EFP01 Energy Friendly PMIC Family Data Sheet

The EFP01 Energy Friendly Power Management IC (PMIC) is an extremely flexible, highly efficient, multi-output power management IC, providing complete system power and primary cell battery Coulomb counting for EFM32 and EFR32 devices. The EFP01 can operate over a wide input voltage range (0.8 to 5.5 V) with quiescent current as low as 300 nA (EM2 mode, single output enabled).

EFP01 can be configured to support the following battery types:

- Single alkaline ($\mathrm{Zn} / \mathrm{MnO}_{2}$), zinc-carbon or lithium iron-disulfide $\left(\mathrm{Li} / \mathrm{FeS}_{2}\right)$ primary cells, or $\mathrm{NiMH} / \mathrm{NiCd}$ rechargeable cells (0.8 to 1.8 V)
- Dual alkaline, zinc-carbon or lithium iron-disulfide $\left(\mathrm{Li}^{2} / \mathrm{FeS}_{2}\right)$ primary cells, or $\mathrm{NiMH} /$ NiCd rechargeable cells (1.6 to 3.6 V)
- Single lithium ($\mathrm{Li} / \mathrm{MnO}_{2}$) primary cells (1.8 to 3.2 V)
- Single lithium thionyl chloride ($\mathrm{Li} / \mathrm{SOCl}_{2}$) primary cell (3.0 to 3.65 V)
- Single lithium ion/lithium polymer (typically LiCoO_{2}) rechargeable batteries (2.7 to 4.35 V)
- Single lithium iron phosphate $\left(\mathrm{LiFePO}_{4}\right)$ rechargeable battery (2.5 to 3.65 V)
- USB ($\leq 5.5 \mathrm{~V}$)

EFP01 applications include the following:

- IoT Sensors and End Devices
- Metering
- Home and Building Automation and Security
- Health and Wellness
- Wearables
- Smart Accessories
- Human Interface Devices

ENERGY FRIENDLY FEATURES

- Provides 4 supply outputs:
- One Buck/Boost DC-DC Converter
- One Buck-only DC-DC Converter + LDO
- One LDO
- One Switched Output
- Up to 94% efficiency

1. Feature List

The EFP01 highlighted features are listed below.

- VOA
- Output Voltage: 1.7 V to 5.2 V
- DCDC A can be configured in Buck/Boost, Buck-only, or Boost-only
- DCDC A output be combined with the VOC linear regulator for more efficient regulation as the input voltage approaches the output voltage
- Firmware-programmable switched output (VOA_SW) allows complete powerdown of high leakage external circuitry in low power modes

- VOB

- Output Voltage:
- 0.8 V to 3.3 V (EFP0109/11)
- 0.8 V to 1.26 V (EFP0104/07/08/10)
- DCDC B can be used only in Buck configuration
- Dedicated internal linear regulator in parallel provides more efficient regulation as the input voltage approaches the output voltage
- VOC
- Output Voltage: 1.7 V to 3.3 V
- Linear regulator only
- Can be used either to create an independent third output supply or in conjunction with DCDC A

- Coulomb Counter

- Lossless (i.e. no sense resistor) measurement of charge into the load
- Communication \& Control
- Fully configurable $\mathrm{I}_{2} \mathrm{C}$
- Direct Mode supports fast transitions between energy modes
- IRQ pin to notify host processor
- Ultra-low EM2 Quiescent Current
- 150 nA with no outputs enabled
- 300 nA with a single output enabled
- +125 nA for each additional output enabled

- Safety

- Programmable inrush current
- Short-circuit tolerant outputs
- Under-voltage lock-out (UVLO) circuitry holds device in lowest power reset state when VDDB is below 1.2 V
- Over-temperature monitoring and IRQ assertion

- Wide Operating Range

- 0.8 V to 5.5 V input power supply
- -40 to $100^{\circ} \mathrm{C}$ junction temperature
- QFN20 3x3 mm Package

2. Ordering Information

Table 2.1. Ordering Information

Orderable Part Number (OPN)	Supported Input Voltage Range	Device Configuration	VOB Configuration at Startup	Temp Code	Package	Top Mark Line 1
EFP0104GM20-D	$1.8 \mathrm{~V}-5.5 \mathrm{~V}$	Wired Buck with LDO C	OFF	G	QFN20	P04G
EFP0107GM20-D	$1.8 \mathrm{~V}-5.5 \mathrm{~V}$	Buck/Boost	OFF	G	QFN20	P07G
EFP0108GM20-D	$0.8 \mathrm{~V}-1.8 \mathrm{~V}$	Single-Cell Boost	OFF	G	QFN20	P08G
EFP0109GM20-D	$1.8 \mathrm{~V}-3.6 \mathrm{~V}$	Wired Boost	1.858 V	G	QFN20	P09G
EFP0110GM20-D	$1.8 \mathrm{~V}-3.6 \mathrm{~V}$	Wired Boost	OFF	G	QFN20	P10G
EFP0111GM20-D	$1.5 \mathrm{~V}-5.5 \mathrm{~V} \mathrm{(after}$ startup), $2.5-5.5 ~ V$ (at startup)	Boost Bootstrap	1.858 V	G	QFN20	P11G

Additional OPN-specific features \& limitations can be found in • OPN-Specific Features.

Table of Contents

1. Feature List 2
2. Ordering Information 3
3. System Overview 7
3.1 Introduction 7
3.2 Power 9
3.2.1 DCDC A Overview 9
3.2.2 DCDC B Overview 17
3.2.3 LDO B and LDO C Overview 19
3.2.4 Coarse Regulators 21
3.3 Energy Modes 22
3.3.1 Energy Mode Control 22
3.3.2 EMO 23
3.3.3 EM2 23
3.3.4 EM4 24
3.4 Measurement 24
3.4.1 Coulomb Counter 24
3.4.2 Analog to Digital Converter (ADC) 26
3.5 Memory 27
3.5.1 OTP 27
3.5.2 Registers 27
3.6 Communications and Other Digital Peripherals 27
3.6.1 Inter-Integrated Circuit Interface $\left(\mathrm{I}^{2} \mathrm{C}\right)$ 27
3.6.2 Interrupt Output (IRQ) 27
3.7 System Protection 28
3.7.1 Under-voltage Lockout (UVLO) 28
3.7.2 Power-on Reset (POR). 28
3.7.3 Over-Voltage Protection 28
3.7.4 Short Circuit Tolerance. 28
3.8 Startup \& Shutdown Behavior 28
3.8.1 Startup Behavior 28
3.8.2 Shutdown Behavior 29
4. Typical Connection Diagrams 30
4.1 Device Configurations 30
4.1.1 Wired Buck Configuration 30
4.1.2 Wired Buck with LDO C Configuration (EFP0104) 31
4.1.3 Buck/Boost Configuration (EFP0107) 32
4.1.4 Single-Cell Boost Configuration (EFP0108) 33
4.1.5 Wired Boost Configuration (EFP0109 \& EFP0110) 34
4.1.6 Boost Bootstrap Configuration (EFP0111) 35
5. Electrical Specifications 36
5.1 Electrical Characteristics 36
5.1.1 Absolute Maximum Ratings 37
5.1.2 Thermal Characteristics 38
5.1.3 General Operating Conditions 39
5.2 Typical Performance Curves 69
5.2.1 DCDC A Efficiency 70
5.2.2 DCDC B Efficiency 78
5.2.3 Quiescent Current 80
5.2.4 RDS ON. 82
5.2.5 Short Circuit Current 84
5.2.6 ADC 84
6. Register Definitions 85
6.1 Register Map 85
6.2 Register Description 87
6.2.1 STATUS_G 87
6.2.2 STATUS_V 89
6.2.3 STATUS_GM 91
6.2.4 STATUS_VM 92
6.2.5 STATUS_LIVE 93
6.2.6 DEVREV_ID 94
6.2.7 CC_CAL 95
6.2.8 OTP_ADDR 96
6.2.9 OTP RDATA 96
6.2.10 OTP_STATCTRL 97
6.2.11 CMD 98
6.2.12 CC_MODE 99
6.2.13 CCA_MSBY 101
6.2.14 CCA_LSBY 102
6.2.15 CCBO_MSBY 103
6.2.16 CCBO_LSBY 104
6.2.17 CCB2_MSBY 105
6.2.18 CCB2_LSBY 106
6.2.19 CCC_MSBY 107
6.2.20 CCC_LSBY 108
6.2.21 VDD_AVG_MSN 109
6.2.22 VDD_AVG_LSBY 110
6.2.23 VDD_MIN_MSN 111
6.2.24 VDD_MIN_LSBY 112
6.2.25 VDD_MAX_MSN 113
6.2.26 VDD_MAX_LSBY 114
6.2.27 TEMP_MSN 115
6.2.28 TEMP_LSBY. 116
6.2.29 VOA_SW_STAT 117
6.2.30 I2C_CTRL 117
6.2.31 CC_CTRL 118
6.2.32 EM_CRSREG_CTRL 119
6.2.33 VOA_V 120
6.2.34 VOC_V 121
6.2.35 VOB_EMO_V 121
6.2.36 VOB_EM2_V 122
6.2.37 BIAS_SW 123
6.2.38 BB_IPK 125
6.2.39 BB_CTRL3 127
6.2.40 BB_CTRL5 129
6.2.41 BB_CTRL6 130
6.2.42 LDOB_CTRL 132
6.2.43 LDOC_CTRL 133
6.2.44 LDOC_BB_CTRL 134
6.2.45 BK_CTRLO 135
6.2.46 BK_CTRL1 136
6.2.47 BK_IPK 137
6.2.48 BK_CTRL2 138
6.2.49 ADC_CC_CTRL 139
6.2.50 ADC_LIMITS. 140
7. OTP Definitions 141
7.1 OTP Definition 141
7.2 OTP Defaults 142
8. Pin Definitions 143
8.1 EFP01 Device Pinout 143
9. QFN20 Package Specifications. 145
9.1 QFN20 Package Dimensions 145
9.2 QFN20 PCB Land Pattern 147
9.3 QFN20 Package Marking 149
10. Revision History. 150

3. System Overview

3.1 Introduction

The EFP01 Energy Friendly PMIC product family is designed to support a range of battery-powered applications, as well as other systems requiring high performance and low energy consumption.

A block diagram of the EFP01 family is shown in Figure 3.1 EFP01 Block Diagram on page 7. The diagram shows a superset of features available on the family, which vary by part number. For more information about specific device features, consult Ordering Information.

Figure 3.1. EFP01 Block Diagram

Table 3.1. OPN-Specific Features

OPN	Supported Input Voltage Range	VOA Output at Startup	VOA DCDC Mode at Startup	VOB Out- put at Startup	VOB Pro-grammable Range	VOC Out- put at Startup	EM4 Support	Battery Voltage Monitoring
EFP0104 Wired Buck with LDO C	1.8 V-5.5 V	1.860 V	Wired Buck with LDO	OFF	$\begin{aligned} & 0.8 \mathrm{~V}-1.26 \\ & \mathrm{~V} \end{aligned}$	Not available (Paired with VOA)	Supported, VOB Coarse Regulator disabled	Yes, on VDDB
EFP0107 Buck/Boost	1.8 V-5.5 V	1.860 V	Buck/Boost	OFF	$\begin{aligned} & 0.8 \vee-1.26 \\ & \mathrm{~V} \end{aligned}$	1.870 V	Supported, VOB Coarse Regulator disabled	Yes, on VDDB
EFP0108 Single-Cell Boost	0.8 V-1.8 V	1.860 V	Wired Boost	OFF	$\begin{aligned} & 0.8 \mathrm{~V}-1.26 \\ & \mathrm{~V} \end{aligned}$	OFF	Not supported	Yes, on VDDA
EFP0109 Wired Boost	1.8 V-3.6 V	3.327 V	Wired Boost	1.858 V	$\begin{aligned} & 0.8 \mathrm{~V}-3.3 \\ & \mathrm{~V} \end{aligned}$	1.870 V	Supported	Yes, on VDDB
EFP0110 Wired Boost	1.8 V-3.6 V	3.327 V	Wired Boost	OFF	$\begin{aligned} & 0.8 \mathrm{~V}-1.26 \\ & \mathrm{~V} \end{aligned}$	1.870 V	Supported, VOB Coarse Regulator disabled	Yes, on VDDB
EFP0111 Boost Bootstrap	1.5 V-5.5 V (after startup), $2.5 \mathrm{~V}-5.5 \mathrm{~V}$ (at startup)	5.222 V	Wired Boost, Current Limited Enabled	1.858 V	$\begin{aligned} & 0.8 \mathrm{~V}-3.3 \\ & \mathrm{~V} \end{aligned}$	1.870 V	Supported when supply voltage $>=2.5 \mathrm{~V}$.	Not supported

3.2 Power

The EFP01 can provide up to three voltage rails for EFR32 and EFM32 devices from a single input supply voltage.
The EFP01 has two independent DCDC converters: DCDC A and DCDC B, each requiring an external inductor. DCDC A can use buck/ boost, wired buck, or wired boost configurations, while DCDC B only supports buck configuration.

In addition, the EFP01 has two integrated LDOs supplied from the VDDB pin: LDO B and LDO C. LDO B is internally wired in parallel with DCDC B. LDO C can be used independently or externally wired in parallel with DCDC A.

Finally, each EFP01 output (VOA, VOB, VOC) has its own coarse regulator in parallel for use in EM4. The coarse regulators have very low quiescent current draw, but have poor output regulation (e.g., the output may range from ~ 1.7 to 3.4 V) and can only support very light loads $(\sim 100 \mu \mathrm{~A})$.

The EFP01 Configuration Tool in Simplicity Studio can generate recommended settings and a configuration header file to simplify development.

3.2.1 DCDC A Overview

The EFP01's DCDC A can be configured for buck/boost, wired buck, or wired boost modes.

Table 3.2. DCDC A Configuration and Modes Summary

Hardware Configuration	DCDC A Operat- ing Mode	Required Register Setting	Compatible OPNs
Buck	Wired Buck	BB_CTRL3.BB_MODE $=6$	N/A
Buck with LDO	Wired Buck with LDO	BB_CTRL3.BB_MODE $=5$	EFP0104
Buck/Boost	Autonomous (Buck/Boost)	BB_CTRL3.BB_MODE $=1$ (typi- cally)	EFP0107
Single-Cell Boost	Wired Boost	BB_CTRL3.BB_MODE $=7$	EFP0108
Wired Boost	Wired Boost	BB_CTRL3.BB_MODE $=7$	EFP0109 / EFP0110
Boost Bootstrap	Wired Boost	BB_CTRL3.BB_MODE $=7$	EFP0111

3.2.1.1 Output Voltage Configuration

The DCDC A output target voltage is set by the VOA_V register according to the below equation:
VOA
$(V)=1.7374 V+\left(V O A _V \times 0.0306 V\right)$
Unlike DCDC B, there is only a single VOA output voltage register that is used in both EM0 and EM2 modes.
Note that in Boost modes it is possible to program the VOA output voltage to a voltage higher than the Maximum Output Voltage in the Electrical Characteristics table. Firmware should ensure that the Maximum Output Voltage isn't exceeded.

3.2.1.2 Peak Current Configuration

DCDC A has a configurable peak current adjustment set by the BB_IPK and BB_IPK_EM2 fields of the BB_IPK register. The BB_IPK and BB_IPK_EM2 settings are used differently depending on the operating mode of the DCDC A converter (as shown below), but the resulting peak currents for all modes are derived from the following base peak current (IPK_BASE) equations.

In EMO, IPK_BASE is determined by: $I P K _B A S E=0.090 A+\left(0.009 A \times B B _I P K\right)$
In EM2, IPK_BASE is determined by: $I P K _B A S E=0.090 A+0.009 A \times\left(4 \times B B _I P K _E M 2+2\right)$
Typically, the peak current can be lowered in EM2 for greater efficiency. However, unlike DCDC B there is only a single Coulomb counter for DCDC A that is used in both EM0 and EM2 modes. Therefore, if Coulomb counting is used with DCDC A, BB_IPK_EM2 must be set such that the peak current in EM2 is the same as the peak current in EMO to ensure the charge per pulse is the same in both energy modes. Roughly equivalent peak currents in EM2 and EM0 can be achieved by setting BB_IPK_EM2 = $\left(B B _I P K-2\right) / 4$.
Note: The Maximum Output Current formulas below provide useful guidance but are not a guarantee of performance. The final authority for the Maximum Output Current will be the Output Load Current specifications in the Electrical Characteristics tables.

