 | - | 300 | ns |
| Fall time SDA and SCL | Tf | - | 300 | - | 300 | ns |
| Setup time of STOP condition | tSU;STO | 4.0 | - | 0.6 | - | $\mu \mathrm{s}$ |
| Time of bus release between STOP and START condition | tBUF | 4.7 | - | 1.3 | - | $\mu \mathrm{s}$ |

## SPI Interface

- [Condition]

Vdd1 $=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Vdd} 2=1.7 \mathrm{~V}$ to 1.95 V or 2.7 V to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
External load 15 pF to 40 pF

46. When the polarity of SCK is changed, SCK in this Figure is inverted.

Figure 10. AC Characteristic - SPI Interface

Table 37.

| Item | Symbol | min | typ | max | unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SCLK rate | tSCK | 8 |  | - | - |
| SCLK LOW time | tSCKL | 4 |  | - |  |
| SCLK HIGH time | tSCKH | 4 |  | - | - |
| data setup time | tds | 2 |  | $T$ |  |
| data hold time | tdh | 2 |  | - | $T$ |
| data delay time | tddo | - |  | $T$ |  |

47.T: APB CLK rate (frequency = Fapb).

## Serial Flash Interface

- [Condition]
$\mathrm{Vdd} 1=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Vdd} 2=1.7 \mathrm{~V}$ to 1.95 V or 2.7 V to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
External load 6 to 30 pF


Figure 11. AC Characteristic - Serial Flash Interface

- [Applied Pin]
- Clock: SCK1
- Output: SDI1, SDO1, SWP1, SHOLD1, QSCS
- Input: SDI1, SDO1, SWP1, SHOLD1

Table 38.

| I/O Voltage (Vdd2) |  | 2.7 V to 3.6 V |  | 1.7 V to 1.95 V |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| External Load / I/O Drivability |  | $\begin{aligned} & 12 \mathrm{pF} \text { to } 26 \mathrm{pF} / 10 \mathrm{~mA} \\ & 6 \mathrm{pF} \text { to } 12 \mathrm{pF} / 8 \mathrm{~mA} \end{aligned}$ |  | 23 pF to $30 \mathrm{pF} / 8 \mathrm{~mA}$ 10 pF to $23 \mathrm{pF} / 4 \mathrm{~mA}$ |  |  |
| Item | Symbol | Min | Max | Min | Max |  |

SFIFSEL2 = 0 (Note 48)

| Clock frequency | $\mathrm{f}_{\mathrm{Clk}}$ | - | 40 | - | 40 | MHz |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input setup time | $\mathrm{t}_{\mathrm{ISU}}$ | 4.5 | - | 4.5 | - | ns |
| Input hold time | $\mathrm{t}_{\mathrm{IH}}$ | 6.0 | - | 6.0 | - | ns |
| Output Delay time | $\mathrm{t}_{\mathrm{OLLY}}$ | 1.0 | 5.5 | 1.0 | 5.5 | ns |

SFIFSEL2 = 1 (Note 48)

| Clock frequency | $\mathrm{f}_{\mathrm{Clk}}$ | - | 42.5 | - | 42.5 | MHz |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input setup time | $\mathrm{t}_{\mathrm{ISU}}$ | 4.8 | - | 4.8 | - | ns |
| Input hold time | $\mathrm{t}_{\mathrm{IH}}$ | 7.0 | - | 7.0 | - | ns |
| Output Delay time | $\mathrm{t}_{\mathrm{ODLY}}$ | 1.0 | 6.8 | 1.0 | 6.8 | ns |

48. SFIFSEL2 is the value of S-Flash I/F select register (SFIFSEL) bit2 described in "System Controller" described in the "System Functions User's Manual".

## PCM Timing

- [Condition]

Vdd1 $=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Vdd} 2=1.7 \mathrm{~V}$ to 1.95 V or 2.7 V to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
External load 5 pF to 15 pF
Master Mode


Figure 12. Master Mode

- [Applied Pin]
- Clock: BCK0, BCK1
- Output: LRCK0, LRCK1, DOUT0, DOUT1
- Input: DIN0, DIN1

Table 39.

| I/O Voltage (Vdd2) |  | 2.7 V to 3.6 V |  | 1.7 V to 1.95 V |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| External Load / I/O Drivability |  | 8 pF to $15 \mathrm{pF} / 8 \mathrm{~mA}$ 5 pF to $8 \mathrm{pF} / 4 \mathrm{~mA}$ |  |  |  |  |
| Item | Symbol | Min | Max | Min | Mix |  |
| BCKI Low period | tBCKIL | 38.0 | - | 38.0 | - | ns |
| BCKI High period | tBCKIH | 38.0 | - | 38.0 | - | ns |
| DIN setup time | tDINS | 8.0 | - | 8.0 | - | ns |
| DIN hold time | tDINH | 9.0 | - | 8.0 | - | ns |
| LRCK delay time | tLRCKO | -13.0 | 13.0 | -11.5 | 11.5 | ns |
| DOUT delay time | tDOUT | -13.0 | 13.0 | -11.5 | 11.5 | ns |

