

IGT60R190D1S

600V CoolGaN™ enhancement-mode Power Transistor

Features

- Enhancement mode transistor Normally OFF switch
- Ultra fast switching
- No reverse-recovery charge
- Capable of reverse conduction
- Low gate charge, low output charge
- Superior commutation ruggedness
- Qualified for standard grade applications according to JEDEC standards

Benefits

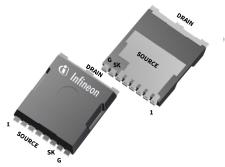
- Improves system efficiency
- Improves power density
- Enables higher operating frequency
- System cost reduction savings
- Reduces EMI

Applications

Consumer SMPS and high density chargers based on the half-bridge topology (half-bridge topologies for hard and soft switching such as Totem pole PFC, high frequency LLC and flyback).

For other applications: review CoolGaN[™] reliability white paper and contact Infineon regional support

	ľ
(
Go (►	F)
ѕко	
	0s


Table 1Key Performance Parameters at $T_J = 25 \degree C$

Parameter	Value	Unit	
V _{DS,max}	600	V	
R _{DS(on),max}	190	mΩ	
Q _{G,typ}	3.2	nC	
I _{D,pulse}	23	A	
Q _{oss} @ 400 V	16	nC	
Q _{rr}	0	nC	

Table 2 Ordering Information

Type / Ordering Code	Package	Marking	Related links
IGT60R190D1S	PG-HSOF-8-3	60S190D1	see Appendix A

Drain	drain contact
Kelvin Source	7
Source	1,2,3,4,5,6
	Î۵

8

Gate

Table of Contents

Features	
Benefits	
Applicatior	ıs1
Table of Co	ntents
1	Maximum ratings
2	Thermal characteristics
3	Electrical characteristics
4	Electrical characteristics diagrams
5	Test Circuits
6	Package Outlines
7	Appendix A15
8	Revision History16

1 Maximum ratings

at T_j = 25 °C, unless otherwise specified. Continuous application of maximum ratings can deteriorate transistor lifetime. For further information, contact your local Infineon sales office.

Symbol Values Unit **Note/Test Condition** Parameter Min. Typ. Max. Drain Source Voltage, continuous¹ V_{DS,max} _ _ 600 ٧ $V_{GS} = 0 V$ ٧ $V_{GS} = 0 V$, $I_{DS} = 4.3 mA$ Drain source destructive breakdown 800 V_{DS.bd} voltage ² Drain source voltage, pulsed² $V_{\text{DS},\text{pulse}}$ _ 750 V $T_j = 25 \text{ °C}; V_{GS} \le 0 \text{ V}; \le 1 \text{ hour}$ _ of total time V 650 $T_i = 125 \,^{\circ}C, V_{GS} \le 0 \, V; \le 1 \, hour$ of total time V DC bus voltage = 700 V; turn Switching surge voltage, pulsed² $V_{\text{DS},\text{surge}}$ 750 off V_{DS,pulse} = 750 V; turn on $I_{D,pulse} = 10 \text{ A}; T_i = 105 \text{ °C};$ $f \le 100 \text{ kHz}, t \le 100 \text{ secs}$ (10 million pulses) Continuous current, drain source I_{D} 12.5 $T_{c} = 25 \text{ °C}; T_{i} = T_{i, max}$ А _ $T_{c} = 100 \text{ °C}; T_{i} = T_{i, max}$ _ 8.0 5.5 $T_{c} = 125 \text{ °C}; T_{i} = T_{i, \max}$ _ Pulsed current, drain source ³⁴ $T_c = 25 \,^{\circ}C; I_c = 9.6 \,\text{mA};$ 23 А D,pulse _ See Figure 3; Figure 5; $T_c = 125 \,^{\circ}C; I_c = 9.6 \, mA;$ _ 13.5 А Pulsed current, drain source ⁴⁵ D,pulse See Figure 4; Figure 6; Gate current, continuous ⁴⁵⁶ 7.7 $T_j = -55 \,^{\circ}C \text{ to } 150 \,^{\circ}C;$ I_{G,avg} mΑ _ _ Gate current, pulsed ⁴⁶ 770 $T_i = -55 \,^{\circ}C$ to 150 $\,^{\circ}C$; mΑ I_{G,pulse} $t_{PULSE} = 50 \text{ ns}, f=100 \text{ kHz}$ $T_i = -55 \,^{\circ}C$ to 150 $\,^{\circ}C$; Gate source voltage, continuous⁶ V_{GS} -10 V _ Gate source voltage, pulsed ⁶ -25 _ V $T_i = -55 \,^{\circ}C \text{ to } 150 \,^{\circ}C;$ V_{GS,pulse} $t_{PULSE} = 50 \text{ ns}, f = 100 \text{ kHz};$ open drain $T_{c} = 25 \,^{\circ}C$ **Power dissipation** P_{tot} 55.5 W --°C Operating temperature Ti -55 _ 150