Buck Mode

- Register Programming: BB_CTRL3.BB_MODE = WiredBuck or Autonomous
- Peak Current $(A)=I P K_{-} B A S E+\frac{25 n s \times(V D D B-V O A)}{L_{A}}$
- Maximum Output Current $(A)=0.5 \times I P K _B A S E$

Buck/Boost Mode (NTM Operation)

- Register Programming: BB_CTRL3.BB_MODE = Autonomous
- Peak Current $(A)=1.15 \times I P K_{-} B A S E+\frac{25 n s \times V D D B}{L_{A}}$
- Maximum Output Current $(A)=0.5 \times 1.15 \times I P K _B A S E$

Boost Mode (with no peak current adjustment)

- Register Programming: BB_CTRL3.BB_MODE = WiredBoost or Autonomous, BB_CTRL6.BB_IPK_NOADJ = 1
- Peak Current $(A)=2.35 \times I P K_{-} B A S E+\frac{25 n s \times V B O O S T}{L_{A}}$
- Maximum Output Current $(A)=$ efficiency $\times 0.5 \times 2.35 \times I P K _B A S E \times \frac{\text { VBOOST }}{\text { VOA }}$

Boost Mode (with peak current adjustment)

- Register Programming: BB_CTRL3.BB_MODE = WiredBoost or Autonomous,BB_CTRL6.BB_IPK_NOADJ = 0, BB_CTRL5.BB_IPK_BOOST_ADJ is programmed as recommended in its register description, ADC_CC_CTRL.ADC_INTERVAL > 0 to enable ADC operations.
- When operating in Boost Mode with peak current adjustment, the peak current will be adjusted to maintain a near constant output load current over the battery voltage range. Note that peak current adjustment only affects EMO operation. In EM2, the Boost Mode (with no peak current adjustment) equations apply.
- Peak Current $(A)=2.35 \times$ MIN $\left(\frac{I P K _B A S E \times V O A}{2 \times V B O O S T}, \quad 385 m A\right)+\frac{25 n s \times V B O O S T}{L_{A}}$
- Maximum Output Current $(A)=$ efficiency $\times 0.5 \times 2.35 \times \operatorname{MIN}\left(\frac{I P K _B A S E \times V O A}{2 \times V B O O S T}, \quad 385 \mathrm{~mA}\right) \times \frac{\text { VBOOST }}{\text { VOA }}$

3.2.1.3 Peak Current Adjustment

In boost mode, the EFP01 can be configured to automatically adjust the DCDC A peak current based on the battery voltage to support a near-constant maximum output load current (where the maximum output load current is \sim IPK_BASE / 2). This feature allows the boost converter to lower the peak current at higher battery voltages, resulting in more efficient operation and lower output ripple voltage, as shown in Figure 3.2 Peak Current Adjustment Comparison on page 11.

Because the peak current adjustment feature requires battery voltage monitoring, the ADC must be enabled (i.e., the ADC_INTERVAL field of the ADC_CC_CTRL register is set to a non-zero value). This also means that peak current adjustment is not available in the Boost Bootstrap configuration, because battery monitoring is not support in that configuration.
If peak current adjustment is enabled, it will only affect peak current in EM0, and not EM2.
To use peak current adjustment:

1. Set BB_IPK_NOADJ $=0$ in the BB_CTRL6 register
2. Program BB_IPK_BOOST_ADJ in the BB_CTRL5 register as recommended in its register description. Note that because the BB_IPK_BOOST_ADJ value is dependent on both the VOA target voltage and the BB_IPK setting, the BB_IPK_BOOST_ADJ value should be updated whenever the VOA target or the peak current settings are changed.
3. Set ADC_INTERVAL in the ADC_CC_CTRL register to a non-zero value to enable ADC operations

To disable peak current adjustment, set BB_IPK_NOADJ $=1$ in the BB_CTRL6 register.

Figure 3.2. Peak Current Adjustment Comparison

3.2.1.4 Current Limiting

When powering EFP01 from weak power sources or sources with a high internal impedance, peak load currents at the converter output can cause a large supply voltage droop at the input, increasing the risk of an unintended power-on reset. To alleviate these issues, it may be necessary to limit the input current.
Note: EFP0111 is the only OPN that has its current limit enabled by default (on DCDC A).

Note: Because enabling the current limit will essentially current-starve the output, the system designer should validate the application under the worst-case output load current.

On EFP01, the current limit is controlled by forcing a minimum time between the start of pulse events ($T_{\text {SW_MIN }}$) and is configured by BB_IRI_CON in the BB_CTRL6 register. BB_IRI_CON can be calculated based on the mode, the input voltage (VDDB), output voltage (VOA), DCDC A inductor value (L_{A}), peak current (I_{PK}, set by BB_IPK), and the desired limited battery current ($\mathrm{l}_{\mathrm{BATT}}$ _LIMIT) as follows:

In buck mode: $I_{B A T T_{-} L I M I T}=\frac{L \times I_{P K}{ }^{2}}{2 \times T_{S W _M I N}} \times \frac{1}{(V D D B-V O A)}$
In boost mode: $I_{B A T T_{-} L I M I T}=\frac{L \times I_{P K}{ }^{2}}{2 \times T_{S W _M I N}} \times\left(\frac{1}{V O A-V B O O S T}+\frac{1}{V B O O S T}\right)$
where $T_{\text {SW_MIN }}$ is programmed by BB_IRI_CON as follows:
$T_{S W_{-} M I N}=300 \mathrm{~ns} \times\left(2 \times B B_{-} I R I_{-} C O N+1\right)$
Note that the required BB_IRI_CON setting for a given current limit varies with the VDDB or VBOOST voltages and the peak current, both variables that can change over battery voltage. An application requiring a fixed current limit over the entire range of the battery may need to occasionally measure the VDDB voltage and recalculate / reprogram the BB_IRI_CON setting.

Note also that in configurations where the VOC LDO is used in parallel with the VOA output (e.g., Buck with LDO configuration), the BB_IRI_CON bitfield in the BB_CTRL6 register will control the current limit when the converter is in DCDC mode and the VOC_IRI_CON bitfield in the LDOC_BB_CTRL register will control the current limit when the converter is in LDO mode.

3.2.1.5 T_{ON} Maximum Limiting

Buck Mode Ton_MAX

In Buck mode, the pulse frequency modulation (PFM) pulse on time ($T_{O N}$) required to charge the inductor is given by: $L \times I_{P K}$ $T_{O N}=\frac{V_{P K}}{V D D B-V O A}$ As VDDB approaches VOA, the resulting $T_{O N}$ can become quite large, resulting in sizable output ripple voltage or, in the worst case, the DCDC stalling altogether.
When the BB_TON_MAX field in the LDOC_BB_CTRL register is set to a non-zero value, the PFM pulse T_{ON} will be limited as shown: $T_{O N _M A X}=70 n s+\left(1+\left(4 \times B B_{-} T O N_{-} M A X\right)\right)$ A limited $T_{O N}$ will terminate the inductor charging before the programmed peak current value is reached, and limit the maximum available load current and the actual peak current values.

Because the time-measuring circuitry required to limit $T_{O N}$ costs some small amount of power, BB_TON_MAX should be set to set a nonzero value only under specific conditions:

- If the subsequent reduction in max available load current can be tolerated and the reduction in ripple voltage is desired.
- When operating with low input voltage headroom (i.e., VDDB - VOA is very small) and there is no LDO enabled in parallel with the DCDC output.

Figure 3.3. Buck Mode Ton_max Limiting Example

Boost Mode Ton_max

In Boost mode, the BB_TON_MAX field in the LDOC_BB_CTRL register should be set to a non-zero value to ensure a finite on-time under all conditions. Without this protection, in certain scenarios (e.g., where the inductor peak current may be limited by battery impedances and inductor and power train resistances), the inductor current may not reach the threshold of the peak current detector and the Boost converter power train NMOS will not turn off.

3.2.1.6 Boost Mode TOFF Maximum Limiting

In certain scenarios, the battery voltage at the input to the EFP01 in boost mode can be as high as, or higher than, the desired output. For example:

- A Li/FeS 2 battery can have an output voltage as high as 1.8 V at the very start of its life, which would be problematic in an application where the regulated output needs to be 1.8 V .
- Two alkaline or $\mathrm{Li} / \mathrm{FeS}_{2}$ batteries in series can provide a voltage as high as 3.6 V . If a 3.3 V regulated output is desired, the buck/ boost configuration can be used, but the buck/boost configuration efficiency is $\sim 5-8 \%$ less than the wired boost configuration.
A PFM converter, such as the EFP01, cannot typically operate in a boost mode with an input voltage even slightly higher than the output. In this scenario, the inductor current during the TOFF interval may never reach zero (a requirement for the converter to signal the end of the discharge phase), resulting in an inaccurate and poorly regulated output voltage.

To address this issue, the EFP01 has a TOFF maximum limiting feature to enforce a maximum discharge interval time. When the BB_TOFF_MAX field in the BB_CTRL6 register is set to a nonzero value, the Toff discharge interval is ended after a set period of time, even if the inductor current has not reached zero, with any residual inductor current is discharged into the VOA pin.

To avoid extremely large ripple voltage, TOFF maximum limiting should only be enabled when the maximum battery voltage is no higher than 0.3 V above the programmed VOA voltage.

3.2.1.7 NTM Buck/Boost Transitional Mode

When DCDC A is in the Buck/Boost configuration and programmed to Autonomous (or Buck/Boost) mode, (i.e, BB_CTRL3.BB_MODE $=1$), the DCDC converter will automatically switch between one of three operating modes:

- Buck: Traditional Buck operation used when VDDB is much greater than VOA
- Boost: Traditional Boost operation used when VDDB is much lower than VOA
- NTM: Transitional mode between Buck and Boost modes, used when VDDB is close to VOA

The Boost-to-NTM and NTM-to-Buck mode transition voltage thresholds are controlled by the NTM_LDO_THRSH bit field in the BB_CTRL3 register. For example, the figures below show the DCDC A operating mode versus the battery voltage for various NTM_LDO_THRSH settings for a Buck/Boost application with a 3.3 V output.

Figure 3.4. Operating Mode vs Battery Voltage, NTM_LDO_THRSH=3

Figure 3.5. Operating Mode vs Battery Voltage, NTM_LDO_THRSH=5

Figure 3.6. Operating Mode vs Battery Voltage, NTM_LDO_THRSH=7

3.2.1.8 VOA Switch (VOA_SW)

The VOA output has an internal switch connecting it to the VOA_SW pin. This optional VOA_SW output can be used to completely power down high-leakage external circuitry when entering the 3.3.3 EM2 and/or 3.3.4 EM4 modes. The VOA_SW state is controlled by the VOA_SW_CON bitfield in the BIAS_SW register.

Note that if a large capacitive load is attached to the VOA_SW output, the VOA output may see momentary voltage droops when VOA_SW is enabled.

3.2.1.9 DCDC A with LDO C in Parallel

In certain configurations, DCDC A is connected in parallel with LDO C on the printed circuit board, such as 4.1.2 Wired Buck with LDO C Configuration (EFP0104). This configuration is advantageous when the minimum input supply voltage approaches the VOA output voltage (e.g., $V_{D D B}{ }_{\text {MIN }}-\mathrm{VOA} \leq 300 \mathrm{mV}$) as it allows EFP01 to continue to regulate the output voltage over a wider input voltage range than is possible with DCDC A alone.

When LDO C is used in parallel with DCDC A:

- The DCDC mode must be set to WIREDBUCKLDO (i.e., BB_MODE $=3$ in the BB_CTRL3 register)
- The input voltage threshold for transition from Buck-to-LDO mode can be adjusted by the NTM_LDO_THRSH bitfield in the BB_CTRL3 register.
- If inrush current limiting is desired, the BB_IRI_CON bitfield in the BB_CTRL6 register controls the current limit when the converter is in DCDC mode and the VOC_IRI_CON bitfield in the LDOC_BB_CTRL register controls the current limit when the converter is in LDO mode.
- When Coulomb counting is enabled, the resulting pulse counts will be split between the CCA_MSBY/LSBY result registers (when the converter is in DCDC mode) and the CCC_MSBY/LSBY result registers (when the converter is in LDO mode).
Note that when using LDO C in parallel with DCDC A, LDO C is not available as an independent LDO.

3.2.1.10 Low Voltage Charge Pump

The EFP0108 Single-Cell Boost mode enables the use of battery voltages between 0.8 V and 1.8 V . Because this is below the 1.8 V minimum VDDB operating voltage, the EFP0108 must temporarily generate an internal voltage sufficient to supply VDDB. To do this, the EFP0108 enables a charge pump supplied from its VDDA pin at startup. Once the internal charge pump output reaches a level sufficient to supply VDDB, the regular DCDC A Boost powertrain circuitry is enabled and the VOA output is boosted to its target voltage. At that point, VDDB will be powered from the DCDC A output (VOA is externally connected to VDDB as shown in Figure 4.4 Single-Cell Boost Configuration on page 33). At this point, the low voltage charge pump is no longer needed and is automatically disabled.

For all other OPNs, the low voltage charge pump is not used, and the VDDA input can safely be grounded.

3.2.2 DCDC B Overview

The EFP01's DCDC B can only be configured for buck mode.

Table 3.3. DCDC B Configuration and Modes Summary

Mode	Required Register Configurations
Buck with LDO B in parallel	BK_CTRL1.BK_MODE $=3$
Buck	BK_CTRL1.BK_MODE $=1$

3.2.2.1 Output Voltage Configuration

The DCDC B output target voltage in EMO is set by VOB_EMO_V in the VOB_EMO_V register according to the below equation:
$V O B$ in EMO $(V)=0.8095 V+\left(V O B _E M O_{-} V \times 0.0223 V\right)$
In EM2, the DCDC B output target voltage will be automatically set to value specified in the VOB_EM2_V register according to the below equation:

```
VOB in EM2 (V)=0.8095V + (VOB_EM2_V * 0.0223V)
```


3.2.2.2 Peak Current Configuration

DCDC B has configurable peak current adjustment, set by the BK_IPK and BK_IPK_EM2 fields in the BK_IPK register.
In EMO, IPK_BASE is determined by: IPK_BASE $=0.090 A+\left(0.009 A \times B K _I P K\right)$
In EM2, IPK_BASE is determined by: IPK_BASE $=0.090 A+0.009 A \times\left(4 \times B K_{_} I P K _E M 2+2\right)$
The DCDC B buck converter peak current is determined by: Peak Current $(A)=I P K_{-} B A S E+\frac{25 n s \times(V D D B-V O B)}{L_{B}}$
Typically, the peak current can be lowered in EM2 for improved efficiency.
Note: The Maximum Output Current formula below provides useful guidance but is not a guarantee of performance. The final authority for the Maximum Output Current will be the Output Load Current specifications in the Electrical Characteristics tables.

The DCDC B buck converter maximum output current is determined by: Maximum Output Current $(A)=0.5 \times I P K _B A S E$

3.2.2.3 Current Limiting

When powering EFP01 from weak power sources or sources with a high internal impedance, peak load currents at the converter output can cause a large supply voltage droop at the input, increasing the risk of an unintended power-on reset. To alleviate these issues, it may be necessary to limit the input current.

Note: Because enabling the current limit will essentially current-starve the output, the system designer should validate the application under the worst-case output load current.

On EFP01, the current limit is controlled by forcing a minimum time between the start of pulse events and is configured by the BK_IRI_CON field in BK_CTRL2. BK_IRI_CON can be calculated based on the mode, the input voltage (VDDB), output voltage (VOB), DCDC \bar{B} inductor value (\bar{L}_{B}), peak current (I_{PK}, set by BK_IPK), and the desired limited battery current (I $\mathrm{I}_{\mathrm{BATT}}$ _LIMIT $)$ as follows:
$I_{B A T T_{-} L I M I T}=\frac{L \times I_{P K}{ }^{2}}{2 \times T_{S W} \times(V D D B-V O B)}$
where $T_{S W}$ is programmed by BK_IRI_CON as follows:

$$
T_{S W}=300 n s \times\left(2 \times B K _I R I_{-} C O N+1\right)
$$

The maximum output load current is going to be limited accordingly, and can be determined by: $I_{\text {LOAD_MAX }}=\frac{V D D B}{V O B} \times$ efficiency $\times I_{\text {BATT_LIMIT }}$

Note that the required BK_IRI_CON setting for a given current limit varies with the VDDB voltage and the peak current, both variables that can change over battery voltage. An application requiring a fixed current limit over the entire range of the battery may need to occassionally measure the VDDB voltage and recalculate / reprogram the BK_IRI_CON setting.

32.2.4 TON Maximum Limiting

In Buck mode, the pulse frequency modulation (PFM) pulse on time (T_{ON}) required to charge the inductor is roughly ($\mathrm{L} \times \mathrm{IPK}$)/(VDDBVOB). As VDDB approaches VOB, the resulting TON can become quite large, resulting in large output ripple voltage or, in the worst case, the DCDC stalling altogether.

When the BK_TON_MAX field in the BK_CTRL1 register is set to a non-zero value, the PFM pulse Ton is limited to no more than 70 ns $\times(1+4 \times$ BK_TON_MAX), which terminates the inductor charging before the programmed peak current value is reached. When operating in this T_{ON} limiting mode, the maximum available load current and the actual peak current values are reduced from the otherwise expected value.

Because the time measuring mechanism costs some power, BK_TON_MAX should be set to set a nonzero value only under specific conditions:

- If the subsequent reduction in max available load current can be tolerated and the reduction in ripple voltage is desired.
- When operating with low input voltage headroom (i.e., VDDB - VOB is very small) and there is no LDO enabled in parallel with the DCDC output.

Comparison plots of T_{ON} limiting can be found in Figure 3.3 DCDC A TON Max Limiting Example on page 14.

3.2.2.5 DCDC B with LDO B in Parallel

DCDC B is internally connected in parallel with LDO B, and the two can optionally be used in parallel. This configuration is advantageous when the minimum input supply voltage approaches the VOA output voltage (e.g., VDDB $\mathrm{MIN}-\mathrm{VOB} \leq 300 \mathrm{mV}$) as it allows EFP01 to continue to regulate the output voltage over a wider input voltage range than is possible with DCDC B alone.

When LDO B is used in parallel with DCDC B:

- The DCDC mode must be set to BUCKLDO (i.e., BK_MODE = 3 in the BK_CTRL1 register).
- The input voltage threshold for transition from Buck-to-LDO mode can be adjusted by the BK_LDO_THRESH bit field in the BB_CTRL2 register. It is recommended that this setting be left at power-on default value.

3.2.3 LDO B and LDO C Overview

The EFP01 has two integrated LDOs supplied from the VDDB pin. Instead of being continously on, each LDO operates in a pulsedcurrent mode that minimizes quiescent current and is compatible with the internal Coulomb counter.