## Slave Mode



Figure 13. Slave Mode

- [Applied Pin]
- Clock: BCK0, BCK1
- Output: DOUT0, DOUT1
- Input: LRCK0, LRCK1, DIN0, DIN1

Table 40.

| I/O Voltage (Vdd2) |  | 2.7 V to 3.6 V |  | 1.7 V to 1.95 V |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| External Load / I/O Drivability |  | 8 pF to $15 \mathrm{pF} / 8 \mathrm{~mA}$ 5 pF to $8 \mathrm{pF} / 4 \mathrm{~mA}$ |  | 8 pF to $15 \mathrm{pF} / 8 \mathrm{~mA}$ 5 pF to $8 \mathrm{pF} / 4 \mathrm{~mA}$ |  |  |
| Item | Symbol | Min | Max | Min | Max |  |
| BCKI Low period | tBCKIL | 30.0 | - | 30.0 | - | ns |
| BCKI High period | tBCKIH | 30.0 | - | 30.0 | - | ns |
| DIN setup time | tDINS | 8.0 | - | 8.0 | - | ns |
| DIN hold time | tDINH | 8.0 | - | 8.0 | - | ns |
| LRCK setup time | tLRCKIS | 8.0 | - | 8.0 | - | ns |
| LRCK hold time | tLRCKIH | 8.0 | - | 8.0 | - | ns |
| DOUT delay time | tDOUT | -13.0 | 13.0 | -11.5 | 11.5 | ns |

## SD Card Interface Timing

- [Condition]

Vdd1 $=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Vdd} 2, \mathrm{VddSD} 1=1.7 \mathrm{~V}$ to 1.95 V or 2.7 V to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ External load 6 to 40 pF

Normal (Default) Mode


Figure 14. Normal (Default) Mode

- [Applied Pin]
- Clock: SDCLK0, SDCLK1, SDCLK2
- Output: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]
- Input: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]

Table 41.

| I/O Voltage (Vdd2, VddSD1) |  | 2.7 V to 3.6 V |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
| External Load / I/O Drivability |  | 12 pF to $\mathbf{4 0} \mathrm{pF} / 10 \mathrm{~mA}$ <br> 6 pF to $12 \mathrm{pF} / 8 \mathrm{~mA}$ |  |  |
| Item | Symbol | Min | Max |  |
| Clock Frequency | $\mathrm{f}_{\mathrm{PP}}$ | 0 | 25 | MHz |
| Clock low time | twL | 10 | - | ns |
| Clock high time | twh | 10 | - | ns |
| Clock rise time | $\mathrm{t}_{\text {TLH }}$ | - | 10 | ns |
| Clock fall time | $\mathrm{t}_{\text {THL }}$ | - | 10 | ns |
| Input set-up time (from SD to SoC) | $\mathrm{t}_{\text {ISU }}$ | 5.9 | - | ns |
| Input hold-up time (from SD to SoC) | $\mathrm{t}_{\mathrm{H}}$ | 0 | - | ns |
| Output Delay time during Data Transfer Mode (from SoC to SD) | todiy | 5.1 | 14.0 | ns |

## High-Speed Mode



Figure 15. High-Speed Mode

- [Applied Pin]
- Clock: SDCLK0, SDCLK1, SDCLK2
- Output: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]
- Input: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]

Table 42.

| I/O Voltage (Vdd2, VddSD1) |  | 2.7 V to 3.6 V |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
| External Load / I/O Drivability |  | 12 pF to $40 \mathrm{pF} / 10 \mathrm{~mA}$ 6 pF to $12 \mathrm{pF} / 8 \mathrm{~mA}$ |  |  |
| Item | Symbol | Min | Max |  |
| Clock Frequency | $\mathrm{f}_{\mathrm{PP}}$ | 0 | 50 | MHz |
| Clock low time | twi | 7 | - | ns |
| Clock high time | twh | 7 | - | ns |
| Clock rise time | ${ }_{\text {t }}^{\text {tin }}$ | - | 3 | ns |
| Clock fall time | $\mathrm{t}_{\text {THL }}$ | - | 3 | ns |
| Input set-up time (from SD to SoC) | tisu | 5.9 | - | ns |
| Input hold-up time (from SD to SoC) | $\mathrm{t}_{\mathrm{H}}$ | 2.5 | - | ns |
| Output Delay time (from SoC to SD) | todiy | 14.0 | 2.0 | ns |

## SDR25 Mode



Figure 16. SDR25 Mode

- [Applied Pin]
- Clock: SDCLK0, SDCLK1, SDCLK2
- Output: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]
- Input: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]

Table 43.

