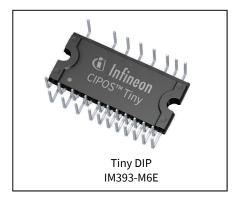
IM393-M6E

CIPOS[™] Tiny IPM 600V/10A

IM393-M6E


Description

IM393-M6E is a 10A, 600V Integrated Power Hybrid IC with Open Emitter pins for advanced Appliance Motor Drives applications such as energy efficient fan and pumps. Infineon's technology offers an extremely compact, high performance AC motor-driver in a single isolated package to simplify design.

This advanced IPM is a combination of Infineon's newest low VCE(on) Trench IGBT technology optimized for best trade-off between conduction and switching losses and the industry benchmark 3 phase high voltage, high speed driver (3.3V compatible) in a fully isolated thermally enhanced package. A built-in high precision temperature monitor and over-current protection feature, along with the short-circuit rated IGBTs and integrated under-voltage lockout function, deliver high level of protection and fail-safe operation. Using a dual in line package with full transfer mold structure resolves isolation problems to heatsink.

Features

- Integrated gate drivers and bootstrap function
- Temperature monitor
- Protection shutdown pin
- Low VCE (on) Trench IGBT technology
- Under voltage lockout for all channels
- Matched propagation delay for all channels
- 3.3V Schmitt-triggered input logic
- Cross-conduction prevention logic
- Isolation 2000V_{RMS} min and CTI > 600
- Recognized by UL (File Number E314539)

Potential applications

- Washing machines
- Air-conditioners
- Refrigerators
- Fans
- Dishwashers
- Low power motor drives

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Table1	Part Ordering Table
--------	---------------------

Deee newt number	De alcana Turna	Standard Pack		
Base part number	Package Type	Form Quantity		Orderable Part Number
IM393-M6E	Tiny DIP	30 Tubes	450	IM393-M6E
IM393-M6E2	Tiny DIP, 3mm lead	30 Tubes	450	IM393-M6E2
IM393-M6E3	Tiny DIP, 3mm lead	30 Tubes	450	IM393-M6E3

Please read the important Notice and Warnings at the end of this document

CIPOS™ Tiny

IM393-M6E

Table of Contents

Table of Contents

Desc	ription	L
Feat	ures	L
Pote	ntial Applications	L
Prod	luct validation	L
Tabl	e of Contents	2
1	Internal Electrical Schematic	3
2	Pin Configuration	4
2.1	Pin Assignment	5
2.2	Pin Descriptions	5
3	Absolute Maximum Rating	3
3.1	Module	3
3.2	Inverter	3
3.3	Control	3
4	Thermal Characteristics	9
5	Recommended Operating Conditions1	0
6	Static Parameters 1	1
6.1	Inverter 1	1
6.2	Control1	1
7	Dynamic Parameters	3
7.1	Inverter13	3
7 .2	Control13	3
8	Thermistor Characteristics14	4
9	Mechanical Characteristics and Ratings1	5
10	Qualification Information	õ
11	Diagrams & Tables	7
11.1	Tc Measurement Point	7
11.2	Input-Output Logic Table17	7
11.3	Switching Time Definitions18	3
12	Application Notes19	Э
12.1	Typical Application Schematic)
12.2	T _J vs T _{TH})
12.3	-VsImmunity20)
13	Package Outline	1
Revi	sion History	3

CIPOS[™] Tiny IM393-M6E Internal Electrical Schematic

1 Internal Electrical Schematic

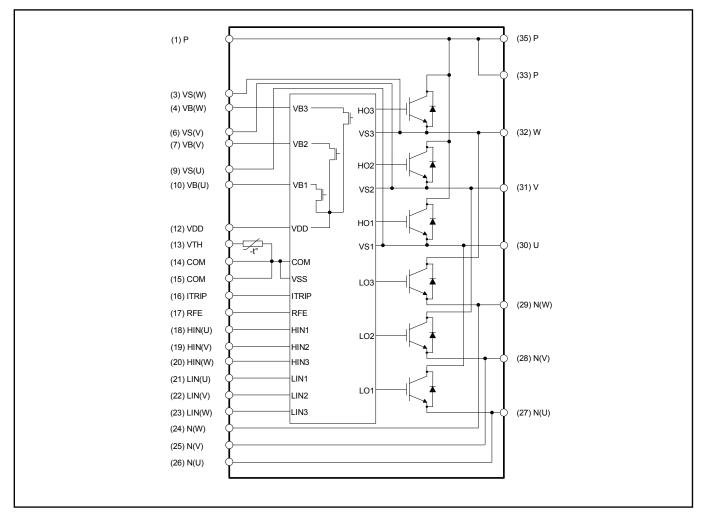
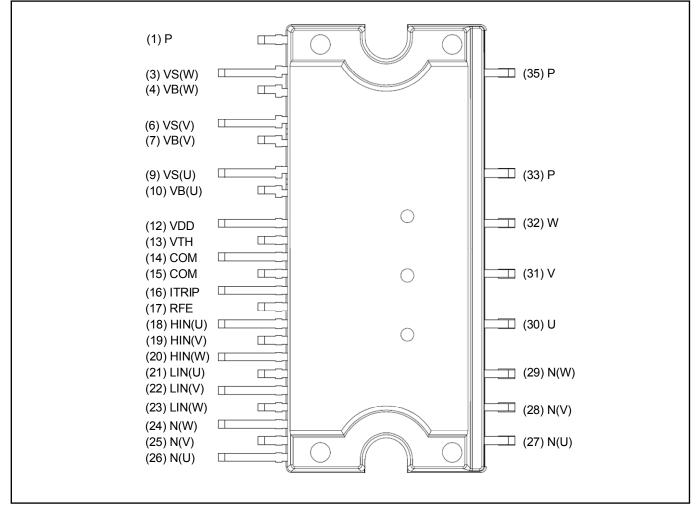