3.2.3.1 LDO B

LDO B is hard-wired in parallel with DCDC B, with an output sharing the VOB pin. When used in parallel with DCDC B, DCDC B will automatically switch to LDO B to provide better efficiency as the input voltage approaches the output voltage. LDO B can also be used as a standalone LDO (i.e. without DCDC B).

LDO B shares the DCDC B output voltage target registers, VOB_EMO_V and VOB_EM2_V.
Table 3.4. LDO B Summary

Mode	Required Register Configuration(s)	Output Pin	Output Target Voltage Registers
In parallel with DCDC B	BK_CTRL1.BK_MODE $=3$	VOB	VOB_EM0_V and VOB_EM2_V
Standalone, no DCDC	BK_CTRL1.BK_MODE $=2$		

3.2.3.2 LDO C

Similar to LDO B, LDO C can be used as an independent standalone supply (with the LDO output on the VOC pin) or may be connected in parallel with DCDC A (with the LDO output sharing the VOA pin with DCDC A). When used in parallel with DCDC A, DCDC A will automatically switch to LDO C to provide better efficiency as the input voltage approaches the output voltage.

LDO C's output voltage register depends on the mode:

- In standalone mode, the output voltage target is set in the VOC_V register.
- In parallel mode, the LDO C shares DCDC A's output voltage register, VOA_V.

Table 3.5. LDO C Summary

Mode	Required Register Configuration(s)	Output Pin	Output Target Voltage Regis- ter
In parallel with DCDC A	BB_CTRL3.BB_MODE =5	VOA = VOC (must be shorted to- gether on PCB)	VOA_V
Standalone, no DCDC	LDOC_CTRL.LDOC_ENA_SA = 1 and BB_CTRL3.BB_MODE !=5	VOC	VOC_V

3.2.3.3 Maximum Output Current

After startup, the maximum output current for LDO B and LDO C is set by the LDOB_IGAIN and LDOC_IGAIN fields in the LDOB_CTRL and LDOC_CTRL registers, respectively. The LDOx_IGAIN fields should be set to the required output current plus margin, but no higher than necessary. LDOx_IGAIN can be computed as follows:

Note: The Maximum Output Current formula below provides useful guidance but is not a guarantee of performance. The final authority for the Maximum Output Current will be the Output Load Current specifications in the Electrical Characteristics tables.

LDOx_IGAIN $=\operatorname{ROUND}\left(17-\frac{V_{\text {OUT }}}{2.76} \times \times I_{\text {OUT_MAX }}\right)$
At startup, and prior to the LDO reaching its target voltage, the available output current for LDO B and LDO C is determined by the LDOB_VMIN and LDOC_VMIN fields in the LDOB_CTRL and LDOC_CTRL registers, respectively. To ensure the LDO output current at startup is always at least the desired amount (as configured by LDOx_IGAIN, above), the settings for the LDOx_VMIN fields should be programmed based on the output target voltage as shown below:

Table 3.6. LDOx_VMIN Settings

VOUT $^{\prime}$ Range	LDOx_VMIN Setting
$\mathrm{V}_{\text {OUT }} \geq 2.7 \mathrm{~V}$	3
$2.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }}<2.7 \mathrm{~V}$	2
$2.0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }}<2.4 \mathrm{~V}$	1
$\mathrm{~V}_{\text {OUT }}<2.0 \mathrm{~V}$	0

Table 3.7 Example LDOx_IGAIN and LDOx_VMIN settings on page 20 shows the recommended LDOx_IGAIN and LDOx_VMIN settings for some example applications. Note that in the calculations below, lout_max has been increased by 20% to provide some margin.

Table 3.7. Example LDOx_IGAIN and LDOx_VMIN settings

Vout (V)	lout_MAx (mA)	LDOx_IGAIN	LDOx_VMIN
1.8	50	6	0
1.8	100	12	0
3.0	50	0	3
3.0	100	8	3
1.2 (LDO B only)	50	10	0

3.2.3.4 LDO Current Limiting

On EFP01, the current limit is controlled by forcing a minimum time between the start of pulse events ($T_{\text {SW_MIN }}$) and is configured by the BK_IRI_CON bitfield in the BK_CTRL2 register (for LDO B) or the VOC_IRI_CON bitfield in the LDOC_BB_CTRL register (for LDO C). The (I IBATT_LIMIT) can be determined from the IRI_CON setting as follows:
$I_{\text {BATT_LIMIT }}=\frac{I_{\text {OUT_MAX }}}{\left(2 \times I R I_{-} C O N+1\right)}$
where Iout_MAX $^{\text {is }}$ determined by LDOx_IGAIN as shown in 3.2.3.3 Maximum Output Current.
Because the current limit is essentially current-starving the output, most applications will likely want to disable the current limit after the output is stable (which can be determined by polling the STATUS_LIVE.VOx_INREG_LIVE bits).

3.2.3.5 LDO Startup

In some configurations, the LDO input supply (i.e., the VDDB pin) is powered from the VOA output. The VOA output may see momentary voltage droops when the LDO is enabled due to instantaneous current required to charge the $10 \mu \mathrm{~F}$ capacitors on the LDO outputs. To avoid this, the current limit can be enabled before the LDO is enabled and then disabled after the LDO output is stable. Consult 3.2.3.4 LDO Current Limiting for more information.

3.2.3.6 DCDC to LDO Transition

When DCDC A or B is operating with a LDO in parallel, at some point the VDDB input supply voltage approaches the LDO output voltage causing the controller to switch from DCDC mode to LDO mode. The dropout voltage (VDDB-VOB for LDO B or VDDB-VOC for LDO C) at which this transition from DCDC to LDO occurs is controlled by the BK_LDO_THRESH bit field in the BK_CTRL2 register for DCDC B / LDO B, and by the NTM_LDO_THRSH bit field in the BB_CTRL3 register for DCDC A / LDO C.

3.2.3.7 Bypass Mode

Both LDO B and LDO C support a bypass mode, in which the VDDB pin input voltage is shorted directly to the corresponding output pin (VOB and VOC, respectively). By default, both LDOs automatically enter bypass mode when the input supply voltage at VDDB drops too low to maintain regulation accuracy. This behavior can be disabled for both LDOs by setting the LDO_NO_AUTO_BYP bit in the LDOB_CTRL register.

In addition, both LDO B and LDO C can be forced into bypass mode by setting the BYP bit in the LDOB_CTRL and LDOC_CTRL registers, respectively. When forcing bypass mode, care must be taken to ensure that any loads attached to the LDO output pins (VOB and VOC) are tolerant of the VDDB pin input voltage.

3.2.4 Coarse Regulators

Each EFP01 output (VOA, VOB, VOC) has its own coarse regulator in parallel for use in EM4. The coarse regulators have very low quiescent current draw but poor output regulation - the outputs may range from 1.69 V to 3.4 V - and can only support very light loads ($100 \mu \mathrm{~A}$).

The coarse regulator for each output can be enabled by setting the corresponding CRSREG_EN_x bit in the EM_CRSREG_CTRL register. If the CRSREG_BYP bit is set, any enabled coarse regulator's output (VOA, VOB, or VOC pin) is shorted to its input (the VDDB pin).

For certain OPNs, the VOB output is limited to less than 1.26 V , which is incompatible with both the coarse regulator and the bypass mode. For this reason, the VOB coarse regulator and VOB coarse regulator bypass features are disabled on these OPNs.

3.3 Energy Modes

The EFP01 operates in 3 different energy modes to optimize efficiency based on the expected load.

Table 3.8. Energy Modes Overview

Energy Mode	Maximum Out- put Current (per output)	BIAS_SW Regis- ter Programming	Coarse Regula- tor	DCDCs and LDOs	ADC	Coulomb Coun- ter
EM0	Full Output Cur- rent (value de- pends on mode and configuration)	BIAS0 = 7	Disabled	On, if enabled	Available	Available
EM2	~ 20 mA (value depends on mode and configuration)	BIAS2 = 1	Disabled	On, if enabled. Note that if BB_CTRL6.BB_I PK_NOADJ is set in Boost modes, no peak current adjustment will occur in EM2.	Available	Available
EM4	~ 100 uA	N/A		Enabled accord- ing to setting of CRSREG_EN_X bits in EM_CRSREG_C TRL	All DCDCs and LDOs disabled	Disabled

3.3.1 Energy Mode Control

The energy mode state of EFP01 can be changed either by $\mathrm{I}^{2} \mathrm{C}$ or via direct pin control.

3.3.1.1 $I^{2} \mathrm{C}$ Control

Using standard $I^{2} \mathrm{C}$ control, the EFP01's energy mode can be set by writing the EM_STSEL bitfield in the EM_CRSREG_CTRL register. The EFP01's internal pull up resistors on I2C_SDA and I2C_SCL pins will continue to be enabled in EM2 and EM4 modes when using this method.

3.3.1.2 Direct Mode Control

In direct mode, the internal pull-ups on the I2C_SDA and I2C_SCL pins are disabled, and the pins become high-impedance inputs that the host processor can drive to quickly change energy modes.

Once enabled by setting the EM_DIRECTEN bit in the EM_CRSREG_CTRI register, direct mode allows the energy mode to be selected by driving the I2C_SDA and I2C_SCL pins according to Table 3.9 Direct Mode Energy Mode States on page 23. When I2C_SCL and I2C_SDA enter the I^{2} C Start Condition, direct mode is automatically disabled, and the EFPO1 optionally enters EMO if FORCE_EMO = 1 in the EM_CRSREG_CTRL register.

Note: Use of Direct Mode is not recommended unless the host processor has dedicated hardware support for EFP01 (e.g., EFR32xG22 and later devices). Although Direct Mode state control can be bit-banged, there can be some undesireable side effects. For example, if the host processor receives a system reset (hard or soft) while in the Direct Mode EM0 or EM2 state, the host's $\mathrm{I}^{2} \mathrm{C}$ outputs can be disabled and can float to logic low levels (because the EFP01's internal pull-ups are disabled in Direct Mode). Because I2C_SCL $=$ I2C_SDA $=0$ is recognized by EFP01 as the EM4 state in Direct Mode, EFP01 disables its DCDC converters and LDO outputs and enters EM4 where it can only supply $\sim 100 \mu \mathrm{~A}$. This low current output is insufficient for a host processor to boot, resulting in an unusable state from which recovery is not possible without disconnecting and then reconnecting the power supply.

Note: Direct Mode is primarily intended for applications where the EFP01 is the only device on the $\mathrm{I}^{2} \mathrm{C}$ bus; other $\mathrm{I}^{2} \mathrm{C}$ devices may not tolerate the non-standard $\mathrm{I}^{2} \mathrm{C}$ states used by Direct Mode.

Table 3.9. Direct Mode Energy Mode States

Direct Mode State	I2C_SCL Level	I2C_SDA Level	Allowed State Transitions
EM0	1	1	•EM2 • I2C Start Condition
EM2	0	1	•EM0 •EM4
EM4	0	0	•EM2

3.3.2 EMO

The EFP01 defaults to EM0 out of reset. In EM0, all features are enabled, and the maximum output current can be supported on any enabled DCDC converters.

3.3.3 EM2

Functionally, EM2 is very similar to EM0, with the proviso that in EM2 bias currents are reduced for improved efficiency at the expense of maximum supported output current.

DCDC A and DCDC B have independent peak current configuration bit fields for EM2 (in BB_IPK_EM2 and BK_IPK_EM2, respectively). In addition, the VOB output target voltage has its own independent configuration in EM2 (VOB_EM2_V).

DCDC B has an independent result register for storing the Coulomb counter result in EM2 (CCB2_MSBY/LSBY). However, DCDC A shares one set of registers for Coulomb counting in both EMO and EM2. Because of this, DCDC A must should use the same peak current setting in both EM0 and EM2 in order for the Coulomb count to be accurate.

3.3.4 EM4

In EM4, the EFP01 disables all enabled DCDCs and LDOs, and enables any desired coarse regulators (i.e., those with their CRSREG_EN_x bits set in the EM_CRSREG_CTRL register). ADC voltage and temperature measurements are disabled in EM4. Coulomb counting is not supported in EM4.

While in EM4, the EFP01's registers can be read or written via $I^{2} \mathrm{C}$ transactions, but the EFP01 will not generate any IRQs in EM4.
Several device configurations have restrictions on EM4 operation:

- In Figure 4.4 Single-Cell Boost Configuration on page 33, EM4 is not supported at all.
- In Figure 4.6 Boost Bootstrap Configuration on page 35, EM4 is supported only when the supply voltage > 2.5V

Note: Unless the host processor has dedicated EM4 hardware support for 3.3.1.2 Direct Mode Control, EM4 should not be used. Once the EFP01 is in EM4, it is only able to source $100 \mu \mathrm{~A}$ per output, which may not be sufficient to power the host while it exits EM4 and sends the necessary $\mathrm{I}^{2} \mathrm{C}$ command to place the EFP01 in EM2 or EM0. Dedicated EFP01 EM4 hardware support is available on EFR32xG22 and later devices.

3.4 Measurement

3.4.1 Coulomb Counter

Note:

Refer to AN1188: EFP01 Coulomb Counting for a more detailed discussion of the Coulomb counter and example code.

The EFP01 has an integrated Coulomb counter that can losslessly measure the charge drawn from the battery for each DCDC and LDO.

Before normal operation can begin, the Coulomb counter must go through a calibration phase. Periodically, recalibration may be necessary due to changes in operating conditions (e.g., battery voltage or operating temperature).

3.4.1.1 Calibration

Overview

During calibration, a known internal current load is applied to the selected output, and the device counts the number of 10 MHz clock cycles required for a fixed number of pulse-frequency modulation (PFM) pulses to occur. The CC_CAL register CCL_SEL, CC_CAL_NREQ, and CCL_LVL fields respectively determine the output used (VOA, VOB, or VOC), the number of PFM pulses to count, and the current load applied to the output. The CCC_MSBY and CCC_LSBY registers are retasked during calibration to store the resulting number of 10 MHz clock cycles counted (note that only the CCC_MSBY and CCC_LSBY registers are used regardless of which output is being calibrated). Based on these results, the charge-per-pulse (CPP) can be determined.

After configuration, calibration is initiated by setting the CC_CAL_STRT bit in the CMD register. If enabled, the Coulomb counter should be disabled prior to calibration by setting writing a 0 to the CC_EN bit in the CC_CTRL register.

For accurate calibration, any devices or loads powered by the EFP01's outputs are expected to be in a stable, steady-state of operation during this calibration phase. In practice, occasional recalibration of the Coulomb counter is expected, particularly when either the input voltage or the temperature has changed significantly.

Factors Affecting the Charge-Per-Pulse

The charge-per-pulse (CPP) may vary depending on the operating mode of the converter. For example, if DCDC B is configured in buck with LDO mode (i.e., the converter automatically switches between buck and LDO modes depending on input voltage), the CPP when the converter is in buck can differ from the CPP when the converter is operating in LDO mode. For this reason, it may be necessary to calibrate a given DCDC converter in each of its expected operating modes. Thus if DCDC B is in buck with LDO mode, and the battery voltage is sufficiently close to the output voltage such that the converter may switch to LDO mode, calibration should be performed on DCDC B once in buck mode and again in LDO mode.

The current DCDC operating modes of DCDC A and DCDC B are reported by the CCA_MODE and CCB_MODE fields of the CC_MODE register, respectively. For calibration purposes, the operating modes can be temporarily forced using the BB_MODE and BK_MODE fields in the BB_CTRL3 and BK_CTRL1 registers for DCDC A and DCDC B, respectively. Host firmware is expected to maintain a CPP for each operating mode of the converter.

In addition, the energy mode can affect the charge-per-pulse. The VOB output has independent result registers for EM0 and EM2, and will need to be calibrated in each energy mode. The VOA and VOC outputs each have only a single result register pair used in both EM0 and EM2. If Coulomb Counting is use with VOA, the BB_IPK and BB_IPK_EM2 peak current values are expected to be the same to ensure an accurate count on VOA regardless of energy mode.

3.4.1.2 Recalibration

In addition, certain changes in external conditions may affect the charge-per-pulse. The below list contains conditions that may necessitate a recalibration event:

- Significant change in input supply voltage
- Significant change in temperature

3.4.1.3 Operation

Note:

Refer to AN1188: EFP01 Coulomb Counting for a more detailed discussion of the Coulomb counter and example code.

PFM pulse counts for the VOA, VOB (separately for EMO and EM2), and VOC outputs are stored in the CCA_MSBY/CCA_LSBY (VOA), CCB0_MSBY/CCB_LSBY (VOB in EM0), CCB2_MSBY/CCB2_LSBY (VOB in EM2), and CCC_MSBY/CCC_LSBY (VOC) most significant/least significant byte register pairs, respectively, during normal operation.Note that when DCDC A is operating with LDO C in parallel, the resulting counts will be split between the CCA result registers (when the DCDC A is powering the load) and the CCC result registers (when LDO C is powering the load).

Prescaler

The actual value stored in a given Coulomb counter result register pair is scaled according to the CC_PRESCL field in the CC_CTRL register. This setting applies globally such that the count in a given result register pair represents $2^{\left(16-2 \times C C _P R E S C L\right)}$ PFM pulses. Note that the prescaler setting does not affect the CCC_MSBY/LSBY registers during calibration.

Enabling / Disabling

Start Coulomb counting by writing a 1 to the CC_EN bit in the CC_CTRL register; stop counting by writing a 0 to CC_EN.