| I/O Voltage (Vdd2, VddSD1) |  | 1.7 V to 1.95 V |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
| External Load / I/O Drivability |  | 23 pF to $30 \mathrm{pF} / 8 \mathrm{~mA}$ 15 pF to $23 \mathrm{pF} / 4 \mathrm{~mA}$ 10 pF to $15 \mathrm{pF} / 2 \mathrm{~mA}$ |  |  |
| Item | Symbol | Min | Max |  |
| Clock Frequency | $\mathrm{f}_{\mathrm{PP}}$ | 0 | 50 | MHz |
| Clock rise time | ${ }_{\text {t }}^{\text {LTH }}$ | - | 2.9 | ns |
| Clock fall time | t ${ }_{\text {thL }}$ | - | 2.9 | ns |
| Input set-up time (from SD to SoC) | $\mathrm{t}_{\text {ISU }}$ | 5.9 | - | ns |
| Input hold-up time (from SD to SoC) | $\mathrm{t}_{\mathrm{H}}$ | 1.5 | - | ns |
| Output Delay time (from SoC to SD) | todiy | 0.9 | 17.0 | ns |

## SDR50 Mode



Figure 17. SDR50 Mode

- [Applied Pin]
- Clock: SDCLK0, SDCLK1, SDCLK2
- Output: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]
- Input: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]

Table 44.

| I/O Voltage (Vdd2, VddSD1) |  | 1.7 V to 1.95 V |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
| External Load / I/O Drivability |  | $\begin{aligned} & 23 \mathrm{pF} \text { to } 30 \mathrm{pF} / 8 \mathrm{~mA} \\ & 15 \mathrm{pF} \text { to } 23 \mathrm{pF} / 4 \mathrm{~mA} \\ & 10 \mathrm{pF} \text { to } 15 \mathrm{pF} / 2 \mathrm{~mA} \end{aligned}$ |  |  |
| Item | Symbol | Min | Max |  |
| Clock Frequency | $\mathrm{f}_{\text {PP }}$ | 0 | 57 | MHz |
| Clock rise time | $\mathrm{t}_{\text {TLH }}$ | - | 2.9 | ns |
| Clock fall time | ${ }_{\text {t }}^{\text {HL }}$ | - | 2.9 | ns |
| Input set-up time (from SD to SoC) | $\mathrm{t}_{\text {ISU }}$ | 8.0 | - | ns |
| Input hold-up time (from SD to SoC) | $\mathrm{t}_{\mathrm{H}}$ | 1.4 | - | ns |
| Output Delay time (from SoC to SD) | todu | 0.9 | 14.6 | ns |

## DDR50 Mode



Figure 18. DDR50 Mode

- [Applied Pin]
- Clock: SDCLK0, SDCLK1, SDCLK2
- Output: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]
- Input: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]

Table 45.

| I/O Voltage (Vdd2, VddSD1) |  | 1.7 V to 1.95 V |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
| External Load / I/O Drivability |  | 23 pF to $30 \mathrm{pF} / 8 \mathrm{~mA}$ <br> 15 pF to $23 \mathrm{pF} / 4 \mathrm{~mA}$ <br> 10 pF to $15 \mathrm{pF} / 2 \mathrm{~mA}$ |  |  |
| Item | Symbol | Min | Max |  |
| Clock Frequency | $\mathrm{f}_{\mathrm{PP}}$ | 0 | 40 | MHz |
| Clock rise time | $\mathrm{t}_{\text {TLH }}$ | - | 2.9 | ns |
| Clock fall time | $\mathrm{t}_{\text {THL }}$ | - | 2.9 | ns |
| Input set-up time (from SD to SoC) | $\mathrm{t}_{\text {ISU }}$ | 5.0 | - | ns |
| Input hold-up time (from SD to SoC) | $\mathrm{t}_{\mathrm{H}}$ | 1.4 | - | ns |
| Output Delay time (from SoCl to SD) | todiy | 0.9 | 9.5 | ns |

## eMMC Interface Timing

- [Condition]

Vdd1 $=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Vdd} 2, \mathrm{VddSD} 1=1.7 \mathrm{~V}$ to 1.95 V or 2.7 V to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
External load 6 to 40 pF
Normal (Default) Mode


Figure 19. Normal (Default) Mode

- [Applied Pin]
- Clock: SDCLK0, SDCLK1, SDCLK2
- Output: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]
- Input: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]

Table 46.