Figure 1 Internal electrical schematic

2 Pin Configuration

2.1 Pin Assignment

Table 2Pin Assignment

Pin	Name	Description
1	Р	Positive bus input voltage
2	N/A	None
3	VS(W)	W-phase high side floating supply offset voltage
4	VB(W)	W-phase high side floating supply voltage
5	N/A	None
6	VS(V)	V - phase high side floating supply offset voltage
7	VB(V)	V - phase high side floating supply voltage
8	N/A	None
9	VS(U)	U- phase high side floating supply offset voltage
10	VB(U)	U- phase high side floating supply voltage
11	N/A	None
12	VDD	Low side control supply
13	VTH	Temperature monitor
14	СОМ	Low side control negative supply
15	СОМ	Low side control negative supply
16	ITRIP	Over current protection input
17	RFE	RCIN / Fault / Enable
18	HIN(U)	U-phase high side gate driver input
19	HIN(V)	V-phase high side gate driver input
20	HIN(W)	W-phase high side gate driver input
21	LIN(U)	U-phase low side gate driver input
22	LIN(V)	V-phase low side gate driver input
23	LIN(W)	W-phase low side gate driver input
24	N(W)	W-phase low side emitter
25	N(V)	V-phase low side emitter
26	N(U)	U-phase low side emitter
27	N(U)	U-phase low side emitter
28	N(V)	V-phase low side emitter
29	N(W)	W-phase low side emitter
30	U	U-phase output
31	V	V-phase output
32	W	W-phase output
33	Р	Positive bus input voltage
34	N/A	None
35	Р	Positive bus input voltage
36	N/A	None

CIPOS[™] Tiny ^{IM393-M6E}

Pin Descriptions

2.2 **Pin Descriptions**

HIN(U,V,W) and LIN(U,V,W) (High side and low side control pins)

These pins are positive logic and they are responsible for the control of the integrated IGBT. The Schmitt-trigger input thresholds of them are such to guarantee LSTTL and CMOS compatibility down to 3.3V controller outputs. Pull-down resistor of about $4k\Omega$ is internally provided to pre-bias inputs during supply start-up and an ESD diode is provided for pin protection purposes. Input Schmitt-trigger and noise filter provide beneficial noise rejection to short input pulses.

The noise filter suppresses control pulses which are below the filter time TFILIN. The filter acts according to Figure 4.

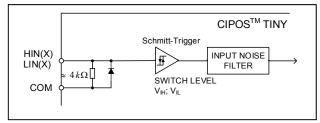
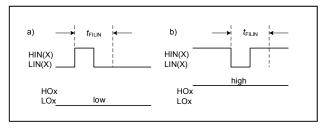



Figure 3 Input pin structure

Figure 4 Input filter timing diagram

The integrated gate drive provides additionally a shoot through prevention capability which avoids the simultaneous on-state of the high-side and low-side switch of the same inverter phase. A minimum deadtime insertion of typically 275ns is also provided by driver IC, in order to reduce cross-conduction of the external power switches.

V_{DD}, COM (Low side control supply and reference)

 V_{DD} is the control supply and it provides power both to input logic and to output power stage. Input logic is referenced to COM ground.

The under-voltage circuit enables the device to operate at power on when a supply voltage of at least a typical voltage of V_{DDUV+} = 10.4V is present.

The IC shuts down all the gate drivers power outputs, when the VDD supply voltage is below V_{DDUV} = 9.4V. This prevents the external power switches from critically low gate voltage levels during on-state and therefore from excessive power dissipation.

$V_{B(U,V,W)}$ and $V_{S(U,V,W)}$ (High side supplies)

 V_B to V_S is the high side supply voltage. The high side circuit can float with respect to COM following the external high side power device emitter voltage.

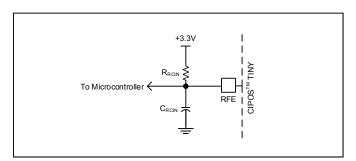
Due to the low power consumption, the floating driver stage is supplied by integrated bootstrap circuit.

The under-voltage detection operates with a rising supply threshold of typical $V_{BSUV+} = 10.41V$ and a falling threshold of $V_{BSUV-} = 9.4V$.