Servicing

Once enabled, the Coulomb counter result registers will eventually overflow, so some amount of firmware maintenance is required. The CC_THRSH field in the CC_CTRL register sets the desired threshold ($50 \%, 62.5 \%, 75 \%$, or 87%) for setting the STATUS_G register CC_FULL flag. Note that the CC_FULL_UNMASK bit in the STATUS_GM register must be written to 1 so that an interrupt can be requested when the CC_FULL flag is set. When firmware receives an interrupt, and discovers that CC_FULL is set, all relevant Coulomb counter result registers should be read and added to local variable counts. Additionally, each converter's operating mode should be determined (by reading the CCA_MODE or CCB_MODE field in the CC_MODE register for DCDC A or DCDC B, respectively) in order to perform battery life calculations using the relevant CPP value. Clear the Coulomb counter result registers after reading them by writing a 1 to the CC_CLR bit in the CMD register.

3.4.2 Analog to Digital Converter (ADC)

An internal ADC can monitor the internal die temperature and the battery voltage. The battery voltage is determined by reading the voltage at the either the VDDA or VDDB pins of the device. The determination of which pin to read is made automatically by hardware if a valid voltage is present on VDDA (e.g., CC_MODE.SC_MODE==1), VDDA will be measured; otherwise, VDDB will be measured.

ADC Result Registers

The measured 12-bit ADC readings are automatically loaded into 8-bit register pairs, divided into the most significant nibble and the least significant byte. Because these ADC results are spread over two registers and the result may be continuously updated, addressing any of these ADC result registers causes an inhibition in the updating of the register to prevent corruption. To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.

There are three ADC voltage result register pairs and one ADC temperature result register pair, as described below:

- VDD_AVG_MSN, VDD_AVG_LSBY: These registers hold the 12-bit filtered average voltage reading. The IIR averaging low-pass filter time constant is set by the ADC_CC_CTRL.ADC_IIR_TAU bitfield (time constant $=2^{\text {ADC_IIR_TAU }}$). It is recommended to set ADC_IIR_TAU $=7$ to provide the slowest filtering.
- VDD_MIN_MSN, VDD_MIN_LSBY: These registers hold the 12-bit minimum voltage reading since the device was powered on or since the last ADC_CLR event.
- VDD_MAX_MSN, VDD_MAX_LSBY: These registers hold the 12-bit maximum voltage reading since the device was powered on, or since the last ADC_CLR event.
- TEMP_MSN, TEMP_LSBY: These registers hold the last 12-bit temperature reading.

When the CMD.ADC_CLR bit is set, on the next subsequent ADC trigger (whether manual or automatic), all three of the ADC result register pairs will be set to the same read value.

ADC Triggering

Each ADC triggering will cause a reading of both the voltage and temperature. The ADC readings can be triggered manually or automatically:

- The CMD.ADC_START bit can be set to manually trigger an ADC reading.
- The ADC can be configured to trigger automatically based off the number of counted pulse events in all enabled converters by configuring ADC_CC_CTRL.ADC_INTERVAL. If ADC_INTERVAL > 0 , the rate of automatic ADC readings is determined by the number of counted pulse events ($2^{(\text {ADC_INTERVAL }+3)}$). Note in certain scenarios (e.g., EM2 with very light loading) it is possible to have very long periods of time with few or no pulse events. For that reason, whenever ADC_INTERVAL >0, the ADC readings will be updated at a minimum period of four refresh cycles (approximately $\sim 400 \mathrm{msec}$ at room temperature), regardless of the number of counted pulse events. It is recommended to set ADC_INTERVAL=7.
- If ADC_CC_CTRL.ADC_INTERVAL $=0$, no automatic ADC readings will occur.

Because the ADC has multiple uses (both internally and at the application level) and ADC readings consume very little power, it is recommended to always set ADC_INTERVAL=7 to ensure that ADC readings are always triggered periodically automatically. Some of the uses of the ADC include the following:

- If BB_CTRL2.BB_IPK_NOADJ=0, the ADC is used internally to to adjust the boost converter peak current as the battery voltage drops, providing a near-constant output load current over the entire battery range.
- The ADC is used to determine whether a Low Battery Fault (STATUS_G.VDD_LOW) has occurred. The threshold for a Low Battery Fault is set in ADC_LIMITS.ADC_V_LIM.
- The battery voltage reading is used to determine the charge per pulse during Coulomb counting.
- The ADC temperature readings are used to optimize the internal bias refresh rate over temperature and to determine whether an Over Temperature Fault (STATUS_G.TEMP_FAULT) has occurred (where the threshold for the Over Temperature condition is set by ADC_LIMITS.ADC_T_LIM).

If enabled (i.e., ADC_CC_CTRL.ADC_INTERVAL > 0), the ADC will continue to take measurements in EM0 and EM2 energy modes. In EM4, the ADC will be automatically disabled and no measurement updates will occur.

ADC Calculations

To convert from the result register values to usable units:

- VDDB $(m V)=\left(\left(V D D _x x x _M S N \ll 8\right)+V D D _x x x _L S B Y\right) \times 1.49$
- VDDA $(m V)=\left(\left(V D D _x x x _M S N \ll 8\right)+V D D _x x x _L S B Y\right) \times 1.01$
- Temperature $(\mathrm{C})=40+($ convert_from_2s_complement $(($ TEMP_MSN<<8) + TEMP_LSBY $)+2) / 6.04236$

3.5 Memory

3.5.1 OTP

The EFP01 has contains OTP memory that is programmed at the factory to load calibration constants and configuration defaults into the registers. The default configuration may be modified after power-up by overwriting the corresponding register via $I^{2} \mathrm{C}$ write. Additionally, any OTP address can be directly read through register $\mathrm{I}^{2} \mathrm{C}$ accesses.

The out-of-reset default OTP configuration can be restored by three methods:

1. A VDDA/VDDB/VBOOST power-cycle, resulting in a POR
2. Setting the CMD.OTP_REREAD bit. This will cause the EFP01 registers to be overwritten with the OTP defaults.
3. Setting the CMD.RESET bit. This will cause the EFP01 registers to be momentarily cleared to 0 , and then overwritten with the OTP defaults.

Note: When the converter mode bitfields are cleared to 0 , any enabled converters or LDOs will be disabled for ~ 400 us, which can result in a supply brown-out. For this reason, use of CMD.OTP_REREAD is recommended instead.

Note: When the EFP01 DCDC B is powering the EFR32 DECOUPLE supply, the out-of-reset mode for DCDC B is Disabled. If the EFR32 is not also getting reset, the EFR32 internal LDO must be re-enabled before resetting the OTP to its default values.

Refer to the OTP Definition section for more details and default OTP programming.

3.5.2 Registers

The EFP01 is controlled and configured via access to its Registers. Register access is supported in all of EFP01's energy modes (i.e., EM0, EM2, and EM4).

Default configuration and calibration register values are automatically loaded from OTP at boot (see 7.2 OTP Defaults).
Refer to the Register Definitions section for more details.

3.6 Communications and Other Digital Peripherals

3.6.1 Inter-Integrated Circuit Interface $\left(I^{2} \mathrm{C}\right)$

The $I^{2} \mathrm{C}$ module provides an interface between the EFP01 and the host MCU. It is capable of operating as an $I^{2} \mathrm{C}$ slave only, with transmission rates from $10 \mathrm{kbit} / \mathrm{s}$ up to $5 \mathrm{Mbit} / \mathrm{s}$, and can function in EM0, EM2, and EM4. The EFP01 uses a fixed $\mathrm{I}^{2} \mathrm{C}$ address of 0×60.

The $I^{2} \mathrm{C}$ module has internal pull ups on its SDA and SCL pins that are enabled automatically at startup. These internal pull ups can be disabled using the I2C_PU bit in the I2C_CTRL register.

In addition, the $I^{2} \mathrm{C}$ module provides an optional, non-standard Direct Mode feature to allow fast transitions between Energy Modes (described in 3.3.1 Energy Mode Control). EFP01's internal pull ups are automatically disabled when Direct Mode is enabled.

Note: Direct Mode is primarily intended for applications where the EFP01 is the only device on the $I^{2} \mathrm{C}$ bus - other $\mathrm{I}^{2} \mathrm{C}$ devices may not tolerate the non-standard $\mathrm{I}^{2} \mathrm{C}$ states used by Direct Mode.

3.6.2 Interrupt Output (IRQ)

The EFP01 has an open-drain Interrupt Output (IRQ) that can be used to notify the host processor. Out of reset, an internal pull-up will be enabled on the IRQ pin - this pull-up will always remain enabled and cannot be disabled.

An IRQ will be generated whenever both of the following conditions are true:

- A status flag is set in either the STATUS_G or STATUS_V registers
- The flag's corresponding UNMASK bit in either the STATUS_GM or STATUS_VM registers is also set to one.

When an IRQ is generated, the IRQ pin will be driven low until any flags that are both unmasked and set are cleared.
By default, only the STATUS_GM.OTP_READ_UNMASK bit is set, which results in an IRQ whenever the OTP is read. Because the OTP is read on every EFP01 power-up and/or reset, the host firmware can use this OTP_READ flag and resulting IRQ as an indication that an unexpected reset condition has occurred on the EFP01, and that any post-startup configuration needs to be rewritten to its registers.

3.7 System Protection

3.7.1 Under-voltage Lockout (UVLO)

When the VDDB voltage falls below the UVLO trip point (consult Electrical Specifications table for the typical value), the EFP01 automatically transitions to an extremely low-power state to minimize power consumption. In this state, only the Power-On Reset (POR) is enabled.

3.7.2 Power-on Reset (POR)

When the VDDB voltage rises above the Rising POR threshhold (consult Electrical Specifications table), the EFP01 automatically loads its OTP programmed defaults into the corresponding registers, at which point any enabled converters will begin regulation. If the VDDB voltage falls below the Falling POR threshhold, the EFP01 will go into reset and all outputs will be disabled.

3.7.3 Over-Voltage Protection

By default in EM0 and EM2 modes, each output has overvoltage protection enabled. When the output voltage on a specific converter is more than $\sim 180 \mathrm{mV}$ higher than the programmed value, an internal $\sim 2 \mathrm{~mA}$ load is enabled on the output until the overvoltage condition clears. This feature can be disabled on the VOB output by setting the BK_CTRLO.BK_DIS_OV_PROT bit.

In OPNs where DCDC B is providing an output that must stay between 1.1 V to 1.2 V , the coarse regulator cannot be enabled in EM4 (as the coarse LDO output can be much higher than 1.2 V). To ensure the supply voltage in EM4 does not increase beyond an acceptable level due to leakage, a simple voltage clamp can be enabled on the VOB output by setting the BK_CTRLO.CLAMPB bit.

3.7.4 Short Circuit Tolerance

The PFM operation of the DCDC converters along with the programmable peak current limit provide some inherent protection against an output short circuit. In the buck or buck/boost configuration, any output short condition will result in that DCDC output dropping out of regulation, with a maximum output current that is approximately IPK_BASE/2 (where IPK_BASE is defined for for DCDC A in 3.2.1.2 Peak Current Configuration and DCDC B in 3.2.2.2 Peak Current Configuration).

Similarly, LDO C and LDO B under an output short condition are limited to the configured maximum output current (as defined in 3.2.3.3 Maximum Output Current).

Note: Depending on the converter programming, an output short circuit condition for either the DCDC or the LDO output current may still result in an unacceptable rise in on-die temperature. To minimize on-die temperature rise, the PCB designer should maximize thermal connections from the package to the PCB ground planes to optimize heat flow from the package and minimize the θ_{JA}.

Note: There is no inherent output short circuit protection for DCDC A when it is configured in wired boost mode as described in the 4.1.5 Wired Boost Configuration (EFP0109 \& EFP0110), 4.1.4 Single-Cell Boost Configuration (EFP0108), or 4.1.6 Boost Bootstrap Configuration (EFP0111). Shorting the VOA output to ground in one of these configurations will result in an uncontrolled battery discharge through the body diode in the boost powertrain PFET. The current, in this case, is limited only by the system impedances, such as the internal body diode resistance, the inductor resistance, and the battery internal resistance. Any desired short circuit protection for wired boost modes must be implemented in external circuitry.

Firmware can detect and manage an output short condition through the following mechanisms:

- An output short should cause the output to drop out of regulation, resulting in the corresponding VOx_ISLOW flag being set in the STATUS_V register.
- In the worst case, where the output short current has resulted in excessive on-chip power dissapation, the TEMP_FAULT flag in the STATUS_G register will be set to indicate an over temperature condition.

It is recommended that firmware unmask these bits in the STATUS_VM and STATUS_GM registers at start-up so that they can generate interrupt requests. Firmware can then respond appropriately to the VOx_ISLOW and/or TEMP_FAULT condition(s), e.g. by lowering the peak current or LDOx_IGAIN setting, increasing the inrush current limit, or disabling the output altogether.

3.8 Startup \& Shutdown Behavior

3.8.1 Startup Behavior

Once enabled, the EFP01's DCDC and LDO outputs will immediately begin switching to ramp up to the target output voltage without any soft-start mechanisms (besides the current limit, if enabled, for DCDC A or DCDC B).

3.8.2 Shutdown Behavior

The outputs of all disabled DCDCs and LDOs are held in a high-impedance state. Note that if an output was first enabled, and then disabled, the original output voltage may be retained by the output capacitor(s) for a long period of time depending on output load current.

When the DCDC A converter is disabled on devices configured for the Wired Boost, Single-Cell Boost, or Boost Bootstrap configurations, the body diode in the boost powertrain becomes forward-biased once the VOA output voltage drops below the battery voltage. In these configurations, the VOA output (less a diode drop) tracks the battery voltage when DCDC A is disabled.

4. Typical Connection Diagrams

4.1 Device Configurations

The EFP01's flexible configuration options support a wide variety of input supplies and output voltages.
Consult AN1187: EFP01 Hardware Design Considerations for additional information, including reference schematics and layout recommendations.

4.1.1 Wired Buck Configuration

The wired buck configuration is targeted at batteries with a nominal voltage above 2.5 V . In this mode, DCDC A bucks the supply voltage to a lower voltage.

The wired buck configuration is suitable for a wide range of batteries and input supplies. For example:

- Single lithium thionyl chloride $\left(\mathrm{Li}^{2} \mathrm{SOCl}_{2}\right)$ primary cell (3.0 to 3.65 V)
- Single li-ion/li-polymer (typically LiCoO_{2}) rechargeable batteries (2.7 to 4.35 V)
- Single lithium iron phosphate $\left(\mathrm{LiFePO}_{4}\right)$ rechargeable battery (2.5 to 3.65 V)
- Line power / USB ($\leq 5.5 \mathrm{~V}$)

The supported operating mode settings for each converter in this configuration are shown below:
Table 4.1. Supported Operating Mode Settings

Converter / LDO	Operating Mode Bitfield	Supported Modes
DCDC A	BB_CTRL3.BB_MODE	WiredBuck
DCDC B	BK_CTRL1.BK_MODE	Disabled, BuckOnly, BuckLDO, or LDOOnly
LDO C	LDOC_CTRL.LDOC_ENA_SA	Enabled or Disabled

Typical power supply connections for a wired buck configuration are shown below.

Figure 4.1. Wired Buck Configuration

4.1.2 Wired Buck with LDO C Configuration (EFP0104)

The wired buck with LDO configuration is targeted at batteries with a nominal voltage above 2.5 V where the input voltage may approach the buck converter output voltage. In this mode, DCDC A bucks the supply voltage to a lower voltage until the supply voltage approaches the VOA output voltage. At that point, the converter dynamically switches to use the LDO instead to power the VOA output. Note that in this mode, LDO C is wired in parallel with the VOA output, and thus not available as an independent LDO.

The wired buck with LDO configuration is suitable for a wide range of batteries and input supplies. For example:

- Single lithium ($\mathrm{Li} / \mathrm{MnO}_{2}$) CR2032 coin-cells (1.8 to 3.2 V)
- Single lithium thionyl chloride ($\mathrm{Li} / \mathrm{SOCl}_{2}$) primary cell (3.0 to 3.65 V)
- Single li-ion/li-polymer (typically LiCoO_{2}) rechargeable batteries (2.7 to 4.35 V)
- Single lithium iron phosphate $\left(\mathrm{LiFePO}_{4}\right)$ rechargeable battery (2.5 to 3.65 V)
- Line power / USB ($\leq 5.5 \mathrm{~V}$)

The supported operating mode settings for each converter in this configuration are shown below:
Table 4.2. Supported Operating Mode Settings

Converter / LDO	Operating Mode Bitfield	Supported Modes
DCDC A	BB_CTRL3.BB_MODE	WiredBuckLDO
DCDC B	BK_CTRL1.BK_MODE	Disabled, BuckOnly, BuckLDO, or LDOOnly
LDO C	LDOC_CTRL.LDOC_ENA_SA	Disabled

Typical power supply connections for a wired buck with LDO configuration are show in the following figure.

Figure 4.2. Wired Buck with LDO C Configuration

4.1.3 Buck/Boost Configuration (EFP0107)

The buck/boost configuration is suitable for applications where the battery voltage may be above or below the required VOA output voltage. Although very flexible, this configuration has worse efficiency than wired boost or wired buck configurations due to the losses in the additional power FETs required to support both modes of operation. Typical power supply connections for a buck/boost configuration are show in the following figure.

The supported operating mode settings for each converter in this configuration are shown below:
Table 4.3. Supported Operating Mode Settings

Converter / LDO	Operating Mode Bitfield	Supported Modes
DCDC A	BB_CTRL3.BB_MODE	Autonomous (ForceBuck, ForceBoost, ForceNTM can be used in special circumstances)
DCDC B	BK_CTRL1.BK_MODE	Disabled, BuckOnly, BuckLDO, or LDOOnly
LDO C	LDOC_CTRL.LDOC_ENA_SA	Enabled or Disabled

Figure 4.3. Buck/Boost Configuration

4.1.4 Single-Cell Boost Configuration (EFP0108)

The single-cell boost configuration is a variant of the wired boost configuration intended primarily for use cases where the battery nominal voltage may be below the VDDB pin minimum voltage (1.8V) at startup. In this configuration, the EFP01 uses low-voltage supply circuitry powered from the VDDA pin at startup to generate a voltage output on the VOA supply sufficient to meet the VDDB minimum supply input requirement. After startup and once the VDDB voltage is above this minimum, standard boost operation resumes. Note that this configuration requires connecting VDDB to VOA on the printed circuit board.