| I/O Voltage (Vad | dSD1) |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| External Load / I/O Drivability |  | 12 pF to $40 \mathrm{pF} / 10 \mathrm{~mA}$ <br> 6 pF to $12 \mathrm{pF} / 8 \mathrm{~mA}$ |  | $\begin{aligned} & 23 \mathrm{pF} \text { to } 30 \mathrm{pF} / 8 \mathrm{~mA} \\ & 15 \mathrm{pF} \text { to } 23 \mathrm{pF} / 4 \mathrm{~mA} \\ & 10 \mathrm{pF} \text { to } 15 \mathrm{pF} / 2 \mathrm{~mA} \end{aligned}$ |  |  |
| Item | Symbol | Min | Max | Min | Max |  |
| Clock Frequency | $f_{\text {PP }}$ | 0 | 26 | 0 | 26 | MHz |
| Clock low time | twL | 10 | - | 10 | - | ns |
| Clock high time | twh | 10 | - | 10 | - | ns |
| Clock rise time | $\mathrm{t}_{\text {TLH }}$ | - | 3 | - | 3 | ns |
| Clock fall time | $\mathrm{t}_{\text {THL }}$ | - | 3 | - | 3 | ns |
| Input set-up time (from SD to SoC) | tisu | 11.5 | - | 11.5 | - | ns |
| Input hold-up time (from SD to SoC) | $\mathrm{t}_{\mathrm{H}}$ | 9.0 | - | 9.0 | - | ns |
| Output Delay time (from SoC to SD) | todiy | 10.0 | 27.5 | 10.0 | 27.5 | ns |

## High-Speed SDR Mode



Figure 20. High-Speed SDR Mode

- [Applied Pin]
- Clock: SDCLK0, SDCLK1, SDCLK2
- Output: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]
- Input: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]

Table 47.

| I/O Voltage (Vd | dSD1) |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| External Load / I/O Drivability |  | $\begin{gathered} 12 \mathrm{pF} \text { to } 40 \mathrm{pF} / 10 \mathrm{~mA} \\ 6 \mathrm{pF} \text { to } 12 \mathrm{pF} / 8 \mathrm{~mA} \end{gathered}$ |  | $\begin{aligned} & 23 \mathrm{pF} \text { to } 30 \mathrm{pF} / 8 \mathrm{~mA} \\ & 15 \mathrm{pF} \text { to } 23 \mathrm{pF} / 4 \mathrm{~mA} \\ & 10 \mathrm{pF} \text { to } 15 \mathrm{pF} / 2 \mathrm{~mA} \end{aligned}$ |  |  |
| Item | Symbol | Min | Max | Min | Max |  |
| Clock Frequency | $f_{\text {fp }}$ | 0 | 52 | 0 | 52 | MHz |
| Clock low time | twL | 7 | - | 7 | - | ns |
| Clock high time | ${ }^{\text {twh }}$ | 7 | - | 7 | - | ns |
| Clock rise time | $\mathrm{t}_{\text {TLH }}$ | - | 3 | - | 3 | ns |
| Clock fall time | ${ }_{\text {t }}^{\text {HL }}$ | - | 3 | - | 3 | ns |
| Input set-up time (from SD to SoC) | $\mathrm{t}_{\text {ISU }}$ | 5.4 | - | 5.4 | - | ns |
| Input hold-up time (from SD to SoC) | $\mathrm{t}_{\mathrm{H}}$ | 3.0 | - | 3.0 | - | ns |
| Output Delay time (from SoC to SD) | todiy | 3.0 | 16.1 | 3.0 | 16.1 | ns |



Figure 21. High-Speed DDR Mode

- [Applied Pin]
- Clock: SDCLK0, SDCLK1, SDCLK2
- Output: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]
- Input: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0]

Table 48.

| $\begin{aligned} & \text { I/O V } \\ & \text { (Vdd2, } \end{aligned}$ |  | 2.7 V to 3.6 V |  | 1.7 V to 1.95 V |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| External Load | vability | 12 pF to $40 \mathrm{pF} / 10 \mathrm{~mA}$ <br> 6 pF to $12 \mathrm{pF} / 8 \mathrm{~mA}$ |  | 23 pF to $30 \mathrm{pF} / 8 \mathrm{~mA}$ 15 pF to $23 \mathrm{pF} / 4 \mathrm{~mA}$ 10 pF to $15 \mathrm{pF} / 2 \mathrm{~mA}$ |  |  |
| Item | Symbol | Min | Max | Min | Max |  |
| Clock Frequency | $\mathrm{f}_{\mathrm{PP}}$ | 0 | 30 | 0 | 33 | MHz |
| Clock rise time | ${ }_{\text {t }}^{\text {LLH }}$ | - | 3 | - | 3 | ns |
| Clock fall time | ${ }_{\text {t }}^{\text {HL }}$ | - | 3 | - | 3 | ns |

INPUT CMD

| Input set-up time <br> (from SD to SoC) | $\mathrm{t}_{\mathrm{ISU}}$ | 19.5 | - | 16.4 | - | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input hold-up time <br> (from SD to SoC) | $\mathrm{t}_{\mathrm{IH}}$ | 2.4 | - | 2.4 | - |  |

OUTPUT CMD

| Output Delay time <br> (from SoC to SD) | toDLY | 3.0 | 29.0 | 3.0 | 26.0 |
| :---: | :---: | :---: | :---: | :---: | :---: |