 $V_{S(U,V,W)}$ provide a high robustness against negative voltage in respect of COM. This ensures very stable designs even under rough conditions.

N(U, V, W) (Low side emitters)

The low side emitters are available for current measurements of each phase leg. It is recommended to keep the connection to pin COM as short as possible in order to avoid unnecessary inductive voltage drops.


VTH (Thermistor)

A UL certified NTC is integrated in the module with one terminal of the chip connected to COM and the other to VTH. When pulled up to a rail voltage such as VDD or 3.3V by a resistor, the VTH pin provides an analog voltage signal corresponding to the temperature of the thermistor. **Pin Configuration**

RFE (RCIN / Fault / Enable)

The RFE pin combines 3 functions in one pin: RCIN or RC-network based programmable fault clear timer, fault output and enable input.

The RFE pin is normally connected to an RC network on the PCB per the schematic in Figure 5. Under normal operating conditions, R_{RCIN} pulls the RFE pin to 3.3V, thus enabling all the functions in the IPM. The microcontroller can pull this pin low to disable the IPM functionality. This is is the Enable function.

Figure 5 Typical PCB circuit connected to the RFE pin

The Fault function allows the IPM to report a Fault condition to the microcontroller by pulling the RFE pin low in one of two situations. The first is an undervoltage condition on V_{DD} and the second is when the ITRIP pin sees a voltage rising above $V_{IT,TH+}$.

The programmable fault clear timer function provides a means of automatically re-enabling the module operation a preset amount of time ($T_{FLT-CLR}$) after the fault condition has disappeared. Figure 6 shows the RFE-related circuit block diagram inside the IPM .

The length of TFLT-CLR can be determined by using the formula below.

 $V_{RFE}(t) = 3.3V * (1 - e^{-t/RC})$

 $T_{FLT-CLR} = -R_{RCIN} * C_{RCIN} * ln(1-VIN,TH+/3.3V)$

For example, if R_{RCIN} is 1.2M Ω and C_{RCIN} is 1nF, the $T_{FLT-CLR}$ is about 1.7ms with V_{IN,TH^+} of 2.5V. It is also important to note that C_{RCIN} needs to be minimized in order to make sure it is fully discharged in case of over current event.

Since the ITRIP pin has a 350ns input filter, it is appropriate to ensure that C_{RCIN} will be discharged below $V_{IN,TH}$ by the open-drain MOSFET, after 350ns. Therefore, the max C_{RCIN} can be calculated as:

 $V_{RFE}(t) = 3.3V * e^{-t/RC} < V_{IN,TH-}$

 $C_{RCIN} < 350 \text{ns} / (- \ln (V_{IN,TH-} / 3.3V) * R_{RFE_ON})$

Consider $V_{IN,TH-}$ of 0.8V and R_{RFE_ON} of 500hm, C_{RCIN} should be less than 4.9nF. It is also suggested to use a R_{RCIN} of between 0.5M Ω and 2M Ω .

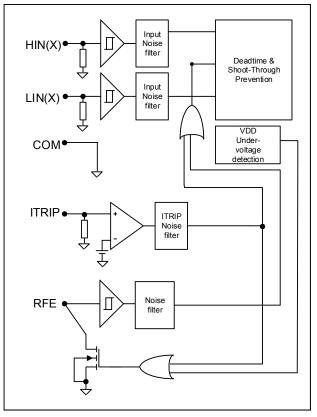


Figure 6 RFE internal circuit structure

U,V,W (High side emitter and low side collector)

These pins are motor U, V, W input pins.

P (Positive bus input voltage)

The high side IGBTs are connected to the bus voltage. It is noted that the bus voltage does not exceed 450V.

infineon

Absolute Maximum Rating

3 Absolute Maximum Rating

3.1 Module

Table 3

Parameter	Symbol	Conditions	Value	Units
Operating junction temperature	TJ	IGBT, diode, HVIC	-40 ~ 150	°C
Operating case temperature	Tc		-40 ~ 125	°C
Storage temperature	T _{STG}		-40 ~ 125	°C
Isolation test voltage	V _{ISO}	AC RMS, 1 minute, 60Hz	2000	V

3.2 Inverter

Table 4

Parameter	Symbol	Conditions	Value	Units
Blocking voltage	V _{CES}	IGBT, diode, HVIC	600	V
DC –link supply voltage of P-N	V_{PN}	Applied between P and N	450	V
DC –link supply voltage (surge) of P-N	$V_{PN(surge)}$	Applied between P and N	500	V
Output current	lo	T _c = 25°C, T _J < 150°C	±10	А
Peak output current	I _{O(peak)}	T _c = 25°C, T _J < 150°C, less than 1ms	±15	A
Power dispassion per IGBT	P _{tot}		20	W
Short Circuit withstand time	T _{sc}	T _J < 150°C, V _{DC} =360V, V _{GE} = 15V	3	μs

3.3 Control

Parameter	Symbol	Conditions	Value	Units
Logic supply voltage	V _{DD}		-0.3 ~ 20	V
Input voltage	V _{IN}	LIN, HIN, ITRIP, RFE	-0.3 ~ 20	V
High side floating supply voltage	$V_{BS(U,V,W)}$		-0.3 ~ 20	V