Single-cell boost configuration is suitable for the following:

- Single alkaline $\left(\mathrm{Zn} / \mathrm{MnO}_{2}\right)$, zinc-carbon or lithium iron-disulfide $\left(\mathrm{Li}^{2} / \mathrm{FeS}_{2}\right)$ primary cells, or $\mathrm{NiMH} / \mathrm{NiCd}$ rechargeable cells (0.8 to 1.8 V)

The supported operating mode settings for each converter in this configuration are shown below:
Table 4.4. Supported Operating Mode Settings

Converter / LDO	Operating Mode Bitfield	Supported Modes
DCDC A	BB_CTRL3.BB_MODE	WiredBoost
DCDC B	BK_CTRL1.BK_MODE	Disabled, BuckOnly, BuckLDO, or LDOOn- ly
LDO C	LDOC_CTRL.LDOC_ENA_SA	Enabled or Disabled

In the single-cell boost configuration, up to 3 outputs are available. Typical power supply connections for a single-cell boost configuration are shown below.

Figure 4.4. Single-Cell Boost Configuration

4.1.5 Wired Boost Configuration (EFP0109 \& EFP0110)

Wired boost configuration is suitable for a wide range of batteries. For example:

- Dual alkaline, zinc-carbon or lithium iron-disulfide (Li/FeS 2) primary cells, or $\mathrm{NiMH} / \mathrm{NiCd}$ rechargeable cells (1.6 to 3.6 V)
- Single lithium primary Li/ MnO_{2} cells (1.8 to 3.2 V)
- Single lithium iron phosphate $\left(\mathrm{LiFePO}_{4}\right)$ rechargeable battery (2.5 to 3.65 V)

The supported operating mode settings for each converter in this configuration are shown below:
Table 4.5. Supported Operating Mode Settings

Converter / LDO	Operating Mode Bitfield	Supported Modes
DCDC A	BB_CTRL3.BB_MODE	WiredBoost
DCDC B	BK_CTRL1.BK_MODE	Disabled, BuckOnly, BuckLDO, or LDOOnly
LDO C	LDOC_CTRL.LDOC_ENA_SA	Enabled or Disabled

In the wired boost configuration, up to 3 outputs are available. Typical power supply connections for a wired boost configuration are shown below.

Figure 4.5. Wired Boost Configuration

4.1.6 Boost Bootstrap Configuration (EFP0111)

The boost bootstrap configuration is a variant of the wired boost configuration intended primarily to support high impedance batteries, such as CR2032 lithium coin cells. DCDC A is configured for wired boost with the VOA output voltage set to a high value (e.g., 5.2 V), which in turn is used to supply the VDDB input to DCDC B and LDO C.

Inrush current limiting is enabled by default for DCDC A in order to reduce the impact of the battery's internal impedance. However, due to the reduced current, the VOA output is poorly regulated and is expected to droop under heavy load. To compensate, a larger reservoir output capacitor $(\geq 68 \mu \mathrm{~F})$ is used to help maintain the VOA output. The actual VOA output capacitor size may need to be adjusted based on the peak output current and duty cycle of the specific application.

The boost bootstrap configuration is suitable for:

- Single lithium ($\mathrm{Li} / \mathrm{MnO}_{2}$) CR2032 coin-cells (1.8 to 3.2 V)
- Dual alkaline, zinc-carbon or lithium iron-disulfide ($\mathrm{Li}^{2} \mathrm{Fe} \mathrm{S}_{2}$) primary cells, or $\mathrm{NiMH} / \mathrm{NiCd}$ rechargeable cells (1.6 to 3.6 V)
- Single lithium iron phosphate $\left(\mathrm{LiFePO}_{4}\right)$ rechargeable battery (2.5 to 3.65 V)

The supported operating mode settings for each converter in this configuration are shown below:
Table 4.6. Supported Operating Mode Settings

Converter / LDO	Operating Mode Bitfield	Supported Modes
DCDC A	BB_CTRL3.BB_MODE	WiredBoost
DCDC B	BK_CTRL1.BK_MODE	Disabled, BuckOnly, BuckLDO, or LDOOnly
LDO C	LDOC_CTRL.LDOC_ENA_SA	Enabled or Disabled

Typical power supply connections for the boost bootstrap configuration are shown below.

Figure 4.6. Boost Bootstrap Configuration

5. Electrical Specifications

5.1 Electrical Characteristics

Unless stated otherwise, all electrical parameters in all tables are specified under the following conditions:

- Typical values are based on $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DDB}}=\mathrm{V}_{1 \mathrm{O}}=3.3 \mathrm{~V}$ and $\mathrm{VOA}=\mathrm{VOB}=\mathrm{VOC}=1.8 \mathrm{~V}$, by production test and/or technology characterization.
- Unless stated otherwise, minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature.
- Energy mode (EM0/EM2/EM4) programming is defined in Table 3.8 Energy Modes Overview on page 22
- EMO: BIAS_SW.BIAS0=7, EM_CRSREG_CTRL.EM_STSEL=0
- EM2: BIAS_SW.BIAS2=1, EM_CRSREG_CTRL.EM_STSEL=2
- EM4: EM_CRSREG_CTRL.EM_STSEL=3
- Test board components:
- $\mathrm{L}_{\text {DCDC }}=2.2 \mu \mathrm{H}$ (Samsung CIG22H2R2MAE)
- $\mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}$ (Murata GRM31CR71A106KA01)

5.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at https://www.silabs.com/about-us/corporate-responsibility/commitment-toquality.

Table 5.1. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Storage temperature range	TSTG		-50	-	150	${ }^{\circ} \mathrm{C}$
DC voltage on input supply pins VDDA ${ }^{1}$	$V_{\text {VDDA }}$		-0.3	-	2.0	V
DC voltage on input supply pins VDDB ${ }^{1}$	V ${ }_{\text {VDDB_DC }}$		-0.3	-	5.5	V
Transient voltage on input supply pin VDDB ${ }^{1}$	VVDDB_TRN	$\mathrm{t}<30 \mu \mathrm{~s}$, duty cycle $<0.01 \%$	-	-	6.5	V
DC voltage connected through inductor to LA2 pin in boost configurations. ${ }^{1}$	$\mathrm{V}_{\text {Vboost }}$		-0.3	-	5.5	V
Voltage on output supply pins: VOA, VOB, VOC, VOA_SW	Vout		-0.3	-	5.5	V
DC voltage on VIO supply pin	$\mathrm{V}_{\mathrm{VIO}}$		-0.3	-	5.5	V
DC voltage on any I/O pin	V DIGPIN		-0.3	-	$\mathrm{V}_{\mathrm{VIO}}+0.3$	V
On-chip power dissipation ${ }^{2}$	$P_{\text {DIS }}$	2-layer PCB, THETA_JA = 81.2 ${ }^{\circ} \mathrm{C} / \mathrm{W}$, Tambient $=25^{\circ} \mathrm{C}$	-	-	923	mW
		4-layer PCB, THETA_JA $=66.0$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$, Tambient $=25^{\circ} \mathrm{C}$	-	-	1136	mW
Operating Junction temperature	T_{J}	-G grade devices	-40	-	105	${ }^{\circ} \mathrm{C}$
Note: 1. Note that there is no reve battery insertion should i 2. Max on-chip power dissip	rse battery in corporate ex pation is given	n protection implemented on-chip protection circuitry. $\text { max }=\left(100^{\circ} \mathrm{C}-\text { Tambient }\right) / \mathrm{THE}$	cation	may b	ceptible to	verse

5.1.2 Thermal Characteristics

Table 5.2. Thermal Characteristic

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Thermal impedance, junc-tion-to-ambient QFN20 (3x3mm)	THETA $^{\text {J }}$	2 layer PCB, Natural Convection ${ }^{1}$	-	81.2	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4 layer PCB, Natural Convection ${ }^{1}$	-	66.0	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal impedance, junc-tion-to-board QFN20 ($3 \times 3 \mathrm{~mm}$)	THETA $_{\text {JB }}$	2 layer PCB, Natural Convection ${ }^{1}$	-	37.9	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4 layer PCB, Natural Convection ${ }^{1}$	-	27	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal impedance, junc-tion-to-case QFN20 (3x3mm)	THETA $_{\text {Jc }}$	2 layer PCB, Natural Convection ${ }^{1}$	-	46.5	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4 layer PCB, Natural Convection ${ }^{1}$	-	34.6	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-top thermal characterization parameter QFN20 (3x3mm)	$\mathrm{PSI}_{J T}$	2 layer PCB, Natural Convection ${ }^{1}$	-	2.6	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4 layer PCB, Natural Convection ${ }^{1}$	-	1.9	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-bottom thermal characterization parameter QFN20 (3x3mm)	$\mathrm{PSI}_{J B}$	2 layer PCB, Natural Convection ${ }^{1}$	-	39.1	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4 layer PCB, Natural Convection ${ }^{1}$	-	26.7	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

1. Measured according to JEDEC standard JESD51-2A Integrated Circuit Thermal Test Method Environmental Conditions - Natural Convection (Still Air).

5.1.3 General Operating Conditions

5.1.3.1 Power Supply Dependencies

Due to on-chip circuitry (e.g., diodes), some device power supply pins have a dependent relationship with other power supply pins. These internal relationships between the external voltages applied to the various device supply pins are defined below. Exceeding the below constraints can result in damage to the device and/or increased current draw.

- VDDB, VDDA, VBOOST (where VBOOST is the voltage applied to the inductor attached to the LA2 pin in boost configurations): No dependency with each other.
- VIO: If the EFP01 is powered on (i.e., VDDB and/or VDDA powered), VIO should also be powered. When VIO is unpowered, the system may see several hundred microamps of leakage current.

5.1.3.2 General Operating Conditions

Table 5.3. General Operating Conditions

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Operating junction tempera- ture	T_{J}	-G grade devices	-40	-	100	${ }^{\circ} \mathrm{C}$
VIO input voltage range	VIOIN		1.7	-	5.5	V
Quiescent current into VDDA pin	$\mathrm{I}_{\mathrm{Q}} \mathrm{VVDDA}$					

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Digital input low voltage	$\mathrm{V}_{\text {IL }}$		-	-	VIO*0.3	V
Digital input high voltage	V_{IH}		VIO*0.7	-	-	V
Nominal input capacitor ${ }^{2}$	C_{IN}	VDDA / VDDB / VBOOST inputs, 25\% tolerance	4.7	10	-	$\mu \mathrm{F}$
Nominal output capacitor ${ }^{2}$	Cout	VOA / VOB / VOC outputs, 25\% tolerance	2.2	10	-	$\mu \mathrm{F}$
VDDB internal measurement accuracy	VDDB ${ }_{\text {MEAS_ACC }}$		-	-0.112	-	LSB
VDDA internal measurement accuracy	VDDA ${ }_{\text {MEAS_ACC }}$		-	-0.02	-	LSB
Temperature measurement accuracy	$\mathrm{TEMP}_{\text {MEAS_ACC }}$		-	+/-10	-	${ }^{\circ} \mathrm{C}$
ADC measurement conversion time for one voltage and one temperature sample	$\mathrm{T}_{\text {MEAS }}$		-	18.6	-	$\mu \mathrm{s}$
Power-on reset threshold, rising	V POR_THR_RIS		-	-	1.702	V
Power-on reset threshold, falling	VPOR_THR_FAL		1.58	-	1.68	V
Under-voltage lockout threshold	VUVLO_THR		-	1.2	-	V
VDDB current when VDDB < UVLO threshold	luvLo	$\mathrm{VDDB}=1.0 \mathrm{~V}$	-	24	-	$n A$
On resistance of DCDC A buck powertrain NMOS FET ${ }^{3}$	$\begin{aligned} & \text { RDS }_{\text {A_BUCK_NM }} \\ & \text { os } \end{aligned}$	$\mathrm{VDDB}=3.3 \mathrm{~V}$	-	0.271	1.07	Ω
On resistance of DCDC A buck powertrain PMOS FET ${ }^{3}$	$\begin{aligned} & \text { RDS } \\ & \text { os } \end{aligned}$	$\mathrm{VDDB}=3.3 \mathrm{~V}$	-	0.150	0.676	Ω
On resistance of DCDC A boost powertrain NMOS FET^{3}	$\begin{aligned} & \text { RDS }_{\text {A_BOOST_N }} \\ & \text { MOS } \end{aligned}$	$\mathrm{VDDB}=\mathrm{VOA}=3.3 \mathrm{~V}$	-	0.140	0.450	Ω
On resistance of DCDC A boost powertrain PMOS FET ${ }^{3}$	$\begin{aligned} & \text { RDS }_{\text {A_BOOST_P }} \\ & \text { MOS } \end{aligned}$	$\mathrm{VDDB}=\mathrm{VOA}=3.3 \mathrm{~V}$	-	0.172	0.645	Ω
On resistance of DCDC B buck powertrain NMOS FET ${ }^{3}$	$R_{\text {B_BUCK_NM }}$ OS	$\mathrm{VDDB}=3.3 \mathrm{~V}$	-	0.203	0.783	Ω
On resistance of DCDC B buck powertrain PMOS FET ${ }^{3}$	$\mathrm{RDS}_{\text {B_BUCK_PM }}$ os	$\mathrm{VDDB}=3.3 \mathrm{~V}$	-	0.294	1.26	Ω
On resistance of LDO B in bypass mode ${ }^{3}$	$\mathrm{RDS}_{\text {B_LDO_BYP }}$	$\mathrm{VDDB}=3.0 \mathrm{~V}$	-	0.778	1.32	Ω
		$\mathrm{VDDB}=1.8 \mathrm{~V}$	-	1.19	1.96	Ω
On resistance of LDO C in bypass mode ${ }^{3}$	RDS C_LDO_BYP	$\mathrm{V} D \mathrm{DB}=3.0 \mathrm{~V}$	-	0.76	1.32	Ω
		$\mathrm{VDDB}=1.8 \mathrm{~V}$	-	1.19	1.96	Ω
On resistance of VOA switch ${ }^{3}$	RDS Vsw	VDDB $=3.0 \mathrm{~V}$	-	1.38	2.91	Ω
		$\mathrm{VDDB}=1.8 \mathrm{~V}$	-	2.2	4.14	Ω

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit

Note:

1. In boost bootstrap and single-cell boost configurations, the VDDB input is attached to the VOA output. Therefore, the quiescent current at the battery will be the VDDB quiescent current as seen through the DCDC A conversion.
2. The system designer should consult the characteristic specs of the capacitor used to ensure its capacitance value stays within the specified bounds across temperature and DC bias.
3. Maximum values guaranteed by characterization.

Table 5.4. I2C Timing

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$	High-to-low versus low-to-high transition	VIO*0.05	-	-	V
SCL Frequency	$\mathrm{f}_{\text {SCL }}$	EFP01 is one of multiple peripherals on I2C bus, Cload $\leq 25 \mathrm{pF}$	-	-	400	kHz
		EFP01 is sole peripheral on I2C bus, Cload $\leq 25 \mathrm{pF}$	-	-	1000	kHz
SCL High Time	$\mathrm{t}_{\text {SKH }}$	f_SCL=400kHz, Cload=25pF	0.6	-	-	$\mu \mathrm{s}$
SCL Low Time	$\mathrm{t}_{\text {SKL }}$	f_SCL=400kHz, Cload=25pF	1.3	-	-	$\mu \mathrm{s}$
Start Hold Time	$\mathrm{t}_{\text {STH }}$	f_SCL $=400 \mathrm{kHz}$, Cload=25pF	0.6	-	-	$\mu \mathrm{s}$
Start Setup Time	$\mathrm{t}_{\text {STS }}$	f_SCL $=400 \mathrm{kHz}$, Cload=25pF	0.6	-	-	$\mu \mathrm{s}$
Stop Setup Time	$\mathrm{t}_{\text {SPS }}$	f_SCL=400kHz, Cload=25pF	0.6	-	-	$\mu \mathrm{s}$
Bus Free Time	$t_{\text {BUF }}$	Between Stop and Start, f_SCL=400kHz, Cload=25pF	1.3	-	-	$\mu \mathrm{S}$
SDA Setup Time	$t_{\text {DS }}$	f_SCL=400kHz, Cload=25pF	100	-	-	ns
SDA Hold Time	$t_{\text {DH }}$	f_SCL=400kHz, Cload=25pF	100	-	-	ns
SDA Valid Time	tVD_DAT	From SCL low to data valid, f_SCL=400kHz, Cload=25pF	-	-	0.9	$\mu \mathrm{s}$
SDA ACK Valid Time	tVD_ACK	From SCL low to data valid, f_SCL=400kHz, Cload=25pF	-	-	0.9	$\mu \mathrm{s}$
Suppressed Pulse Width (pulses up to and including this duration will be suppressed)	tsPW	f_SCL=400kHz, Cload=25pF	50	-	-	ns

Figure 5.1. $\mathrm{I}^{2} \mathrm{C}$ Interface Timing

5.1.3.3 EFP0104

Unless stated otherwise, all parameters in the EFP0104 electrical specifications tables are specified under the following conditions:

- $\mathrm{VDDB}=3.3 \mathrm{~V}$
- $\mathrm{VDDA}=\mathrm{GND}$
- $\mathrm{VOA}=\mathrm{VOC}=1.8 \mathrm{~V}$
- $\mathrm{VOB}=1.2 \mathrm{~V}$
- $\mathrm{VIO}=1.8 \mathrm{~V}$