Table 3 Maximum ratings

 $^{^1}$ $\,$ All devices are 100% tested at I_{DS} = 4.3 mA to assure V_{DS} \geq 800 V $\,$

² Provided as measure of robustness under abnormal operating conditions and not recommended for normal operation

³ Limits derived from product characterization, parameter not measured during production

 $^{^4}$ Ensure that average gate drive current, $I_{G,avg}$ is \leq 7.7 mA. Please see figure 27 for $I_{G,avg}$, $I_{G,pulse}$ and I_G details

Parameter is influenced by rel-requirements. Please contact the local Infineon Sales Office to get an assessment of your application
 We recommend using an advanced driving technique to optimize the device performance. Please see gate drive application note for details

Storage temperature	T_{stg}	-55	-	150	°C	Max shelf life depends on storage conditions.
Drain-source voltage slew-rate	dV/dt			200	V/ns	

2 Thermal characteristics

Table 4Thermal characteristics

Parameter	Symbol		Values			Note/Test Condition
		Min.	Тур.	Max.		
Thermal resistance, junction-case	R _{thJC}	-	-	2.25	°C/W	
Thermal resistance, junction-ambient	R _{thJA}	-	-	62	°C/W	Device on PCB, minimum footprint
Thermal resistance, junction-ambient for SMD version	R _{thJA}	-	35	45	°C/W	Device on 40mm*40mm* 1.5mm epoxy PCB FR4 with 6cm ² (one layer, 70µm thickness) copper area for drain connection and cooling. PCB is vertical without air stream cooling.
Reflow soldering temperature	T _{sold}	-	-	260	°C	MSL1

3 Electrical characteristics

at T_i = 25 °C, unless specified otherwise

Table 5Static characteristics

Parameter	Symbol		Values		Values		Unit	Note/Test Condition
		Min.	Тур.	Max.				
Gate threshold voltage	V _{GS(th)}	0.9	1.2	1.6	V	I _{DS} = 0.96 mA; V _{DS} = 10 V; T _j = 25 °C		
		0.7	1.0	1.4		I_{DS} = 0.96 mA; V_{DS} = 10 V; T_j =125 °C		
Drain-Source leakage current		-	0.4	40	μΑ	$V_{DS} = 600 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$		
	DSS	-	8	-		V_{DS} = 600 V; V_{GS} = 0 V; T_j = 150 °C		
Drain-Source leakage current at application conditions ¹	I _{DSSapp}	-	0.3	-	μΑ	V_{DS} = 400 V; V_{GS} = 0 V; T_j = 125 °C		
Gate-Source leakage current		-1	-	-	mA	$V_{DS} = 0 V; V_{GS} = -10 V; T_j = 25 °C$		
	I _{GSS}	-1	-	-		$V_{DS} = 0 V$; $V_{GS} = -10 V$; $T_j = 125 °C$		
Drain-Source on-state resistance		-	0.14	0.19	Ω	I_{G} = 9.6 mA; I_{D} = 5 A; T_{j} = 25 °C		
	R _{DS(on)}	-	0.26	-		I _G = 9.6 mA; I _D = 5 A; T _j = 150 °C		
Gate resistance	$R_{G,int}$	-	0.27	-	Ω	LCR impedance measurement; f = f _{res}		