Thermal Characteristics

4 Thermal Characteristics

Daramatar	Symbol	Conditions		Unite		
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Single IGBT thermal resistance, junction-case	R _{TH(J-C)}	Low side W-phase IGBT (See Figure 8 for T _c measurement point)	-	5.3	6.1	°C/W
Single diode thermal resistance, junction-case	R _{TH(J-C)D}	Low side W-phase diode (See Figure 8 for T _c measurement point)	-	6.6	7.7	°C/W

Recommended Operating Conditions

5 Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions. All voltages are absolute referenced to COM. The VS offset is tested with all supplies biased at 15V differential.

Parameter	Symbol	Conditions		Units		
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Positive DC bus input voltage	V _{DC}		-	-	450	V
Low side control supply voltage	V _{DD}		13.5	15	16.5	V
High side floating supply voltage	V _{BS}		12.5	15	17.5	V
Input voltage	V _{IN}	LIN, HIN, ITRIP, RFE	0	-	5	V
PWM carrier frequency	F _{PWM}		-	20	-	kHz
Voltage between COM and N (including surge)	V _{COM}		-5	-	5	V
External dead time between HIN & LIN	DT		1	-	-	μs
Input pulse width	PW _{IN(ON)} PW _{IN(OFF)}		1	-	-	μs

CIPOS[™] Tiny ^{IM393-M6E}

Static Parameters

6 Static Parameters

6.1 Inverter

 $V_{\text{BIAS}}(V_{\text{DD}}, V_{\text{BS}(U,V,W)})\text{=}15V,$ $T_{\text{J}}\text{=}25^{\circ}\text{C}$ unless otherwise specified

Table 8

Parameter	Symbol	Conditions		Units		
Falanietei	Symbol	conditions	Min.	Тур.	Max.	Units
Collector-Emitter saturation voltage	N	I _c = 5A	-	1.5	1.9	V
	V CE(ON)	I _c = 5A, T _J = 150°C	-	in. Typ. Max. - 1.5 1.9 - 1.7 - - 10 80	V	
	V _{CE(ON)} I _{CES} V _E	$V_{IN} = 0V, V_{CE} = 600V$	-	10	80	μA
Collector-Emitter leakage current		V _{IN} = 0V, V _{CE} = 600V, T _J =150°C	-	80	-	μΑ
Diada fanward voltage drop	M	I _c = 5A	-	1.7	2.2	V
Diode forward voltage drop	VF	I _c = 5A, T _J = 150°C	-	1.6	-	V

6.2 Control

 $V_{BIAS}(V_{DD}, V_{BS(U,V,W)})=15V, T_J=25^{\circ}C$, unless otherwise specified. The VIN parameters are referenced to COM and are applicable to all six channels

				Value			
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units	
Logic "1" input voltage	V _{IN,TH+}	LIN, HIN, RFE	2.5	-	-	V	
Logic "0" input voltage	V _{IN,TH-}	LIN, HIN, RFE	-	-	0.8	V	
V _{DD} /V _{BS} supply undervoltage, positive going threshold	V _{DD,UV+} , V _{BS,UV+}		9.6	10.4	11.2	V	
V _{DD} /V _{BS} supply undervoltage, negative going threshold	Vdd,uv-, Vbs,uv-		8.6	9.4	10.2	V	
V _{DD} /V _{BS} supply undervoltage lock-out hysteresis	V _{DDUVH} , V _{BSUVH}		-	1	-	v	
Quiescent V _{BS} supply current	I _{QBS}		-	-	150	μA	
Quiescent V _{DD} supply current	I _{QDD}		-	-	3.2	mA	
Offset supply leakage current	I _{LK}	V _s = 600V	-	-	50	μA	
Input bias current for LIN, HIN	I _{IN+}	V _{IN} = 3.3V	-	825	1110	μA	
Input bias current for RFE	I _{IN,RFE+}	$V_{REF} = 3.3V$	-	0	1	μA	
Input bias current for ITRIP	I _{TRIP+}	V _{ITRIP} = 3.3V	-	4	16	μA	
ITRIP threshold voltage	VITRIP		0.44	0.49	0.54	V	

Static Parameters

Devenuence	C	Conditions		11:0:40		
Parameter	Symbol	Conditions	Min.	Тур.	- Max.	Units
ITRIP input hysteresis	V _{ITRIP,HYS}		-	0.07	-	V
Bootstrap resistance	R _{BS}		-	200	-	Ω
RFE low on resistance	R _{RFE}		-	50	100	Ω

Dynamic Parameters

7 Dynamic Parameters

7.1 Inverter

 $V_{BIAS}(V_{DD}, V_{BS(U,V,W)})=15V, T_J=25^{\circ}C$, unless otherwise specified.