Table 5.5. EFP0104 VOA/VOC Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Allowed programmable peak current setting	IPK ${ }_{\text {ADJ_RANGE }}$	Buck, EM0, BB_IPK setting	0	-	31	
		Buck, EM2, BB_IPK_EM2 setting	0	-	7	
VDDB input voltage range	$\mathrm{V}_{\mathrm{VDDB}}$	Wired buck with LDO, input supply connected to VDDB pin	1.8	-	5.5	V
VDDA input voltage range	$V_{\text {VDDA }}$	Low-voltage circuitry unused	-	GND	-	V
Output programmable voltage range	V VoA_RANGE	EFP0104	1.7	-	3.3	V
Default output voltage	$V_{\text {VOA }}$	EFP0104	-	1.86	-	V
Output load current ${ }^{1}$	ILOAD_MAX	Wired buck, BB_IPK = 31, EMO, VDDB - VOA > 660 mV , TON_MAX=72,3	150	-	-	mA
		$\begin{aligned} & \text { Wired buck, BB_IPK_EM2 = 7, } \\ & \text { EM2, VDDB - VOA > } 660 \mathrm{mV} \text {, } \\ & \text { TON_MAX }=7^{2,3} \end{aligned}$	20	-	-	mA
		Wired buck w/LDO, VOC in parallel with VOA, EMO, LDOC_IGAIN $=15, \mathrm{BB}$ _IPK $=31, \mathrm{VDDB}-\mathrm{VOA}$ $>365 \mathrm{mV}$, TON_MAX $=7^{2,3}$	150	-	-	mA
		Wired buck w/LDO, VOC in parallel with VOA, EM2, LDOC_IGAIN $=15$, BB_IPK $=7$, VDDB $-\mathrm{VOA}>$ 365 mV , TON_MAX=72,3	20	-	-	mA
LDO Dropout voltage (headroom required to ensure output in regulation)	V ${ }_{\text {DROPOUT }}$	VOC in parallel with VOA, LDO mode, $\mathrm{VOA}=1.8 \mathrm{~V}$, $\mathrm{ILOAD}=10$ mA	-	20	-	mV
		VOC in parallel with VOA, LDO mode, $\mathrm{VOA}=1.8 \mathrm{~V}, \mathrm{ILOAD}=150$ mA	-	-	365	mV
Output voltage accuracy	V VOA_ACC	Buck, EM0, $1.8 \mathrm{~V} \leq \mathrm{VOA} \leq 3.3 \mathrm{~V}$, $B B _I P K=10, I L O A D=25 \mathrm{~mA}^{3}$	-	1.41	77.6	mV
		Buck, EM2, $1.8 \mathrm{~V} \leq \mathrm{VOA} \leq 3.3 \mathrm{~V}$, BB_IPK $=10$, ILOAD $=25 \mathrm{~mA}^{3}$	-	6.8	94.7	mV
		VOC in parallel with VOA, LDO mode, EMO, VOC $\geq 1.8 \mathrm{~V}$, ILOAD $=25 \mathrm{~mA}^{3}$	-	-1.8	48.7	mV
		VOC in parallel with VOA, LDO mode, EM2, VOC $\geq 1.8 \mathrm{~V}$, ILOAD $=25 \mathrm{~mA}^{3}$	-	6.6	69.8	mV
Load Transient	V VOA_LOADPULL	Buck mode, Load changes between 10 and $80 \mathrm{~mA}^{3}$	-	3.32	-	mV
		VOC in parallel with VOA, LDO mode, Load changes between 10 and $80 \mathrm{~mA}^{3}$	-	0.774	-	mV

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
DC line regulation	LINE $_{\text {REG }}$	Buck mode ${ }^{3}$	VOC in parallel with VOA, LDO mode, 2	-	1.40	-

Table 5.6. EFP0104 VOB Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
VDDB Input voltage range	$\mathrm{V}_{\mathrm{VDDB}}$		1.8	-	5.5	V
Default output voltage	$\mathrm{V}_{\mathrm{VOB}}$	EFP0104	-	Disabled	-	V
Output programmable voltage range	VVob_RANGE	EFP0104, DCDC Disabled at Startup ${ }^{1}$	0.8	-	1.26	V
Output load current ${ }^{2}$	ILOAD_MAX	$\begin{aligned} & \text { Buck-only, BK_IPK = 31, EMO, } \\ & \text { VDDB - VOB > } 660 \mathrm{mV} \text {, } \\ & \text { TON_MAX }=7^{3}, 4,5 \end{aligned}$	141	-	-	mA
		Buck-only, BK_IPK_EM2 = 7, EM2, VDDB - VOB > 660 mV , TON_MAX $=73,4,5$	20	-	-	mA
		Buck w/LDO, BK_IPK = 31, LDOB_IGAIN = 15, EM0, VDDB VOB > 365 mV , TON_MAX = $73,4,5$	150	-	-	mA
		Buck w/LDO, BK_IPK_EM2 = 7, LDOB_IGAIN = 15, EM2, VDDB VOB > 365 mV , TON_MAX = $73,4,5$	20	-	-	mA
		LDO-only, LDOB_IGAIN $=15$, EM0, VDDB - VOB > $365 \mathrm{mV}^{4}, 5$	150	-	-	mA
		LDO-only, LDOB_IGAIN = 15, EM2, VDDB - VOB > $365 \mathrm{mV}^{4}, 5$	20	-	-	mA
Output voltage accuracy	V VOB_ACC	$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	4.1	17.9	mV
		$\begin{aligned} & \mathrm{EMO}, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	-0.6	14.7	mV
LDO dropout voltage (headroom required to ensure output in regulation)	V ${ }_{\text {DROPOUT }}$	$\begin{aligned} & \mathrm{LDO} \text { mode, } \mathrm{VOB}=1.2 \mathrm{~V}, \mathrm{ILOAD}= \\ & 10 \mathrm{~mA} \end{aligned}$	-	20	-	mV
Load transient	V VOB_LOADPULL	Buck-only, ILOAD changes between 10 and $80 \mathrm{~mA}^{4}$	-	0.454	-	mV
		Buck with LDO in parallel, ILOAD changes between 10 and $80 \mathrm{~mA}^{4}$	-	2.339	-	mV
DC line regulation	$\mathrm{LINE}_{\text {REG }}$	Buck-only or Buck w/LDO ${ }^{4}$	-	1.76	-	mV / V
		LDO mode ${ }^{4}$	-	1.32	-	mV / V
DC load regulation	LOAD REG	Buck-only or Buck w/LDO ${ }^{4}$	-	0.07	-	$\mathrm{mV} / \mathrm{mA}$
		LDO mode ${ }^{4}$	-	0.116	-	$\mathrm{mV} / \mathrm{mA}$
Output voltage range, coarse regulator enabled ${ }^{1}$	V VOB_COARSE	EM4, 0uA < ILOAD < 100uA	1.69	-	$\begin{gathered} \text { MIN(3.40, } \\ \text { VDDB) } \end{gathered}$	V
Output load current, coarse regulator enabled ${ }^{1}$	ILoAd_COARSE	EM4, VOB output within V_VOB_COARSE range	-	-	100	$\mu \mathrm{A}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Nominal inductor (20\% Tolerance)	$L_{\text {DCDCB }}$	VDDB - VOB > 3.0V	-	3.3	-	$\mu \mathrm{H}$
		VDDB - VOB $\leq 3.0 \mathrm{~V}$	-	2.2	-	$\mu \mathrm{H}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{6}$	TSTART	Wired buck / wired buck with LDO (VOB), BK_IPK = 18, ILOAD = 10 mA	-	193	-	$\mu \mathrm{s}$

Note:

1. For certain OPN variants, VOB is expected to drive an output in the range of 1.1 V to 1.2 V , and the maximum output voltage of the converter is internally limited to 1.26 V . Any programmed VOB_EM0_V or VOB_EM2_V values that would result in a voltage higher than 1.26 V will not affect the output voltage. In addition, for these OPNs, the VOB coarse regulator and bypass functionality is disabled in hardware (i.e., setting the enable bit has no effect).
2. Maximum output load current is determined by first measuring the output voltage with a 5 mA load. Maximum output load is the the maximum load at which measured output voltage is no lower than 50 mV from the original 5 mA load measured voltage.
3. With less than 660 mV of headroom in buck mode, Ton will be limited and the desired peak current can never be reached, resulting in a reduction in output load current. BK_TON_MAX = 7 (2030ns) supports the lowest headroom.
4. Specifications assume minimum headroom requirement has been met if (i.e., VDDB - VOB $>660 \mathrm{mV}$, if operating in buck DCDC mode, or VDDB - VOB $>365 \mathrm{mV}$, if operating in LDO mode).
5. In Single-Cell Boost (EFP0108) and Boost Bootstrap (EFP0111) configurations, the DCDC B input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output current of DCDC B will also be limited by the maximum output current of the DCDC A converter.
6. For converters enabled by default, total startup time will be Tstart + Tboot (found in the General Operating Conditions table)

5.1.3.4 EFP0107

Unless stated otherwise, all parameters in the EFP0107 electrical specifications tables are specified under the following conditions:

- $\mathrm{VDDB}=3.0 \mathrm{~V}$
- $\mathrm{VDDA}=\mathrm{GND}$
- $\mathrm{VOA}=3.3 \mathrm{~V}$
- $\mathrm{VOB}=1.2 \mathrm{~V}$
- $\mathrm{VOC}=1.8 \mathrm{~V}$
- $\mathrm{VIO}=1.8 \mathrm{~V}$
- BB_IPK = 10, BB_IPK_NOADJ = 0, BB_IRI_CON = 0, BB_IPK_BOOST = 0

Table 5.7. EFP0107 VOA Output
$\left.\begin{array}{|l|l|l|l|l|c|c|}\hline \text { Parameter } & \text { Symbol } & \text { Test Condition } & \text { Min } & \text { Typ } & \text { Max } \\ \hline \begin{array}{l}\text { Allowed programmable peak } \\ \text { current setting }\end{array} & \text { IPK_ADJ_RANGE }\end{array} \begin{array}{l}\text { Buck/Boost, EMO, VOA } \leq 3.3 \mathrm{~V}, \\ \text { BB_IPK setting }\end{array}\right)$

Table 5.8. EFP0107 VOB Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
VDDB Input voltage range	$\mathrm{V}_{\mathrm{VDDB}}$		1.8	-	5.5	V
Default output voltage	$\mathrm{V}_{\text {VOB }}$	EFP0107	-	Disabled	-	V
Output programmable voltage range	VVOB_RANGE	EFP0107, DCDC Disabled at Startup ${ }^{1}$	0.8	-	1.26	V
Output load current ${ }^{2}$	LLOAD_MAX	$\begin{aligned} & \text { Buck-only, BK_IPK = 31, EMO, } \\ & \text { VDDB - VOB > 660mV, } \\ & \text { TON_MAX }=7^{3,4,5} \end{aligned}$	141	-	-	mA
		$\begin{aligned} & \text { Buck-only, BK_IPK_EM2 = 7, } \\ & \text { EM2, VDDB - VOB > } 660 \mathrm{mV} \text {, } \\ & \text { TON_MAX }=7^{3}, 4,5 \end{aligned}$	20	-	-	mA
		Buck w/LDO, BK_IPK = 31, LDOB_IGAIN = 15, EMO, VDDB VOB > 365 mV , TON_MAX = $73,4,5$	150	-	-	mA
		Buck w/LDO, BK_IPK_EM2 = 7, LDOB_IGAIN = 15, EM2, VDDB VOB > 365 mV , TON_MAX = $7^{3}, 4,5$	20	-	-	mA
		LDO-only, LDOB_IGAIN = 15, EM0, VDDB - VOB > $365 \mathrm{mV}^{4}, 5$	150	-	-	mA
		LDO-only, LDOB_IGAIN = 15, EM2, VDDB - VOB > $365 \mathrm{mV}^{4}, 5$	20	-	-	mA
Output voltage accuracy	V VOB_ACC	$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOB} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	20.9	89.2	mV
		$\begin{aligned} & \mathrm{EMO}, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	-0.6	14.7	mV
		$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	4.1	17.9	mV
		$\begin{aligned} & \mathrm{EMO}, \mathrm{VOB} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	15.9	74.9	mV
LDO dropout voltage (headroom required to ensure output in regulation)	V ${ }_{\text {DROPOUT }}$	$\begin{aligned} & \mathrm{LDO} \text { mode, } \mathrm{VOB}=1.8 \mathrm{~V}, \mathrm{ILOAD}= \\ & 10 \mathrm{~mA} \end{aligned}$	-	20	-	mV
		$\begin{aligned} & \text { LDO mode, } \mathrm{VOB}=1.8 \mathrm{~V}, \mathrm{ILOAD}= \\ & 150 \mathrm{~mA} \end{aligned}$	-	-	365	mV
		$\begin{aligned} & \mathrm{LDO} \text { mode, } \mathrm{VOB}=1.2 \mathrm{~V}, \mathrm{ILOAD}= \\ & 10 \mathrm{~mA} \end{aligned}$	-	20	-	mV
Load transient	V $\mathrm{VOB}_{\text {_LOADPULL }}$	Buck-only, ILOAD changes between 10 and $80 \mathrm{~mA}^{4}$	-	0.454	-	mV
		Buck with LDO in parallel, ILOAD changes between 10 and $80 \mathrm{~mA}^{4}$	-	2.339	-	mV
DC line regulation	$\mathrm{LINE}_{\text {REG }}$	Buck-only or Buck w/LDO ${ }^{4}$	-	1.76	-	mV / V
		LDO mode ${ }^{4}$	-	1.32	-	mV / V

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
DC load regulation	$L^{\text {LOAD }}$ REG	Buck-only or Buck w/LDO ${ }^{4}$	-	0.07	-	$\mathrm{mV} / \mathrm{mA}$
		LDO mode ${ }^{4}$	-	0.116	-	$\mathrm{mV} / \mathrm{mA}$
Output voltage range, coarse regulator enabled ${ }^{1}$	V Vob_COARSE	EM4, 0uA < ILOAD < 100uA	1.69	-	$\begin{gathered} \mathrm{MIN}(3.40, \\ \mathrm{VDDB}) \end{gathered}$	V
Output load current, coarse regulator enabled ${ }^{1}$	ILOAD_COARSE	EM4, VOB output within V_VOB_COARSE range	-	-	100	$\mu \mathrm{A}$
Nominal inductor (20% Tolerance)	$L_{\text {DCDCB }}$	VDDB - VOB > 3.0V	-	3.3	-	$\mu \mathrm{H}$
		VDDB - VOB $\leq 3.0 \mathrm{~V}$	-	2.2	-	$\mu \mathrm{H}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{6}$	TStART	Wired buck / wired buck with LDO (VOB), BK_IPK = 18, ILOAD = 10 mA	-	193	-	$\mu \mathrm{s}$

Note:

1. For certain OPN variants, VOB is expected to drive an output in the range of 1.1 V to 1.2 V , and the maximum output voltage of the converter is internally limited to 1.26 V . Any programmed VOB_EM0_V or VOB_EM2_V values that would result in a voltage higher than 1.26 V will not affect the output voltage. In addition, for these OPNs, the VOB coarse regulator and bypass functionality is disabled in hardware (i.e., setting the enable bit has no effect).
2. Maximum output load current is determined by first measuring the output voltage with a 5 mA load. Maximum output load is the the maximum load at which measured output voltage is no lower than 50 mV from the original 5 mA load measured voltage.
3. With less than 660 mV of headroom in buck mode, Ton will be limited and the desired peak current can never be reached, resulting in a reduction in output load current. BK_TON_MAX $=7$ (2030ns) supports the lowest headroom.
4. Specifications assume minimum headroom requirement has been met if (i.e., VDDB - VOB $>660 \mathrm{mV}$, if operating in buck DCDC mode, or VDDB - VOB > 365mV, if operating in LDO mode).
5. In Single-Cell Boost (EFP0108) and Boost Bootstrap (EFP0111) configurations, the DCDC B input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output current of DCDC B will also be limited by the maximum output current of the DCDC A converter.
6. For converters enabled by default, total startup time will be Tstart + Tboot (found in the General Operating Conditions table)