INPUT DAT

| Input set-up time <br> (from SD to SoC) | $\mathrm{t}_{\mathrm{ISU}}$ | 9.6 | - | 8.1 | - | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input hold-up time <br> (from SD to SoC) | $\mathrm{t}_{\mathrm{IH}}$ | 1.4 | - | 1.4 | - | ns |

OUTPUT DAT

| Output Delay time <br> (from SoC to SD) | todLy | 2.5 | 14.1 | 2.5 | 12.6 | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Digital Mic Timing

- [Condition]

Vdd1 $=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Vdd} 2=1.7 \mathrm{~V}$ to 1.95 V or 2.7 V to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
External load 15 pF to 40 pF


Figure 22. Digital Mic Timing

- [Applied Pin]
- Clock: DMCKO0, DMCKO1
- Input: DMDIN0, DMDIN1

Table 49.

| Item | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Period of clock cycle (Note 49) | tCY | - |  | 3.25 | $40: 60$ |
| Clock duty |  | $60: 40$ |  | - |  |
| Data setup time | tSU | 40 |  | ns |  |
| Data hold time | tHLD | 0 |  | - | ns |

49. Internal clock and register setting.

## UART Timing

- [Condition]
$\mathrm{Vdd} 1=0.95 \mathrm{~V}$ to $1.155 \mathrm{~V}, \mathrm{Vdd} 2=1.7 \mathrm{~V}$ to 1.95 V or 2.7 V to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
External load 10 pF to $30 \mathrm{pF}(\mathrm{Vdd} 2=1.7 \mathrm{~V}$ to 1.95 V$), 10 \mathrm{pF}$ to $40 \mathrm{pF}(\mathrm{Vdd} 2=2.7 \mathrm{~V}$ to 3.6 V$)$


## CTS Timing

End of the last Stop Bit


Figure 23. CTS Timing

- [Applied Pin]
- Input: CTS1
- Output: TXD1

Table 50.

| Item | Condition | Symbol | Min | Max | Unit |
| :---: | :--- | :--- | :--- | :---: | :---: |
| Delay time | Completing preparation to transmit the current <br> TXD data by setting registers at CTS1 $=$ high <br> From the negative edge | Tdlycts | - | $6 T+20$ | ns |
| CTS Setup time | From end of the last StopBit | Tsetupcts | $3 T+20$ | - | ns |
| (not to transmit the next TXD data) |  |  |  |  |  |

50. T: UART functional clock rate
51. In using hardware flow control by CTS/RTS, if the CTS setup time above is NOT met, the next TXD data will be transmitted at the time of having prepared it regardless of the CTS level.

## RTS Timing



Figure 24. RTS Timing

- [Applied Pin]
- Input: RXD1
- Output: RTS1

Table 51.

| Item | Condition | Symbol | Min | Max | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| Delay Time | Receiving the current RXD data with 15 bytes of data existing in the <br> Reception FIFO or Receiving the current RXD data without using <br> Reception FIFO <br> From 1.5 bits before the end of the last StopBit | Tdlyrts | - | $4 \mathrm{~T}+20$ | ns |

52. T: UART functional clock rate

## APPLICATION

## XTAL

## For oscillation



Figure 25. For Oscillation

Table 52.

| Symbol | XT1 <br> XIN1/XOUT1 | XTRTC <br> XIN32K/XOUT32K |
| :---: | :---: | :---: |
|  | 24MHz | $\mathbf{3 2 . 7 6 8 ~ K H z ~}$ |
| Example of <br> crystal device | RIVER ELETEC <br> FCX-07L | RIVER ELETEC |
| TFX-03 |  |  |

53. Optimize the circuit constant for each product when you use this oscillation cell and ask to the manufacturer of the crystal device to investigate (matching investigation) because the best circuit constant changes depending on the specification of the crystal device used and the ambient surrounding (parasitic capacitance etc. of an external substrate).
54. The part values are for reference only. Adjustments may be required depending on the specific setup.
55. The following may be needed as the anti-noise measures of oscillation circuit.

- Components should be as adjacent as possible, with shortened wiring between elements such as this SoC and the crystal device.
- GND of the oscillation circuit should be as close as possible to GND (VSS) of this SoC.
- Do not bring the wiring pattern of the large current drive close to the oscillation circuit.
- Take wide pattern to avoid the effect of interference of other signals.

For input from external clock source (XT1)
Do as follows when using the external clock signal that is generated outside of the SoC by the oscillation module, etc. XT1 can be connected to an external clock signal that is generated outside of the SoC using the circuit shown in Figure 26. However, XTRTC cannot be connected to an external clock source.


NOTE: Input the signal of full amplitude to XIN (external clock input).
Figure 26. For Input from External Clock Source (XT1)

Table 53.

| Item | Symbol | min | max | unit |
| :---: | :---: | :---: | :---: | :---: |
| H level input voltage <br> (Note 56) | $\mathrm{V}_{\mathrm{IH}}$ | VddXT1 $\times 0.8$ | $\mathrm{VddXT1}+0.3$ | V |
| L level input voltage <br> (Note 56) | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 | $\mathrm{VddXT1} \times 0.25$ | V |

56. There is no VIH/VIL specification at the input part of the xtal oscillator cell. The values are for reference when using external clock source.

