GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 2.9-3.9 GHz

Features

Low RMS Phase Error: 1.2°
Low Insertion Loss: 5 dB
High Linearity: +45 dBm
Positive Control Logic
360° Coverage, LSB $=5.625^{\circ}$
28 Lead 6x6mm SMT Package: $36 \mathrm{~mm}^{2}$

General Description

The HMC648ALP6E is a 6-bit digital phase shifter which is rated from $2.9-3.9 \mathrm{GHz}$, providing 360 degrees of phase coverage, with a LSB of 5.625 degrees. The HMC648ALP6E features very low RMS phase error of 1.2 degrees and extremely low insertion loss variation of $\pm 0.5 \mathrm{~dB}$ across all phase states. This high accuracy phase shifter is controlled with positive control logic of $0 /+5 \mathrm{~V}$. The HMC648ALP6E is housed in a compact $6 \times 6 \mathrm{~mm}$ plastic leadless SMT package and is internally matched to 50 Ohms with no external components.

Electrical Specifications

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vss}=-5 \mathrm{~V}$, Vdd $=+5 \mathrm{~V}$, Control Voltage $=0 /+5 \mathrm{~V}$, 50 Ohm System

Parameter	Min.	Typ.	Max.	Units
Frequency Range	2.9		3.9	GHz
Insertion Loss*		5	8	dB
Input Return Loss*		16		dB
Output Return Loss*		17		dB
Phase Error*		± 5	+10/-15	deg
RMS Phase Error		1.2		deg
Amplitude Settling Time ($50 \% \mathrm{cntl}$ to $+/-0.1 \mathrm{~dB}$ margin of final RFout)		175		nS
Phase Settling Time (50\% cntl to +/-1 degree margin of final RFout)		125		nS
Insertion Loss Variation*		± 0.5		dB
Input Power for 1 dB Compression		31		dBm
Input Third Order Intercept		45		dBm
Control Voltage Current		35	250	$\mu \mathrm{A}$
Bias Control Current		5	15	mA

*Note: Major States Shown

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- HMC648A Evaluation Board

DOCUMENTATION

Data Sheet

- HMC648ALP6E: GaAs MMIC 6-Bit Digital Phase Shifter 2.9 3.9 GHz Data Sheet

TOOLS AND SIMULATIONS

- HMC648ALP6E S-Parameters

REFERENCE MATERIALS

Product Selection Guide

- RF, Microwave, and Millimeter Wave IC Selection Guide 2017

DESIGN RESOURCES

- HMC648A Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC648A EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 2.9-3.9 GHz

Input Return Loss, Major States Only

Output Return Loss, Major States Only

Normalized Loss, Major States Only

Phase Error, Major States Only

Relative Phase Shift Major States Including All Bits

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 2.9-3.9 GHz

Relative Phase Shift, RMS, Average, Max, All States

Input P1dB, Major States Only

RMS Phase Error vs. Temperature

Insertion Loss vs. Temperature, Major States Only

Phase Error vs. State

Absolute Maximum Ratings

Input Power (RFIN)	$33 \mathrm{dBm}\left(\mathrm{T}=+85^{\circ} \mathrm{C}\right)$
Bias Voltage Range (Vdd)	-0.2 to +12 V
Bias Voltage Range (Vss)	+0.2 to -12 V
Channel Temperature (Tc)	$150^{\circ} \mathrm{C}$
Thermal Resistance (channel to ground paddle)	$120^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity	Class 1 A Passed 250 V

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Bias Voltage \& Current

Vdd	Idd
5.0	5.2 mA
Vss	Iss
-5.0	5.2 mA

Control Voltage

State	Bias Condition
Low (0)	0 to 0.2 Vdc
High (1)	Vdd $\pm 0.2 \mathrm{Vdc} @ 35 \mu \mathrm{~A}$ Typ.

Truth Table

Control Voltage Input						Phase Shift (Degrees) RFIN - RFOUT
Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	
0	0	0	0	5.625		
1	0	0	0	0	0	11.25
0	1	0	0	0	0	22.5
0	0	1	0	0	0	45.0
0	0	0	1	0	0	90.0
0	0	0	0	1	0	180.0
0	0	0	0	0	1	354.375
1	1	1	1	1	1	

Any combination of the above states will provide a phase shift approximately equal to the sum of the bits selected.
*Reference corresponds to monotonic setting

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[2]}$
HMC648ALP6E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 $^{[1]}$	$\frac{H 648 A}{X X X X}$

[^0]
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vdd	Voltage supply.	
2, 20	GND	These pins and exposed ground paddle must be connected to RF/DC ground.	$\begin{aligned} & \underline{\underline{q}} \\ & \underline{\underline{I}} \end{aligned}$
3	RFIN	This port is DC coupled and matched to 50 Ohms.	
4-18	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
19	RFOUT	This port is DC coupled and matched to 50 Ohms.	
$\begin{aligned} & 22-24, \\ & 26-28 \end{aligned}$	BIT6, BIT5, BIT4, BIT3, BIT2, BIT1	Control Input. See truth table and control voltage tables.	
25	Vss	Voltage supply.	

Evaluation PCB

List of Materials for Evaluation PCB $117720{ }^{[1][3]}$

Item	Description
J1- J2	PCB Mount SMA RF Connector
J3	Header 2mm, 16 Pin
C1, C2	1000pF Capacitor, 0402 Pkg.
U1	HMC648ALP6E 6-Bit Digital Phase Shifter
PCB [2]	117718 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350
[3] Please refer to part's pin description and functional diagram for pin out assignments on evaluation board.

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices upon request.

Notes:

[^0]: [1] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
 [2] 4-Digit lot number XXXX