Table 5.9. EFP0107 VOC Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
VDDB input voltage range	$\mathrm{V}_{\text {VDDB }}$		1.8	-	5.5	V
Output programmable range	V Voc_Range		1.7	-	3.3	V
Default output voltage	V Voc	EFP0107	-	1.87	-	V
Output load current ${ }^{1}$	LLOAD_MAX	$\begin{aligned} & \text { EM2, LDOC_IGAIN = 15, VDDB- } \\ & \text { VOC }>365 \mathrm{mV}^{2}, 3 \end{aligned}$	20	-	-	mA
		$\begin{aligned} & \text { EMO, LDOC_IGAIN = 15, VDDB- } \\ & \text { VOC }>365 \mathrm{~m}^{2}, 3 \end{aligned}$	150	-	-	mA
LDO dropout voltage (headroom required to ensure output in regulation)	V ${ }_{\text {DROPOUT }}$	$\mathrm{VOC}=1.8 \mathrm{~V}, \mathrm{ILOAD}=10 \mathrm{~mA}$	-	20	-	mV
		$\mathrm{VOC}=1.8 \mathrm{~V}, \mathrm{ILOAD}=150 \mathrm{~mA}$	-	-	365	mV
Output voltage accuracy	V VOC_ACC	$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOC} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{2} \end{aligned}$	-	6.6	69.8	mV
		$\begin{aligned} & \mathrm{EMO}, \mathrm{VOC} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{2} \end{aligned}$	-	-1.8	48.7	mV
Load Transient	VVOC_LOADPULL	Load changes between 10 and 80 $m A^{2}$	-	0.774	-	mV
DC line regulation	LINE REG	2	-	2.6	-	mV / V
DC load regulation	LOAD ${ }_{\text {REG }}$	2	-	0.13	-	$\mathrm{mV} / \mathrm{mA}$
Output voltage range, coarse Regulator enabled	V Voc_COARSE	EM4, $0 \mu \mathrm{~A}<\mathrm{ILOAD}<100 \mu \mathrm{~A}$	1.69	-	$\begin{gathered} \text { MIN(3.40, } \\ \text { VDDB) } \end{gathered}$	V
Output load current, coarse Regulator enabled	ILOAD_COARSE	EM4, VOC output within V_VOC_COARSE range	-	-	100	$\mu \mathrm{A}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{4}$	TSTART	LDO C (VOC), LDOC_IGAIN = $12, \mathrm{ILOAD}=10 \mathrm{~mA}$	-	259	-	$\mu \mathrm{s}$
Note: 1. Maximum output load cur the maximum load at whi 2. Specifications assume m 3. In Single-Cell Boost and the DCDC A output (VOA) of the DCDC A converter 4. For converters enabled b	rent is determined ch measured output inimum LDO dropo Boost Bootstrap co). Therefore, the m default, total star	by first measuring the output voltage at voltage is no lower than 50 mV from ut requirement has been met (i.e., VD nfigurations (e.g., EFP0108 and EFP maximum output current of LDO C will tup time will be Tstart + Tboot (found	h a 5 origi - VO 11), th so be the Ge	d. Maxim A load 55 mV) C input by the Operatin	output load sured volta DB) is pow mum outpu onditions ta	is the e. red by current be)

5.1.3.5 EFP0108

Unless stated otherwise, all parameters in the EFP0108 electrical specifications tables are specified under the following conditions:

- $\mathrm{VBOOST}=\mathrm{VDDA}=1.5 \mathrm{~V}$
- $\mathrm{VOA}=\mathrm{VDDB}=3.0 \mathrm{~V}$
- $\mathrm{VOB}=1.2 \mathrm{~V}$
- $\mathrm{VOC}=1.8 \mathrm{~V}$
- $\mathrm{VIO}=3.0 \mathrm{~V}$
- BB_IPK = 10, BB_IPK_NOADJ = 0, BB_IRI_CON = 0, BB_IPK_BOOST = 0

Note: VBOOST is the voltage applied to the inductor attached to the LA2 pin in Boost modes

Table 5.10. EFP0108 VOA Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Allowed programmable peak current setting	IPK ${ }_{\text {ADJ_RANGE }}$	Wired boost, EMO, VOA $\leq 3.3 \mathrm{~V}$, BB_IPK setting	0	-	31	
		Wired boost, EM2, VOA $\leq 3.3 \mathrm{~V}$, BB_IPK_EM2 setting	0	-	7	
VBOOST input voltage range ${ }^{1}$	VVboost	EFP0108	0.8	-	1.8	V
VDDA input voltage range	$V_{\text {VDDA }}$	Single-cell boost (at startup), input supply connected to VDDA pin	0.85	-	1.8	V
		Single-cell boost (after startup), Input supply connected to VDDA pin	0.80	-	1.8	V
Output programmable voltage range	VVoA_RANGE	EFP0108	1.7	-	3.3	V
Default output voltage	$V_{\text {VOA }}$	EFP0108	-	1.86	-	V
Output load current ${ }^{2}$	ILOAD_MAX	Single-cell boost, BB_IPK = 31, EM0, $0.8 \mathrm{~V}<=$ VDDA/VBOOST \leq $1.8 \mathrm{~V}, \mathrm{VOA}=1.8 \mathrm{~V}$	31.7	-	-	mA
		Single-cell boost, BB_IPK_EM2 = 2, EM2, 0.8V < = VDDA/VBOOST $\leq 1.8 \mathrm{~V}, \mathrm{VOA}=1.8 \mathrm{~V}$	20	-	-	mA
		Single-cell boost, BB_IPK = 31, EM0, 1.0V < = VDDA/VBOOST \leq $1.8 \mathrm{~V}, \mathrm{VOA}=1.8 \mathrm{~V}$	59.6	-	-	mA
		Single-cell boost, BB_IPK_EM2 = 2, EM2, 1.0V < = VDDA/VBOOST $\leq 1.8 \mathrm{~V}, \mathrm{VOA}=1.8 \mathrm{~V}$	20	-	-	mA
		Single-cell boost, BB_IPK = 31, EM0, $0.8 \mathrm{~V}<=$ VDDA/VBOOST \leq $1.8 \mathrm{~V}, \mathrm{VOA}=3.0 \mathrm{~V}$	26.4	-	-	mA
		Single-cell boost, BB_IPK_EM2 = 2, EM2, 0.8 V < = VDDA/VBOOST $\leq 1.8 \mathrm{~V}, \mathrm{VOA}=3.0 \mathrm{~V}$	20	-	-	mA
		Single-cell boost, BB_IPK = 31, EM0, 1.0V $<=$ VDDA/VBOOST \leq $1.8 \mathrm{~V}, \mathrm{VOA}=3.0 \mathrm{~V}$	43.7	-	-	mA
		Single-cell boost, BB_IPK_EM2 = 2, EM2, 1.0V < = VDDA/VBOOST $\leq 1.8 \mathrm{~V}, \mathrm{VOA}=3.0 \mathrm{~V}$	20	-	-	mA
Output voltage accuracy	V VOA_ACC	Boost mode, EM0, $1.8 \mathrm{~V} \leq \mathrm{VOA} \leq$ $3.3 \mathrm{~V}, \mathrm{BB}$ _IPK $=10$, $\mathrm{ILOAD}=25$ mA	-	1.41	77.6	mV
		Boost mode, EM2, $1.8 \mathrm{~V} \leq \mathrm{VOA} \leq$ $3.3 \mathrm{~V}, \mathrm{BB}$ _IPK $=10$, ILOAD $=25$ mA	-	6.8	94.7	mV
DC line regulation	LINE ${ }_{\text {REG }}$	Boost mode	-	1.44	-	mV / V
DC load regulation	LOAD ${ }_{\text {REG }}$	Boost mode	-	0.181	-	$\mathrm{mV} / \mathrm{mA}$

$\left.\begin{array}{|l|l|l|l|c|c|c|}\hline \text { Parameter } & \text { Symbol } & \text { Test Condition } & \text { Min } & \text { Typ } & \text { Max } & \text { Unit } \\ \hline \begin{array}{l}\text { Nominal inductor, 20\% toler- } \\ \text { ance }\end{array} & \text { L LDCDCA } & \text { Wired boost configurations } & - & 2.2 & - & \mu \mathrm{H} \\ \hline \begin{array}{l}\text { Startup time from output en- } \\ \text { abled to output within 1\% of } \\ \text { final target voltage }\end{array} & \text { TSTART } & \begin{array}{l}\text { Single-cell boost (VOA), BB_IPK } \\ =10, \text { ILOAD }=10 \mathrm{~mA}\end{array} & - & 184 & - & \mu \mathrm{s} \\ \hline \text { Note: } \\ \text { 1. VBOOST is the voltage applied to the inductor attached to the LA2 pin in boost modes. } \\ \text { 2. Maximum output load current is determined by first measuring the output voltage with a 5mA load. Maximum output load is the } \\ \text { maximum load at which measured output voltage is no lower than 50mV from the original 5mA load measured voltage. }\end{array}\right\}$

Table 5.11. EFP0108 VOB Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
VDDB Input voltage range	$\mathrm{V}_{\mathrm{VDDB}}$	VDDB powered from VOA output ${ }^{1}$	1.8	-	VOA	V
Output programmable voltage range	V Vob_RANGE	EFP0108, DCDC Disabled at Startup ${ }^{2,3}$	0.8	-	1.26	V
Default output voltage	$\mathrm{V}_{\mathrm{VOB}}$	EFP0108	-	Disabled	-	V
Output load current ${ }^{4}$	ILOAD_MAX	$\begin{aligned} & \text { Buck-only, BK_IPK = 31, EMO, } \\ & \text { VDDB - VOB > 660mV, } \\ & \text { TON_MAX }=7^{5}, 6,1 \end{aligned}$	141	-	-	mA
		$\begin{aligned} & \text { Buck-only, BK_IPK_EM2 = 7, } \\ & \text { EM2, VDDB - VOB > } 660 \mathrm{mV} \text {, } \\ & \text { TON_MAX }=7^{5}, 6,1 \end{aligned}$	20	-	-	mA
		Buck w/LDO, BK_IPK = 31, LDOB_IGAIN = 15, EM0, VDDB VOB > 365 mV , TON_MAX = 75, ${ }^{6,1}$	150	-	-	mA
		Buck w/LDO, BK_IPK_EM2 = 7, LDOB_IGAIN = 15, EM2, VDDB VOB > 365 mV , TON_MAX = $75,6,1$	20	-	-	mA
		LDO-only, LDOB_IGAIN = 15, EMO, VDDB - VOB > $365 \mathrm{mV}^{6}$, ${ }^{1}$	150	-	-	mA
		LDO-only, LDOB_IGAIN = 15, EM2, VDDB - VOB > $365 \mathrm{mV}^{6}, 1$	20	-	-	mA
Output voltage accuracy	V VOB_ACC	$\begin{aligned} & \mathrm{EMO}, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{6} \end{aligned}$	-	-0.6	14.7	mV
		$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{6} \end{aligned}$	-	4.1	17.9	mV
LDO dropout voltage (headroom required to ensure output in regulation)	V ${ }_{\text {DROPOUT }}$	$\begin{aligned} & \mathrm{LDO} \text { mode, } \mathrm{VOB}=1.2 \mathrm{~V}, \mathrm{ILOAD}= \\ & 10 \mathrm{~mA} \end{aligned}$	-	20	-	mV
Load transient	V VOB_LOADPULL	Buck-only, ILOAD changes between 10 and $80 \mathrm{~mA}^{6}$	-	0.454	-	mV
		Buck with LDO in parallel, ILOAD changes between 10 and $80 \mathrm{~mA}^{6}$	-	2.339	-	mV
DC line regulation	LINE REG	Buck-only or Buck w/LDO ${ }^{6}$	-	1.76	-	mV / V
		LDO mode ${ }^{6}$	-	1.32	-	mV / V
DC load regulation	LOAD ${ }_{\text {REG }}$	Buck-only or Buck w/LDO ${ }^{6}$	-	0.07	-	$\mathrm{mV} / \mathrm{mA}$
		LDO mode ${ }^{6}$	-	0.116	-	$\mathrm{mV} / \mathrm{mA}$
Nominal inductor (20\% Tolerance)	$L_{\text {DCDCB }}$	VDDB - VOB > 3.0V	-	3.3	-	$\mu \mathrm{H}$
		VDDB - VOB $\leq 3.0 \mathrm{~V}$	-	2.2	-	$\mu \mathrm{H}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{7}$	TStart	Wired buck / wired buck with LDO (VOB), BK_IPK = 18, ILOAD = 10 mA	-	193	-	$\mu \mathrm{s}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit

Note:

1. In Single-Cell Boost (EFP0108) and Boost Bootstrap (EFP0111) configurations, the DCDC B input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output current of DCDC B will also be limited by the maximum output current of the DCDC A converter.
2. For certain OPN variants, VOB is expected to drive an output in the range of 1.1 V to 1.2 V , and the maximum output voltage of the converter is internally limited to 1.26 V . Any programmed VOB_EMO_V or VOB_EM2_V values that would result in a voltage higher than 1.26 V will not affect the output voltage. In addition, for these OPNs, the VOB coarse regulator and bypass functionality is disabled in hardware (i.e., setting the enable bit has no effect).
3. In Single-Cell Boost (EFP0108) and Boost Bootstrap (EFP0111) configurations, the DCDC B input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output voltage of the VOB converter will be limited by the VOA output voltage.
4. Maximum output load current is determined by first measuring the output voltage with a 5 mA load. Maximum output load is the the maximum load at which measured output voltage is no lower than 50 mV from the original 5 mA load measured voltage.
5. With less than 660 mV of headroom in buck mode, Ton will be limited and the desired peak current can never be reached, resulting in a reduction in output load current. BK_TON_MAX $=7$ (2030ns) supports the lowest headroom.
6. Specifications assume minimum headroom requirement has been met if (i.e., VDDB - VOB $>660 \mathrm{mV}$, if operating in buck DCDC mode, or VDDB - VOB $>365 \mathrm{mV}$, if operating in LDO mode).
7. For converters enabled by default, total startup time will be Tstart + Tboot (found in the General Operating Conditions table)

Table 5.12. EFP0108 VOC Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
VDDB input voltage range	$\mathrm{V}_{\mathrm{VDDB}}$	VDDB powered from VOA output ${ }^{1}$	1.8	-	VOA	V
Output programmable range	VVoc_RANGE	VDDB powered from VOA output ${ }^{2}$	1.7	-	3.3	V
Default output voltage	V Voc	EFP0108	-	Disabled	-	V
Output load current ${ }^{3}$	LLOAD_MAX	$\begin{aligned} & \text { EMO, LDOC_IGAIN }=15 \text {, VDDB- } \\ & \text { VOC }>365 \mathrm{mV}^{4}, 1 \end{aligned}$	150	-	-	mA
		$\begin{aligned} & \text { EM2, LDOC_IGAIN = 15, VDDB- } \\ & \text { VOC >365mV4,1 } \end{aligned}$	20	-	-	mA
LDO dropout voltage (headroom required to ensure output in regulation)	V ${ }_{\text {DROPOUT }}$	$\mathrm{VOC}=1.8 \mathrm{~V}, \mathrm{ILOAD}=10 \mathrm{~mA}$	-	20	-	mV
		$\mathrm{VOC}=1.8 \mathrm{~V}, \mathrm{ILOAD}=150 \mathrm{~mA}$	-	-	365	mV
Output voltage accuracy	V VOC_ACC	$\begin{aligned} & \mathrm{EMO}, \mathrm{VOC} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	-1.8	48.7	mV
		$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOC} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	6.6	69.8	mV
Load Transient	V VOC_LOADPULL	Load changes between 10 and 80 mA^{4}	-	0.774	-	mV
DC line regulation	$\mathrm{LINE}_{\text {REG }}$	4	-	2.6	-	mV / V
DC load regulation	LOAD ${ }_{\text {REG }}$	4	-	0.13	-	$\mathrm{mV} / \mathrm{mA}$
Output voltage range, coarse Regulator enabled	V VOC_COARSE	EM4, $0 \mu \mathrm{~A}<\mathrm{ILOAD}<100 \mu \mathrm{~A}$	1.69	-	$\operatorname{MIN}(3.40$, VDDB)	V
Output load current, coarse Regulator enabled	ILOAD_COARSE	EM4, VOC output within V_VOC_COARSE range	-	-	100	$\mu \mathrm{A}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{5}$	TSTART	LDO C (VOC), LDOC_IGAIN = 12, ILOAD $=10 \mathrm{~mA}$	-	259	-	$\mu \mathrm{s}$

Note:

1. In Single-Cell Boost and Boost Bootstrap configurations (e.g., EFP0108 and EFP0111), the LDO C input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output current of LDO C will also be limited by the maximum output current of the DCDC A converter.
2. In Single-Cell Boost (EFP0108) and Boost Bootstrap (EFP0111) configurations, the LDO C input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output voltage at VOC will be limited by the VOA output voltage.
3. Maximum output load current is determined by first measuring the output voltage with a 5 mA load. Maximum output load is the the maximum load at which measured output voltage is no lower than 50 mV from the original 5 mA load measured voltage.
4. Specifications assume minimum LDO dropout requirement has been met (i.e., VDDB - VOC > 365mV)
5. For converters enabled by default, total startup time will be Tstart + Tboot (found in the General Operating Conditions table)

5.1.3.6 EFP0109 / EFP0110

Note: EFP0109 \& EFP0110 are nearly identical devices, differing primarily in the VOB configuration at and after startup:

- On EFP0109, the VOB converter output is enabled to 1.858 V at startup and may be programmed after startup in the range 0.8 V to 3.3 V
- On EFP0110, the VOB converter output is disabled by default, and may be programmed after startup to an output in the range 0.8 V to 1.26 V

Unless stated otherwise, all parameters in the EFP0109 \& EFP0110 electrical specifications tables are specified under the following conditions:

- $\mathrm{VDDB}=\mathrm{VBOOST}=3.0 \mathrm{~V}$
- $\mathrm{VDDA}=\mathrm{GND}$
- $\mathrm{VOA}=3.3 \mathrm{~V}$
- $\mathrm{VOB}=1.2 \mathrm{~V}($ EFP0110) / 1.8 V (EFP0109)
- $\mathrm{VOC}=1.8 \mathrm{~V}$
- $\mathrm{VIO}=1.8 \mathrm{~V}$
- $B B_{-} I P K=12, B B _I P K _N O A D J=0, B B _I R I _C O N=0, B B _I P K _B O O S T=27$

Note: VBOOST is the voltage applied to the inductor attached to the LA2 pin in Boost modes