Table 6Dynamic characteristics

Parameter	Symbol Values				Unit	Note/Test Condition
		Min.	Тур.	Max.		
Input capacitance	C _{iss}	-	157	-	pF	V _{GS} =0 V; V _{DS} =400 V; f=1 MHz
Output capacitance	C _{oss}	-	28	-	pF	$V_{GS} = 0 V; V_{DS} = 400 V;$ f = 1 MHz
Reverse transfer capacitance	C _{rss}	-	0.15	-	pF	$V_{GS} = 0 V; V_{DS} = 400 V;$ f = 1 MHz
Effective output capacitance, energy related ²	C _{o(er)}	-	32.5	-	pF	V _{DS} =0 to 400 V
Effective output capacitance, time related ³	C _{o(tr)}	-	40	-	pF	$V_{GS} = 0 V$; $V_{DS} = 0$ to 400 V; Id = const
Output charge	Q _{oss}	-	16	I	nC	V _{DS} = 0 to 400 V
Turn- on delay time	t _{d(on)}	-	11	-	ns	see Figure 23
Turn- off delay time	t _{d(off)}	-	12	-	ns	see Figure 23
Rise time	t _r	-	5	-	ns	see Figure 23
Fall time	t _f	-	12	-	ns	see Figure 23

¹ Parameter represents end of use leakage in applications

 2 C_{o(er)} is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400 V

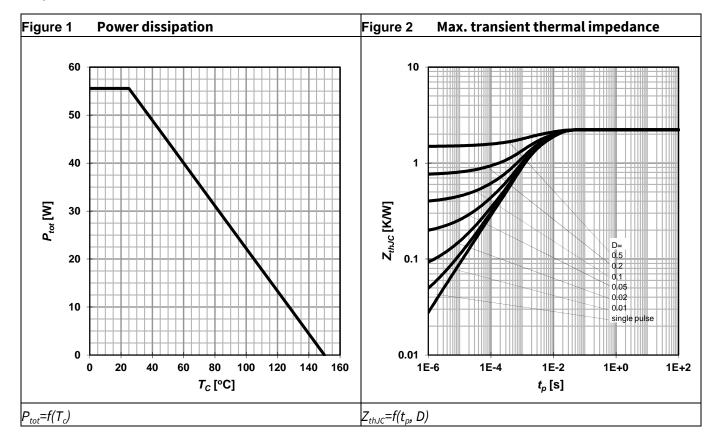
 3 C_{o(tr)} is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400 V

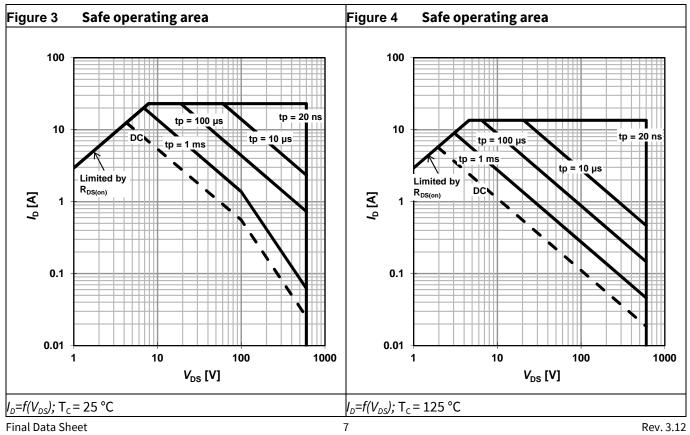
Downloaded from Arrow.com.