- There is a possibility of influencing the signal quality when there is a long wire pattern on a circuit board of XOUT (The terminal opens). Therefore, recommend to cut the wire pattern on a circuit board or no wire pattern on it
- The xtal oscillator is supposed to be used with quartz resonator or ceramic resonator, we have no plan to evaluate this SoC in case of input from external clock source


## PLL1(System)

The configuration of the PLL1 circuit is shown below.
Decoupling capacitors must be placed as close as possible to the power terminals (AVddPLL1 and AVssPLL1) of this SoC.

The power supply of PLL1 should be separated from other power supply lines to eliminate noise.

## When using an Internal Loop Filter <br> VCNT1 must be open in this case.

## When using an External Loop Filter

Refer to Table 25 for the recommended values of R2, C1, and C2.


Figure 27. PLL1(System) for Internal Loop Filter


Figure 28. PLL1(System) for External Loop Filter 57. The part values are for reference only. Adjustments may be required depending on the specific setup.

## LC823455

## PLL2(Audio)

The configuration of the PLL2 circuit is shown below.
Decoupling capacitors must be placed as close as possible to the power terminals (AVddPLL2 and AVssPLL2) of this SoC.

The power supply of PLL2 should be separated from other power supply lines to eliminate noise.


Figure 29. PLL2(Audio) for Internal Loop Filter

When using an Internal Loop Filter
VCNT2 must be open in this case.
When using an External Loop Filter
Refer to Table 29 for the recommended values of R2, C1, and C2.


Figure 30. PLL2(Audio) for External Loop Filter
58. The part values are for reference only. Adjustments may be required depending on the specific setup.

## LC823455

## 12bit AD converter

The configuration of the ADC circuit is shown below.
Power supply decoupling should be done according to the figure below. At least the $0.1 \mu \mathrm{~F}$ capacitor should be ceramic (good quality), and must be placed as close as possible to this SoC.

You should supply clean Power and Ground to AVddADC and AVssADC.


Figure 31. 12bit AD Converter
59. It is important that the wiring resistance is accurate in order to achieve the correct ADC conversion result. Also, pay attention to maintaining low noise.
60. Unused input pins of SIN[0-7] should be directly connected to AVssADC.

## USB2.0 PHY

The configuration of the USB-PHY circuit is shown below.
USB Device


Figure 32. USB 2.0 PHY in Device

Please refer to the "LC823455 USB2.0 Application Design Guideline" for details.

## Class-D AMP

The configuration of the Class-D AMP circuit is shown below.

## Single - End Form



Figure 33. Class-D AMP in Single-End Form

BTL Form


Figure 34. Class-D AMP in BTL Form

| LCR Filter Example | $\mathbf{L}(\boldsymbol{\mu} \mathbf{H})$ | $\mathbf{C}(\boldsymbol{\mu F})$ | $\mathbf{R d}(\boldsymbol{\Omega})$ |
| :---: | :---: | :---: | :---: |
| Type A | 220 | 0.22 | $0-10$ |
| Type B | 47 | 1 | $5-10$ |

61. Rd doesn't include parasitic resistance of $L$.
62. Add a bypass condenser ( $0.1 \mu \mathrm{~F}$ ) between AVddDAMPL and AVssDAMPL, AVddDAMPR and AVssDAMPR as close as possible to the terminals
63. Add a large electrolyte capacitor ( $220 \mu \mathrm{~F}$ or more recommended) to AVddDAMPL, AVddDAMPR terminal for Single-End form to reject the noise and reduce the pumping phenomenon of Class-D AMP.
64. Check the voltage level of AVddDAMPL, AVddDAMPR and make sure not to exceed 1.65 V (recommended operating voltage) by using playback of $20 \mathrm{~Hz}, 0 \mathrm{db}$ (full scale) sine wave
65. Resistor Rd reduces the output level of Class-D AMP, and is related to the values of $L$ and $C$ used. Please choose a resistance value (Rd) to fit the actual system. Please note that Rd value must be determined based on the parasitic resistance of the inductor L.
66. While the Class-D AMP outputs LOUT and ROUT are used as GPO, the maximum supply voltage to AVddDAMPL and AVddDAMPR is 1.95 V . In this case, the LC filter cannot be connected to LOUT and ROUT to avoid damage from overvoltage via the pumping phenomenon.

## Power Supply

Class-D AMP power supply to (AVddDAMPL, AVddDAMPR) must use a transient response and good power supply. When using a power supply where the transient response is bad and the capacity of the capacitor is small, a peculiar pumping phenomenon to the Class-D AMP is generated. The power supply voltage must not exceed the recommended operating range when the pumping phenomenon occurs.

The Class-D AMP output is PWM. The power supply noise affects the output of the Class-D AMP.