Table 10

	Course has h	Constitution of	Value				
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units	
Input to output turn-on propagation delay	T _{on}	$I_{C} = 5A, V_{DC} = 300V$	-	-	1.15	μs	
Input to output turn-off propagation delay	T _{OFF}	$I_{c} = 5A, V_{DC} = 300V$	-	-	1.15	μs	
RFE low to six switch turn-off propagation delay	T _{EN}	V _{RFE} = 5V to 0V	-	-	1.35	μs	
ITRIP to six switch turn-off propagation delay	T _{ITRIP}	$I_{C} = 5A, V_{DC} = 300V$	-	-	1.5	μs	
IGBT turn-on energy	Eon	V _{DC} = 300V, I _C = 5A, T _J = 25°C 150°C	-	170 250	-	μJ	
IGBT turn-off energy	E _{OFF}	V _{DC} = 300V, I _C = 5A, T _J = 25°C 150°C	- -	70 110	-	μJ	
Diode reverse recovery energy	E _{rec}	V _{DC} = 300V, I _C = 5A, T _J = 25°C 150°C	-	20 40	-	μJ	
Reverse Bias Safe Operating Area	RBSOA	$T_J = 150^{\circ}C, I_C = 20A, V_P = 600V, V_{DC} = 450V, V_{DD} = +15V to 0V$	FUL	L SQUA	RE		

7.2 Control

V_{BIAS}(V_{DD}, V_{BS(U,V,W)})=15V, T_J=25°C, unless otherwise specified.

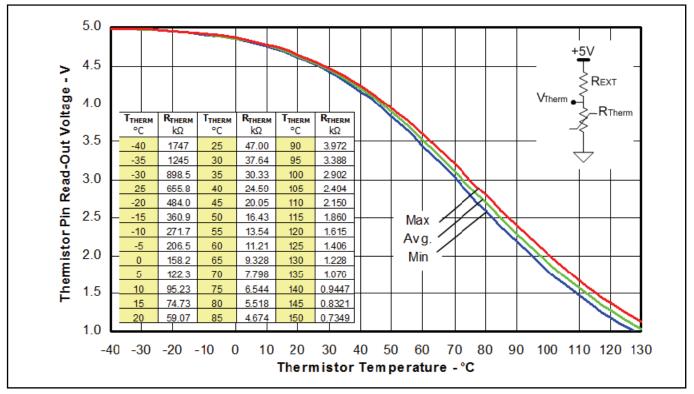
Table 11

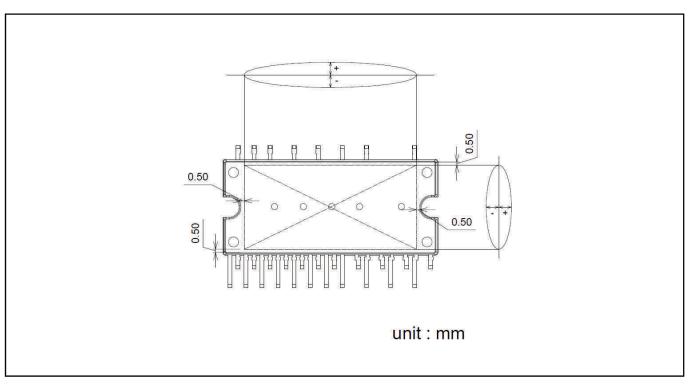
Parameter	Symbol	Conditions	Value			Units	
			Min.	Тур.	Max.		
Input filter time (HIN, LIN, ITRIP)	T _{FILIN}	$V_{IN} = 0 \text{ or } V_{IN} = 5V$	-	350	-	ns	
Input filter time (RFE)	T _{FILRFE}	$V_{RFE} = 0 \text{ or } V_{RFE} = 5V$	100	200	-	ns	
ITRIP to Fault propagation delay	T_{FLT}	$V_{IN} = 0 \text{ or } V_{IN} = 5V, V_{ITRIP} = 5V$	400	600	800	ns	
Internal injected dead time	T _{DT}	$V_{IN} = 0 \text{ or } V_{IN} = 5V$	190	275	420	ns	
Matching propagation delay time (On & Off) all channels	Μ _T	External dead time > 420ns	-	-	50	ns	

Thermistor Characteristics

8 Thermistor Characteristics

Parameter	Symbol	Conditions		Value			
Falametei	Symbol	Conditions	Min.	Тур.	Max.	Units	
Resistance	R ₂₅	T = 25°C, ±5% tolerance	44.65	47	49.35	kΩ	
Resistance	R ₁₂₅	T = 125°C	1.27	1.41	1.56	kΩ	
B-constant	В	25-50°C, R ₂ =R ₁ e ^[B1/T2-1/T1)]	3989	4050	4111	К	
Temperature Range			-40	-	125	°C	




Figure 7 Thermistor readout vs. temperature (with 4.7kohm R_{EXT} pull-down resistor) and typical thermistor resistance values vs. temperature table