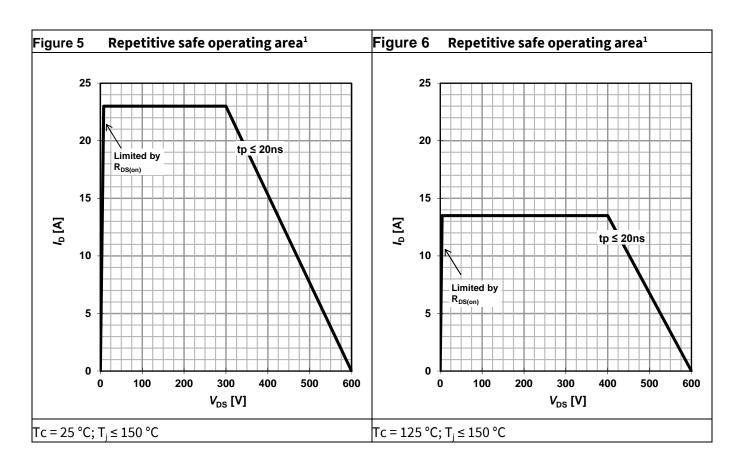
Table 7Gate charge characteristics

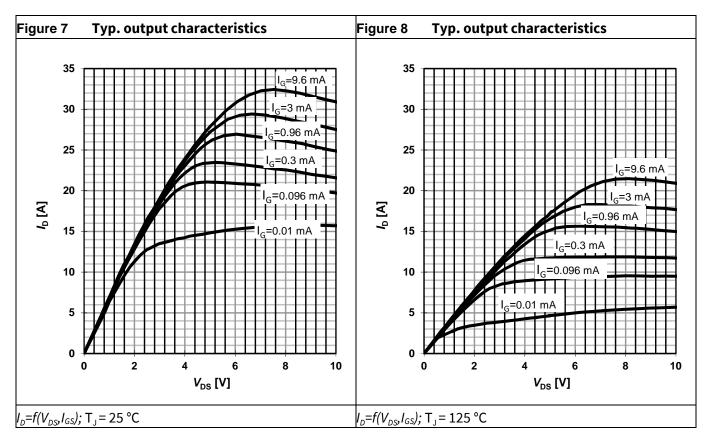
Parameter	Symbol	Values			Values		Unit	Note/Test Condition
		Min.	Тур.	Max.				
Gate charge	Q _G	-	3.2	-	nC	$I_{GS} = 0$ to 3.8 mA; $V_{DS} = 400$ V; $I_{D} = 5$ A		

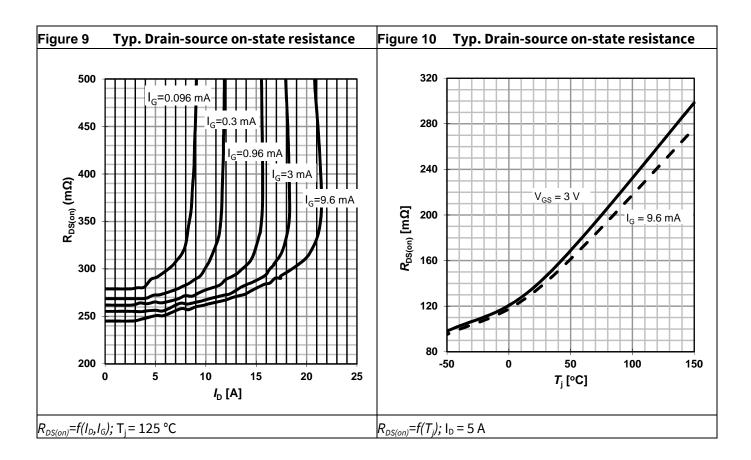
Table 8 Reverse conduction characteristics