Power sources which have large internal impedance such as dry cell should not be directly connected to the power supply of the Class-D AMP, and those which have large switching noise such as switching regulator are not suitable and need to be taken care of.

## Digital Mic

The configuration of the Digital Mic circuit is shown below.


Figure 35. Digital Mic Configuration

## LC823455

I2C
The configuration of the I2C circuit is shown below.


Figure 36. I2C Configuration

## S-Flash I/F

The configuration of the $S$-Flash I/F circuit is shown below.


Figure 37. S-Flash I/F Circuit

## LC823455

## RTC

The configuration of the RTC circuit is shown below.
General RTC


Figure 38. Configuration of the General RTC

KEYINT RTC


Figure 39. Configuration of the KEYINT RTC

JTAG
The configuration of the JTAG debug circuit for LPDSP32 is shown below.


* The LPDSP32 can be reset by a JTAG software reset command issued by the debugger as well as the JTAG hardware reset signal (TRST). Therefore, the connection of the JTAG hardware reset signal between the debugger and the SoC is not mandatory.
* Internal pull down resistor can be used if they are enabled before the reset release of LPDSP 32.
* The input JTAG signals must be pulled up or down to avoid being left floating if the JTAG function is not being used.
* For further information about connecting JTAG signals, refer to the reference circuit provided by your ICE tool vendor.

Figure 40. JTAG Interface for LPDSP32

## LC823455

## SWD

The configuration of the SWD debug circuit for Cortex-M3 is shown below.


Figure 41. SWD Interface for Cortex-M3

## BMODE[1: 0]

The configuration of the BMODE circuit is shown below.


Figure 42. BMODE Configuration

## POWER SUPPLY

- Don't raise power supply steeply.
- Place bypass capacitors at each point closest to each power supply terminal, and place a power circuit at the point closest to the power supply terminals which it can supply.
- This SoC has circuits to protect from electrostatic discharge. The rush current flows in accordance with the steepness of rising curve of power supply.


## INTERNAL POWER DOMAIN CONTROL

This SoC has fifteen power isolated region of internal core for leakage current reduction, these can be power supply OFF separately. Power isolated region PD-X (X means one of the fifteen region PD 1 to J ) described in the table below.

Power ON / OFF for each power domain is controlled by the appropriate bit of System Controller of the power control register (LSISTBY). However, when controlling the power control register (LSISTBY), you must also control the

ISOLATION control register (ISOCNT) as required. Please refer to the "System Controller" chapter in the "System Functions User's Manual" for details.

Each power domain and its contents, along with the corresponding flags in the power control register (LSISTBY) and ISOLATION control register (ISOCNT) is as follows.

Table 54.

| Name | Content | LSISTBY | ISOCNT |
| :--- | :--- | :--- | :--- |
| PD-1 | Internal ROM | Bit17 STBY1 | Bit17 ISOCNT1 |
| PD-2 | Internal SRAM(seg 0B) | Bit18 STBY2 | Bit18 ISOCNT2 |
| PD-3 | Internal SRAM(seg 1) | Bit19 STBY3 | Bit19 ISOCNT3 |
| PD-4 | Internal SRAM(seg 2) | Bit20 STBY4 | Bit20 ISOCNT4 |
| PD-5 | Internal SRAM(seg 3/4) | Bit21 STBY5 | Bit21 ISOCNT5 |
| PD-6 | Internal SRAM(seg 5A) | Bit22 STBY6 | Bit22 ISOCNT6 |
| PD-7 | Internal SRAM(seg 5B) | Bit23 STBY7 | Bit23 ISOCNT7 |
| PD-8 | Internal SRAM(seg 6) | Bit24 STBY8 | Bit24 ISOCNT8 |
| PD-9 | Internal SRAM(seg 7B) | Bit25 STBY9 | Bit25 ISOCNT9 |
| PD-10 | Internal SRAM(seg 7A/8/9) | Bit26 STBY10 | Bit26 ISOCNT10 |
| PD-A | Audio Block | Bit0 STBYA | Bit0 ISOCNTA |
| PD-E | USB 2.0 Controller SRAM | Bit4 STBYE | Bit4 ISOCNTE |
| PD-G | Cache for S-Flash I/F | Bit6 STBYG | Bit6 ISOCNTG |
| PD-H | SD Card I/F | Bit7 STBYH | Bit7 ISOCNTH |
| PD-J | USB 2.0 PHY | Bit9 STBYJ | Bit9 ISOCNTJ |

## POWER SUPPLY SEQUENCE

To ensure system stability, the power supply lines must be powered on/off in a specific sequence, based on the power supply group they are in, as described in this section.