Mechanical Characteristics and Ratings

9 Mechanical Characteristics and Ratings

Parameter	Symbol	Conditions	Value			Units	
raiametei	Symbol	conditions	Min.	Тур.	Max.		
Thermal resistance, case- heatsink		Flat, greased surface. Heatsink compound thermal conductivity 1W/mK	-	0.25	-	°C/W	
Comparative Tracking Index	СТІ		600	-	-	V	
Curvature of module backside	BKC		0	-	150	μm	
Mounting torque	Т	M3 screw and washer	0.6	0.7	0.8	Nm	

Qualification Information

10 Qualification Information

Table 14

UL Certified	File Number E314539				
RoHS Compliant	Yes				
	Human body model	Class 3A			
ESD	Charge discharge model	Class C3			

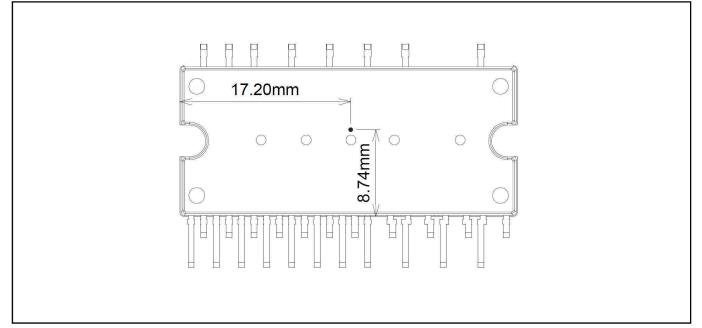
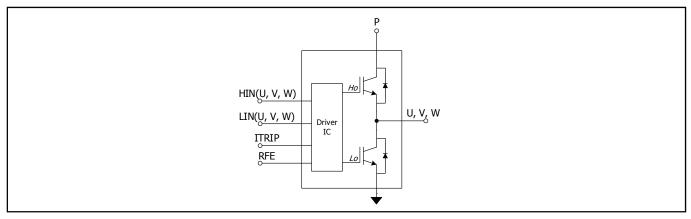

Final Datasheet

Diagram & Tables


11 Diagram & Tables

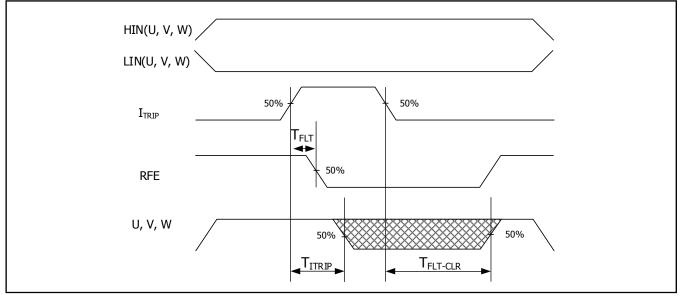
11.1 Tc Measurement Point

Figure 9 TC measurement point

11.2 Input-Output Logic Table

Figure 10 Module block diagram

Table 15	Input-output logic level table


RFE	ITRIP	HIN(U,V,W)	LIN(U,V,W)	U,V,W
1	0	1	0	V _{DC}
1	0	0	1	0
1	0	0	0	Off
1	0	1	1	Off
1	1	Х	Х	Off
0	Х	Х	Х	Off

CIPOS[™] Tiny ^{IM393-M6E}

Diagrams & Tables

11.3 Switching Time Definitions

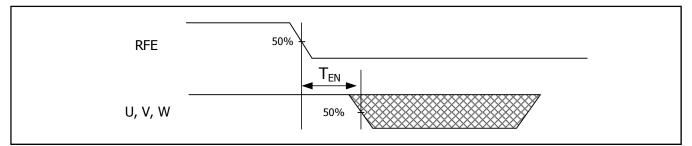


Figure 12 Output disable timing diagram

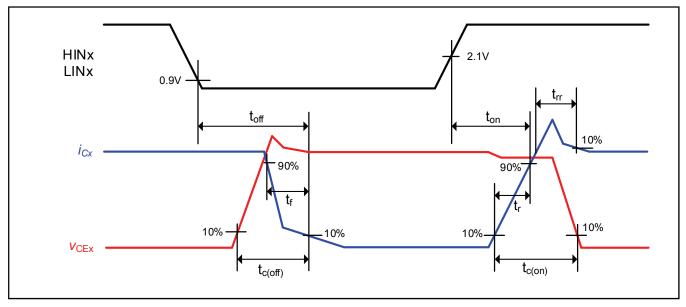
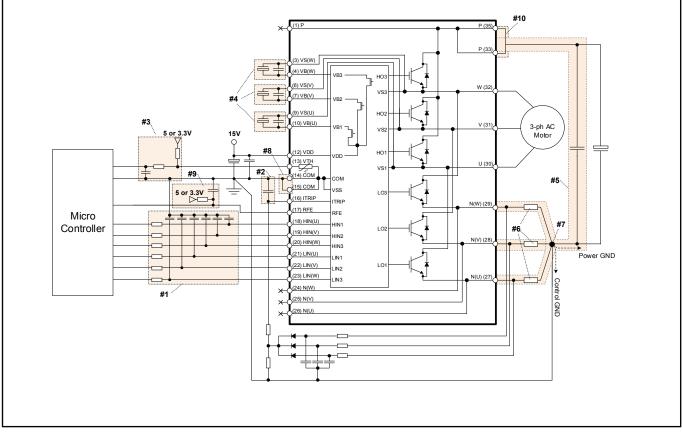