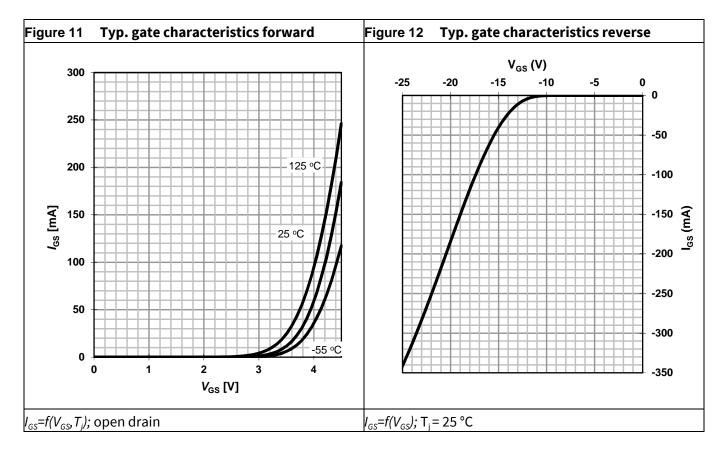

Parameter	Symbol	ol Values			Unit	Note/Test Condition
		Min.	Тур.	Max.		
Source-Drain reverse voltage	V _{SD}	-	2.5	3	V	$V_{GS} = 0V; I_{SD} = 5 A$
Pulsed current, reverse	I _{S,pulse}	-	-	23	Α	I _G =9.6 mA
Reverse recovery charge	Q _{rr} ¹	-	0	-	nC	$I_{SD} = 5 \text{ A}, V_{DS} = 400 \text{ V}$
Reverse recovery time	t _{rr}	-	0	-	ns	
Peak reverse recovery current	I _{rrm}	-	0	-	Α	