## Power Supply Groups

The power supply lines of the SoC can be grouped as follows:

1. Vdd*(Internal) - Internal core, analog power supply
(1 V power supply)
Vdd1, VddXT1, AVddPLL1, AVddPLL2, DVddUSBPHY1
2. Vdd*(IO) - External IO power supply
(1.8 V / 3 V power supply)

Vdd2, VddSD1, AVddUSBPHY2, AVddUSBPHY18, AVddADC, AVddDAMPL, AVddDAMPR
3. VddRTC - The RTC power supply (This is a dedicated power supply line whose on/off sequence is described separately in the next section)

## Recommendation

The recommended basic sequence for powering on/off of the power supply lines is as follows. (Simultaneous power on/off is acceptable)

- Power on:
- Vdd*(Internal) -> Vdd*(IO) -> Vsig(Signal)
- Power off:
- Vsig(Signal) -> Vdd*(IO) -> Vdd*(Internal)

NOTE:
During power on, the sequence of Vdd*(Internal) -> Vdd*(IO) causes a SoC hard reset which prevents IO glitches. Powering on the Vdd*(IO) lines while the $\mathrm{Vdd} *$ (Internal) lines are powered off may generate glitches on the IO signals and the flow of through current. It is recommended that you follow the sequence above in order to avoid this. In addition, Vsig(Signal) means voltage appearance of IO signals.

In the $\mathrm{Vdd} *(\mathrm{IO})$ group, the power on sequence for the USB PHY must occur in the order AVddUSBPHY18 -> AVddUSBPHY2, while the power off sequence must occur in the order AVddUSBPHY2 -> AVddUSBPHY18.

RTC has its own dedicated power supply and power on/off sequence which is described in the following section.

## RTC Terminal Control Sequence

A power supply sequence and other terminal control sequence of RTC are described as follows.

## General RTC mode (RTCMODE = 1)

To power off the domains other than the RTC domain (The only RTC works), it is necessary to detect the drop in the
voltage of Vdd1 and Vdd2 power supply, and set BACKUPB to Low which isolates the VddRTC Domain from the Vdd1 Domain.
Moreover, to power off the RTC domain as well, it is necessary to detect the drop in the voltage of the VddRTC power supply, and set VDET to Low. (The RTC operation stops).


Figure 43. Timing Sequence for General RTC Mode
(Reference: Internal control logic for isolation based on BACKUPB)


Figure 44. Internal Control Logic for Isolation

Keyint RTC Mode (RTCMODE = 0)
Using a master command from Cortex-M3, the internal sequencer of the RTC controls the operation of BACKUPB for isolation and power off. The power off sequence using the BACKUPB terminal can also be activated by an external
source. Either the KEYINT input or the internal RTCINT signal can generate the power on sequence.
When powering off RTC, it is necessary to detect the drop in the voltage of the VddRTC power supply, and set VDET to Low. (The RTC operation stops).


Figure 45. Timing Sequence for Keyint RTC Mode

## LC823455

ORDERING INFORMATION

| Device | Package | Shipping (Qty / Packing) $\dagger$ |
| :---: | :---: | :---: |
| LC823455XATBG | WLCSP120, 4.086x4.086 <br> (Pb-Free / Halogen Free) | $1000 /$ Tape \& Reel |
| LC823455RB-2H <br> (Under planning) | LFBGA136, 11.0x11.0 <br> (Pb-Free / Halogen Free) | $880 /$ Tray JEDEC |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## WLCSP120, 4.086x4.086x0.62 <br> CASE 567WG <br> ISSUE O

DATE 16 APR 2018


DETAIL A
NDTES:


1. DIMENSIDNING AND TQLERANCING PER ASME Y14.5M, 1994.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. SEATING PLANE IS AT THE SPHERICAL CRDWN SLLDER BALLS.

| DIM | MILLIMETERS |  |  |
| :---: | :---: | :---: | :---: |
|  | MIN. | NDM. | MAX. |
| A | 0.58 | 0.62 | 0.66 |
| A1 | 0.07 | 0.09 | 0.11 |
| A2 | 0.51 | 0.53 | 0.55 |
| A3 | 0.04 REF |  |  |
| b | 0.145 | 0.175 | 0.205 |
| D | 4.056 | 4.086 | 4.116 |
| E | 4.056 | 4.086 | 4.116 |
| e | 0.35 BSC |  |  |



DUTLINE
RECDMMENDED MUUNTING FIDTPRINT

## GENERIC

MARKING DIAGRAM*


XXX $=$ Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\wedge}$ ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON87275G | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP120, 4.086x4.086x0.62 | PAGE 1 OF 1 |

ON Semiconductor and (iN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

ON Semiconductor and $O N$ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative


[^0]:    3 The product name for which Bluetooth Protocol Stack is available is determined. Please contact our representative for license fee for the Stack.
    Copyright 1999-2014 OpenSynergy GmbH
    All rights reserved. All unpublished rights reserved.

[^1]:    33. Power up and power down timing of AVddPLL2 and Vdd1 should be as close as possible. 34. Electrical specifications are based on simulation results.
    34. PLL lock time and appropriate LPF circuit depend on phase comparison frequency (Fref).