Figure 13 Switching times definition

CIPOS™ Tiny


IM393-M6E

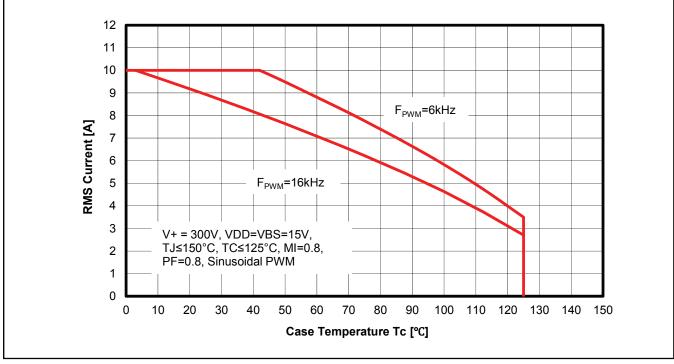
Application Guide

12 Application Guide

12.1 Typical Application Schematic

Figure 14 Typical application connection

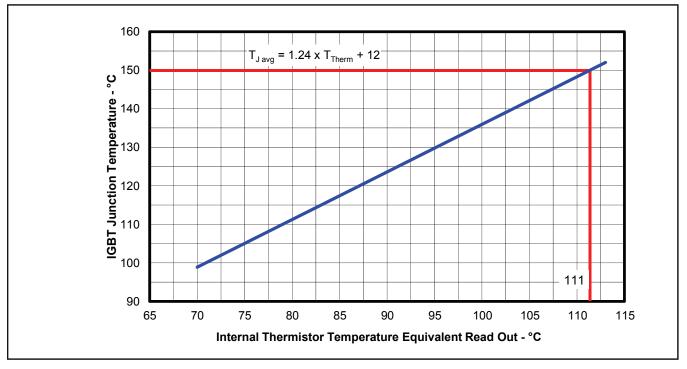
- 1. Input circuit
 - -RC filter can be used to reduce input signal noise $(100\Omega, 1nF)$
 - -The capacitors should be located close to CIPOS[™] Tiny (to COM terminal especially).
- 2. Itrip circuit
 - -To prevent a mis operation of protection function, RC filter is recommended
 - -The capacitor must be located close to Itrip and COM terminals.
- 3. VTH circuit
 - -This terminal should be pulled up to the bias voltage of 5V/3.3V through a proper resistor to define suitable voltage for temperature monitoring.
 - -It is recommended that RC filter is placed close to the controller
- 4. VB-VS circuit


-Capacitors for high side floating supply voltage should be placed close to VB and VS terminals. -Additional high frequency capacitors, typically 0.1mF, are strongly recommended.

- -Overlap of pattern to motor and pattern to bootstrap capacitors should be minimized.
- 5. Snubber capacitor
- -The wiring among CIPOS[™] Tiny, snubber capacitor and shunt resistors should be short as possible. 6. Shunt resistor
- -SMD type shunt resistors are strongly recommended to minimize its internal stray inductance. 7. Ground pattern
 - -Pattern overlap of power ground and signal ground should be minimized. The patterns should be connected at the common end of shunt resistors only for the same potential.
- 8. COM pattern
- -Both of the COM terminals should be connected together.
- 9. RFE circuit
 - -To setup R and C parameter for fault clear time, please refer to Figure 5.
 - -This R is also mandatory for fault out reporting function because it is open drain structure.
- 10. P pattern

-Both of the P terminals should be connected together.

Application Guide



12.2 Performance Charts

Figure 15 Maximum operating current SOA

1. This maximum operating current SOA is just one of example based on typical characteristics for this product. It can be change by each user's actual operating conditions.

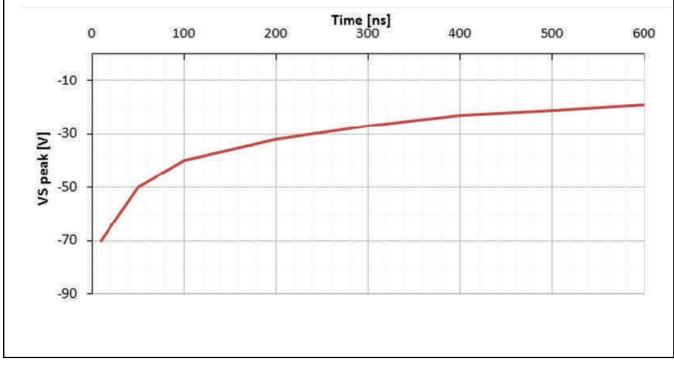

12.3 Tj vs. Tth

Figure 16 Typical Tj vs Tth correlation, sinusoidal modulation, V_{DC}=300V, Iphase=5Arms, fsw=16kHz, fmod=50Hz, MI=0.8, PF=0.6