¹ Excluding Qoss Final Data Sheet


4 Electrical characteristics diagrams

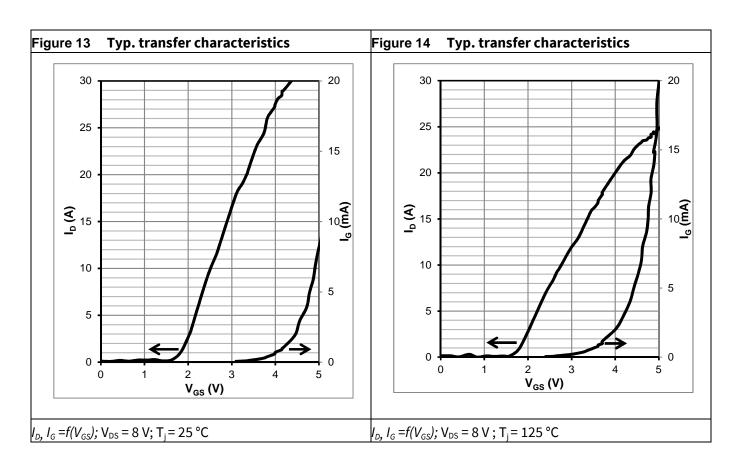

at T_i = 25 °C, unless specified otherwise

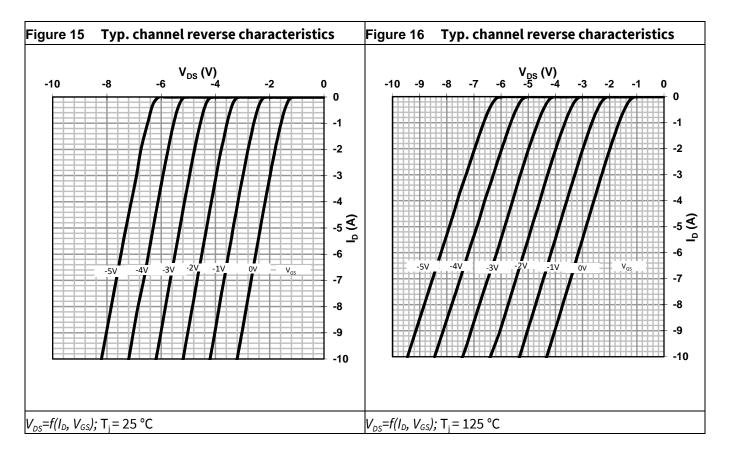




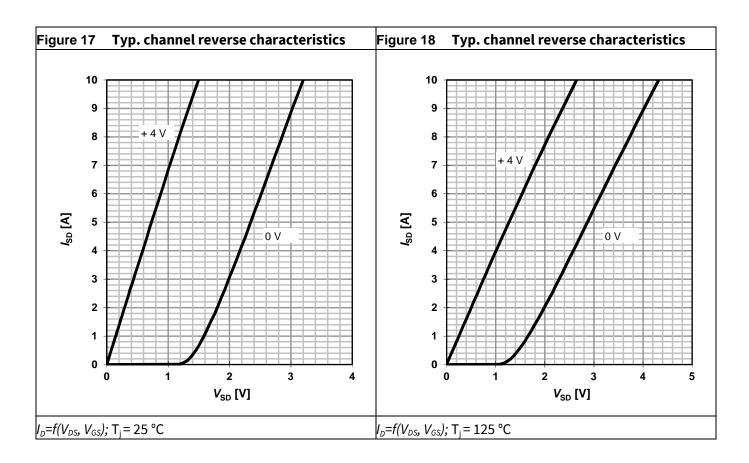
Final Data Sheet

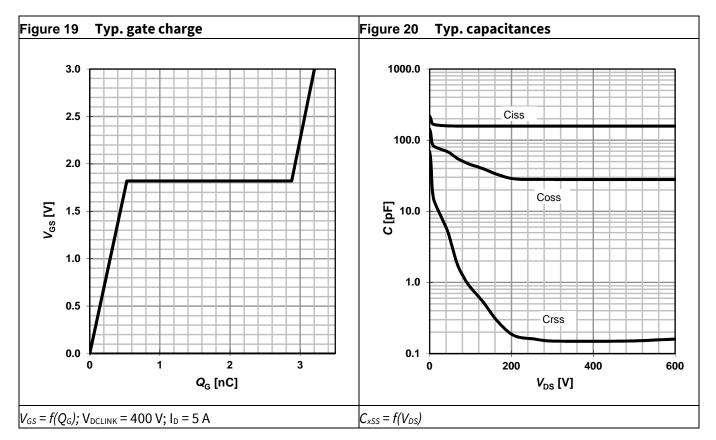
¹ Parameter is influenced by rel-requirements. This value is determined by a typical lifetime-model for consumer applications. Please contact the local Infineon Sales Office to get an assessment of your application.