infineon

Application Guide

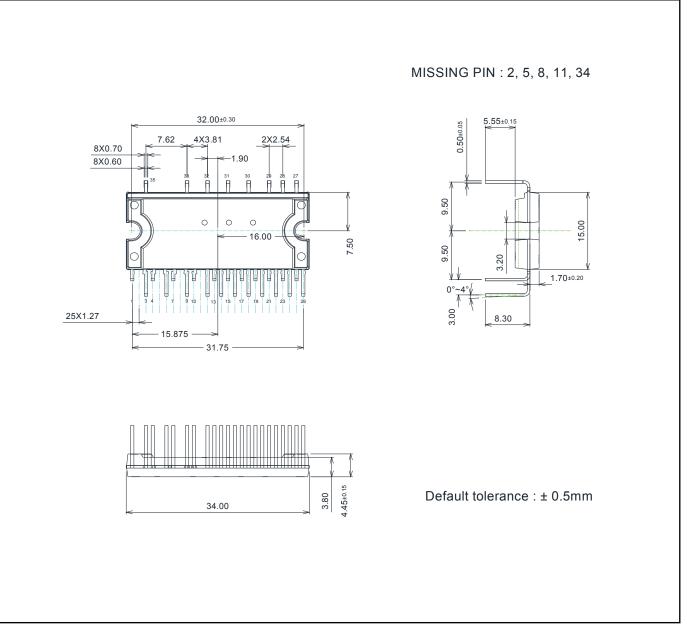
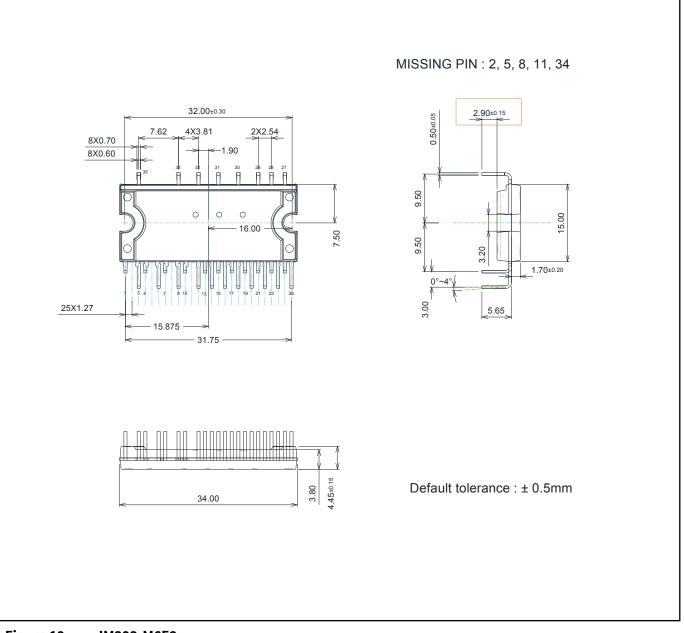

12.2 –V_s Immunity

Figure 17 Negative transient Vs SOA for integrated gate driver

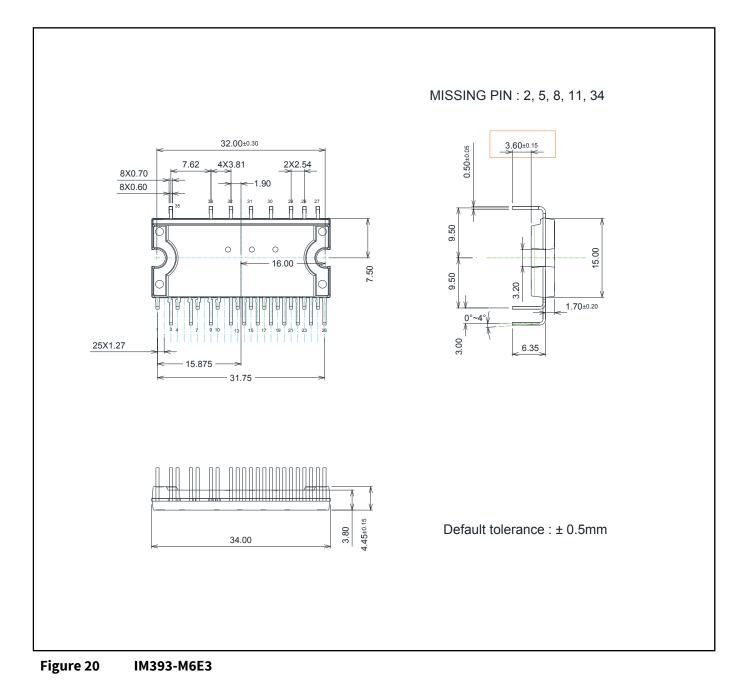
Package Information

13 Package Outline



Final Datasheet

Package Information



IM393-M6E2

Package Information

Final Datasheet

Revision History

Revision History

Major changes since the last revision

Page or Reference	Revision	Date	Description of changes

IMPORTANT NOTICE

Edition 2017-09-26 Published by Infineon Technologies AG 81726 Munich, Germany

© 2017 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.