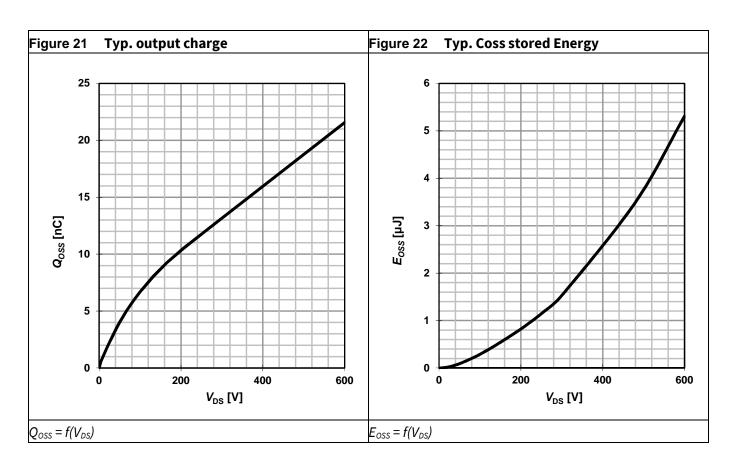


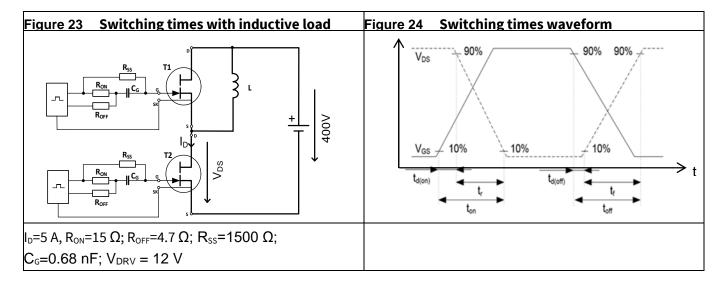


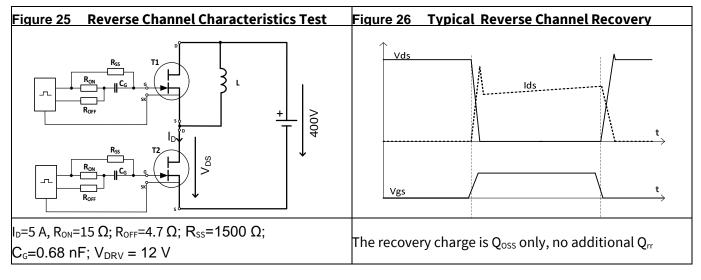
Final Data Sheet

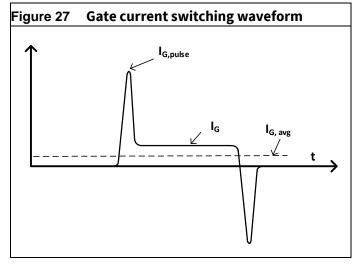












5 Test Circuits

Final Data Sheet

6 Package Outlines

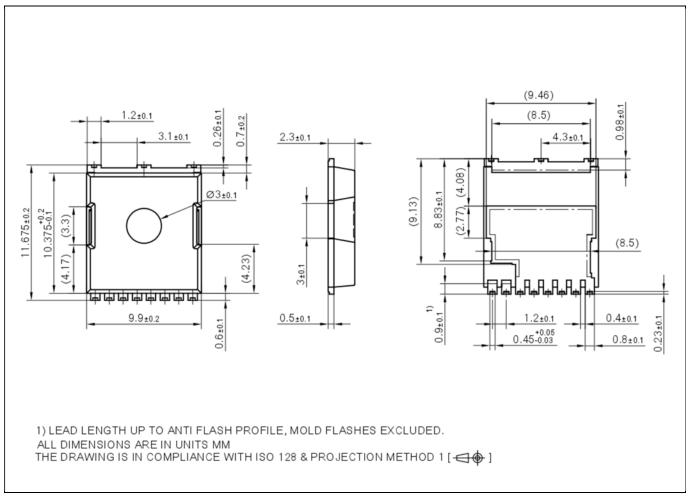


Figure 28 PG-HSOF-8-3 Package Outline, dimensions (mm)

7 Appendix A

Table 9Related links

- IFX CoolGaN[™] webpage: <u>www.infineon.com/why-coolgan</u>
- IFX CoolGaN[™] reliability white paper: <u>www.infineon.com/gan-reliability</u>
- IFX CoolGaN[™] gate drive application note: <u>www.infineon.com/driving-coolgan</u>
- IFX CoolGaN[™] applications information:
 - o <u>www.infineon.com/gan-in-server-telecom</u>
 - <u>www.infineon.com/gan-in-wirelesscharging</u>
 - www.infineon.com/gan-in-audio
 - <u>www.infineon.com/gan-in-adapter-charger</u>

8 Revision History

Major changes since the last revision

Revision	Date	Description of change
3.0	2017-04-25	Release of final version
3.1	2018-10-12	Updated application section; added Appendix A and Fig. 27; updated maximum rating table footnotes, switching times and figures.
3.11	2020-01-16	Added $V_{DS,bd}$, $V_{DS,pulse}$, $V_{DS,surge}$ specifications in maximum ratings table of page3
3.12	2020-05-29	Updated to MSL1 in table 4

Trademarks of Infineon Technologies AG

µHVIC[™], µIPM[™], µPFC[™], AU-ConvertIR[™], AURIX[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], CoolDP[™], CoolGaN[™], COOLIR[™], CoolMOS[™], CoolSET[™], CoolSiC[™], DAVE[™], DI-POL[™], DirectFET[™], DrBlade[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPACK[™], EconoPIM[™], EiceDRIVER[™], eupec[™], FCOS[™], GaNpowIR[™], HEXFET[™], HITFET[™], HybridPACK[™], iMOTION[™], IRAM[™], ISOFACE[™], IsoPACK[™], LEDrivIR[™], LITIX[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OPTIGA[™], OptiMOS[™], ORIGA[™], PowIRaudio[™], PowIRStage[™], PrimePACK[™], PrimeSTACK[™], PROFET[™], PRO-SIL[™], RASIC[™], REAL3[™], SmartLEWIS[™], SOLID FLASH[™], SPOC[™], StrongIRFET[™], SupIRBuck[™], TEMPFET[™], TRENCHSTOP[™], TriCore[™], UHVIC[™], XMC[™]

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-05-29 Published by Infineon Technologies AG 81726 München, Germany

© 2020 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.