Table 5.13. EFP0109/EFP0110 VOA Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Allowed programmable peak current setting	IPK ${ }_{\text {ADJ_RANGE }}$	Wired boost, EMO, VOA $\leq 3.3 \mathrm{~V}$, BB_IPK setting	0	-	31	
		Wired boost, EM2, VOA $\leq 3.3 \mathrm{~V}$, BB_IPK_EM2 setting	0	-	7	
VBOOST input voltage range ${ }^{1}$	$\mathrm{V}_{\text {VBoost }}$	EFP0109 / EFP0110	1.8	-	$\begin{gathered} \operatorname{MIN}(3.6, \\ \operatorname{VOA}+0.3) \end{gathered}$	V
VDDA input voltage range	$V_{\text {VDDA }}$	Low-voltage circuitry unused	-	GND	-	V
VDDB input voltage range	$V_{\text {VDDB }}$	Wired boost, input supply connected to VDDB pin ${ }^{2}$	1.8	-	3.6	V
Output programmable voltage range	VVOA_RANGE	EFP0109 / EFP0110	1.7	-	3.3	V
Default output voltage	$V_{\text {VOA }}$	EFP0109 / EFP0110	-	3.327	-	V
Output load current ${ }^{3}$	LLOAD_MAX	Wired boost, BB_IPK = 31, EM0, $\mathrm{VOA}=3.0 \mathrm{~V}$	90	-	-	mA
		Wired boost, BB_IPK_EM2 = 3, EM2, VOA=3.0V	20	-	-	mA
Output voltage accuracy	V VOA_ACC	Boost mode, EM0, 1.8V $\leq \mathrm{VOA} \leq$ $3.3 \mathrm{~V}, \mathrm{BB}$ _IPK $=10, \mathrm{ILOAD}=25$ mA	-	1.41	77.6	mV
		Boost mode, EM2, 1.8V $\leq \mathrm{VOA} \leq$ $3.3 \mathrm{~V}, \mathrm{BB}$ _IPK $=10$, $\mathrm{ILOAD}=25$ mA	-	6.8	94.7	mV
DC line regulation	LINE REG	Boost mode	-	1.44	-	mV / V
DC load regulation	LOAD ${ }_{\text {REG }}$	Boost mode	-	0.181	-	$\mathrm{mV} / \mathrm{mA}$
Output voltage range, Coarse Regulator enabled	V VOA_COARSE	EM4, 0uA < ILOAD < 100uA	1.69	-	$\begin{gathered} \mathrm{MIN}(3.40, \\ \text { VDDB) } \end{gathered}$	V
Output load current, Coarse Regulator enabled	ILOAD_COARSE	EM4, VOA output within V_VOA_COARSE range	-	-	100	$\mu \mathrm{A}$
Nominal inductor, 20\% tolerance	$L_{\text {DCDCA }}$	Wired boost configurations	-	2.2	-	$\mu \mathrm{H}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{4}$	TStART	$\begin{aligned} & \text { Boost (VOA), BB_IPK = 10, } \\ & \text { VDDB }=1.8 \mathrm{~V}, \mathrm{VOA}=3.3 \mathrm{~V}, \\ & \mathrm{ILOAD}=10 \mathrm{~mA} \end{aligned}$	-	97	-	$\mu \mathrm{s}$

Note:

1. VBOOST is the voltage applied to the inductor attached to the LA2 pin in boost modes.
2. It is permissible for the input voltage to exceed the output voltage by $\sim 0.3 \mathrm{~V}$ in boost configurations, using the Toff max limiting feature. Refer to the boost mode Toff maximum limiting section of the datasheet.
3. Maximum output load current is determined by first measuring the output voltage with a 5 mA load. Maximum output load is the maximum load at which measured output voltage is no lower than 50 mV from the original 5 mA load measured voltage.
4. For converters enabled by default, total startup time will be Tstart + Tboot (found in the General Operating Conditions table)

Table 5.14. EFP0109/EFP0110 VOB Output

Parameter	Symbol	Test Condition	Min	Tур	Max	Unit
VDDB Input voltage range	$\mathrm{V}_{\text {VDDB }}$		1.8	-	5.5	V
Output programmable voltage range	V Vob_RANGE	EFP0109, DCDC Enabled at Startup	0.8	-	3.3	V
		EFP0110, DCDC Disabled at Startup ${ }^{1}$	0.8	-	1.26	V
Default output voltage	$\mathrm{V}_{\mathrm{VOB}}$	EFP0110	-	Disabled	-	V
		EFP0109	-	1.858	-	V
Output load current ${ }^{2}$	LLOAD_MAX	Buck-only, BK_IPK = 31, EMO, VDDB - VOB > 660 mV , TON_MAX $=73,4,5$	141	-	-	mA
		Buck-only, BK_IPK_EM2 = 7, EM2, VDDB - VOB > 660 mV , TON_MAX $=73,4,5$	20	-	-	mA
		Buck w/LDO, BK_IPK = 31, LDOB_IGAIN = 15, EM0, VDDB VOB > 365 mV , TON_MAX = $73,4,5$	150	-	-	mA
		Buck w/LDO, BK_IPK_EM2 = 7, LDOB_IGAIN = 15, EM2, VDDB VOB > 365 mV , TON_MAX = $73,4,5$	20	-	-	mA
		LDO-only, LDOB_IGAIN $=15$, EM0, VDDB - VOB > $365 \mathrm{mV}^{4}, 5$	150	-	-	mA
		LDO-only, LDOB_IGAIN $=15$, EM2, VDDB - VOB > $365 \mathrm{mV}^{4}, 5$	20	-	-	mA
Output voltage accuracy	V ${ }_{\text {VOB_ACC }}$	$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	4.1	17.9	mV
		$\begin{aligned} & \mathrm{EMO}, \mathrm{VOB} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	15.9	74.9	mV
		$\begin{aligned} & \mathrm{EMO}, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	-0.6	14.7	mV
		$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOB} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	20.9	89.2	mV
LDO dropout voltage (headroom required to ensure output in regulation)	V DROPOUT	$\begin{aligned} & \mathrm{LDO} \text { mode, } \mathrm{VOB}=1.8 \mathrm{~V} \text {, } \mathrm{ILOAD}= \\ & 10 \mathrm{~mA} \end{aligned}$	-	20	-	mV
		$\begin{aligned} & \mathrm{LDO} \text { mode, } \mathrm{VOB}=1.8 \mathrm{~V} \text {, } \mathrm{ILOAD}= \\ & 150 \mathrm{~mA} \end{aligned}$	-	-	365	mV
		$\begin{aligned} & \mathrm{LDO} \text { mode, } \mathrm{VOB}=1.2 \mathrm{~V} \text {, } \mathrm{ILOAD}= \\ & 10 \mathrm{~mA} \end{aligned}$	-	20	-	mV
Load transient	V VOb_LOADPULL	Buck-only, ILOAD changes between 10 and $80 \mathrm{~mA}^{4}$	-	0.454	-	mV
		Buck with LDO in parallel, ILOAD changes between 10 and $80 \mathrm{~mA}^{4}$	-	2.339	-	mV

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
DC line regulation	LINE ${ }_{\text {REG }}$	Buck-only or Buck w/LDO4	-	1.76	-	mV / V
		LDO mode ${ }^{4}$	-	1.32	-	mV / V
DC load regulation	LOAD ${ }_{\text {REG }}$	Buck-only or Buck w/LDO4	-	0.07	-	$\mathrm{mV} / \mathrm{mA}$
		LDO mode ${ }^{4}$	-	0.116	-	$\mathrm{mV} / \mathrm{mA}$
Output voltage range, coarse regulator enabled ${ }^{1}$	V Vob_COARSE	EM4, 0uA < ILOAD < 100uA	1.69	-	$\begin{gathered} \text { MIN(3.40, } \\ \text { VDDB) } \end{gathered}$	V
Output load current, coarse regulator enabled ${ }^{1}$	ILOAD_COARSE	EM4, VOB output within V_VOB_COARSE range	-	-	100	$\mu \mathrm{A}$
Nominal inductor (20\% Tolerance)	$L_{\text {DCDCB }}$	VDDB - VOB > 3.0V	-	3.3	-	$\mu \mathrm{H}$
		$\mathrm{VDDB}-\mathrm{VOB} \leq 3.0 \mathrm{~V}$	-	2.2	-	$\mu \mathrm{H}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{6}$	TSTART	Wired buck / wired buck with LDO (VOB), BK_IPK = 18, ILOAD = 10 mA	-	193	-	$\mu \mathrm{s}$

Note:

1. For certain OPN variants, VOB is expected to drive an output in the range of 1.1 V to 1.2 V , and the maximum output voltage of the converter is internally limited to 1.26 V . Any programmed VOB_EMO_V or VOB_EM2_V values that would result in a voltage higher than 1.26 V will not affect the output voltage. In addition, for these OPNs, the VOB coarse regulator and bypass functionality is disabled in hardware (i.e., setting the enable bit has no effect).
2. Maximum output load current is determined by first measuring the output voltage with a 5 mA load. Maximum output load is the the maximum load at which measured output voltage is no lower than 50 mV from the original 5 mA load measured voltage.
3. With less than 660 mV of headroom in buck mode, Ton will be limited and the desired peak current can never be reached, resulting in a reduction in output load current. BK_TON_MAX = 7 (2030ns) supports the lowest headroom.
4. Specifications assume minimum headroom requirement has been met if (i.e., VDDB - VOB $>660 \mathrm{mV}$, if operating in buck DCDC mode, or VDDB - VOB $>365 \mathrm{mV}$, if operating in LDO mode).
5. In Single-Cell Boost (EFPO108) and Boost Bootstrap (EFP0111) configurations, the DCDC B input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output current of DCDC B will also be limited by the maximum output current of the DCDC A converter.
6. For converters enabled by default, total startup time will be Tstart + Tboot (found in the General Operating Conditions table)

Table 5.15. EFP0109/EFP0110 VOC Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
VDDB input voltage range	$V_{\text {VDDB }}$		1.8	-	5.5	V
Output programmable range	VVoc_RANGE		1.7	-	3.3	V
Default output voltage	V Voc	EFP0109	-	1.87	-	V
		EFP0110	-	1.87	-	V
Output load current ${ }^{1}$	ILOAD_MAX	$\begin{aligned} & \text { EMO, LDOC_IGAIN = 15, VDDB- } \\ & \text { VOC }>365 \mathrm{mV}^{2}, 3 \end{aligned}$	150	-	-	mA
		$\begin{aligned} & \text { EM2, LDOC_IGAIN = 15, VDDB- } \\ & \text { VOC > 365mV²,3 } \end{aligned}$	20	-	-	mA
LDO dropout voltage (headroom required to ensure output in regulation)	$V_{\text {DROPOUT }}$	$\mathrm{VOC}=1.8 \mathrm{~V}, \mathrm{ILOAD}=10 \mathrm{~mA}$	-	20	-	mV
		$\mathrm{VOC}=1.8 \mathrm{~V}, \mathrm{ILOAD}=150 \mathrm{~mA}$	-	-	365	mV
Output voltage accuracy	V Voc_ACC	$\begin{aligned} & \mathrm{EMO}, \mathrm{VOC} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{2} \end{aligned}$	-	-1.8	48.7	mV
		$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOC} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{2} \end{aligned}$	-	6.6	69.8	mV
Load Transient	V VOC_LOADPULL	Load changes between 10 and 80 mA^{2}	-	0.774	-	mV
DC line regulation	LINE ${ }_{\text {REG }}$	2	-	2.6	-	mV / V
DC load regulation	LOAD ${ }_{\text {REG }}$	2	-	0.13	-	$\mathrm{mV} / \mathrm{mA}$
Output voltage range, coarse Regulator enabled	VVoc_COARSE	EM4, $0 \mu \mathrm{~A}<\mathrm{ILOAD}<100 \mu \mathrm{~A}$	1.69	-	$\begin{gathered} \operatorname{MIN}(3.40, \\ \text { VDDB }) \end{gathered}$	V
Output load current, coarse Regulator enabled	ILOAD_COARSE	EM4, VOC output within V_VOC_COARSE range	-	-	100	$\mu \mathrm{A}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{4}$	TStart	LDO C (VOC), LDOC_IGAIN = $12, \mathrm{ILOAD}=10 \mathrm{~mA}$	-	259	-	$\mu \mathrm{s}$

Note:

1. Maximum output load current is determined by first measuring the output voltage with a 5 mA load. Maximum output load is the the maximum load at which measured output voltage is no lower than 50 mV from the original 5 mA load measured voltage.
2. Specifications assume minimum LDO dropout requirement has been met (i.e., VDDB - VOC $>365 \mathrm{mV}$)
3. In Single-Cell Boost and Boost Bootstrap configurations (e.g., EFP0108 and EFP0111), the LDO C input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output current of LDO C will also be limited by the maximum output current of the DCDC A converter.
4. For converters enabled by default, total startup time will be Tstart + Tboot (found in the General Operating Conditions table)

5.1.3.7 EFP0111

Unless stated otherwise, all parameters in the EFP0111 electrical specifications tables are specified under the following conditions:

- VBOOST = 3.0 V
- VDDA = GND
- $\mathrm{VOA}=\mathrm{VDDB}=5.2 \mathrm{~V}$
- $\mathrm{VOB}=3.0 \mathrm{~V}$
- $\mathrm{VOC}=1.8 \mathrm{~V}$
- $\mathrm{VIO}=1.8 \mathrm{~V}$
- BB_IPK = 10, BB_IPK_NOADJ = 1, BB_IRI_CON = 14, BB_IPK_BOOST = 39

Note: VBOOST is the voltage applied to the inductor attached to the LA2 pin in Boost modes

Table 5.16. EFP0111 VOA Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Allowed programmable peak current setting	IPK ${ }_{\text {ADJ_RANGE }}$	Wired boost, EMO, VOA $\leq 3.3 \mathrm{~V}$, BB_IPK setting	0	-	31	
		Wired boost, EM2, VOA $\leq 3.3 \mathrm{~V}$, BB_IPK_EM2 setting	0	-	7	
		Wired boost, EM0, VOA > 3.3V, BB_IPK setting	0	-	15	
		Wired boost, EM2, VOA > 3.3V, BB_IPK_EM2 setting	0	-	3	
VBOOST input voltage range ${ }^{1}$	$V_{\text {VBoost }}$	EFP0111, Boost bootstrap (at startup) ${ }^{2}$	2.5	-	$\begin{gathered} \operatorname{MIN}(5.5, \\ \operatorname{VOA}+0.3) \end{gathered}$	V
		EFP0111, Boost bootstrap (after startup) ${ }^{2}$	1.5	-	$\begin{gathered} \operatorname{MIN}(5.5, \\ \operatorname{VOA}+0.3) \end{gathered}$	V
VDDA input voltage range	$V_{\text {VDDA }}$	Low-voltage circuitry unused	-	GND	-	V
Output programmable voltage range	VVOA_RANGE	EFP0111	1.7	-	5.22	V
Default output voltage	$\mathrm{V}_{\mathrm{VOA}}$	EFP0111	-	5.22	-	V
Output load current ${ }^{3}$	ILOAD_MAX	$\begin{aligned} & \text { Boost bootstrap, BB_IPK=15, } \\ & \text { EMO, VOA }=5.2 \mathrm{~V}^{4} \end{aligned}$	2.49	-	-	mA
		Boost bootstrap, BB_IPK_EM2=3, EM2, VOA=5.2V4	0.37	-	-	mA
Output voltage accuracy	V VOA_ACC	Boost Bootstrap, EM0, 1.8V \leq VOA < 5.0V, BB_IPK = 10	-	1.41	77.6	mV
		Boost Bootstrap, EM2, 1.8V \leq VOA < 5.0V, BB_IPK = 10	-	6.8	94.7	mV
		Boost Bootstrap, EM0, VOA \geq $5.0 \mathrm{~V}, \mathrm{BB}$ _IPK = 10	-	14.7	84.3	mV
		Boost Bootstrap, EM2, VOA \geq $5.0 \mathrm{~V}, \mathrm{BB}$ _IPK $=10$	-	17.6	111	mV
DC line regulation	LINE REG	Boost mode	-	1.44	-	mV / V
DC load regulation	LOAD REG	Boost mode	-	0.181	-	$\mathrm{mV} / \mathrm{mA}$
Output voltage range, Coarse Regulator enabled	V VOA_COARSE	EM4, OuA < ILOAD < 100uA	1.69	-	$\begin{gathered} \mathrm{MIN}(3.40, \\ \text { VDDB) } \end{gathered}$	V
Output load current, Coarse Regulator enabled	ILOAD_COARSE	EM4, VOA output within V_VOA_COARSE range	-	-	100	$\mu \mathrm{A}$
Nominal inductor, 20\% tolerance	L ${ }_{\text {dCDCA }}$	Wired boost configurations	-	2.2	-	$\mu \mathrm{H}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{5}$	TStart	Boost bootstrap (VOA), BB_IPK = 10	-	2603	-	$\mu \mathrm{s}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit

Note:

1. VBOOST is the voltage applied to the inductor attached to the LA2 pin in boost modes.
2. It is permissible for the input voltage to exceed the output voltage by $\sim 0.3 \mathrm{~V}$ in boost configurations, using the Toff max limiting feature. Refer to the boost mode Toff maximum limiting section of the datasheet.
3. Maximum output load current is determined by first measuring the output voltage with a 1.25 mA load. Maximum output load is the maximum load at which measured output voltage is no lower than 50 mV from the original 1.25 mA load measured voltage.
4. In boost bootstrap mode, the DCDC current limit is enabled and VOA will not be tightly regulated. Peak load currents are expected to be primarily sourced from the VOA output capacitor, and the VOA output is expected to droop under load and allowed sufficient time to recover before the next peak load is applied. The maximum output current specification can be interpreted here as the maximum allowed DC current before the VOA output may begin to droop, or as the maximum allowed average current.
5. For converters enabled by default, total startup time will be Tstart + Tboot (found in the General Operating Conditions table)

Table 5.17. EFP0111 VOB Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
VDDB Input voltage range	$\mathrm{V}_{\mathrm{VDDB}}$	VDDB powered from VOA output ${ }^{1}$	1.8	-	VOA	V
Output programmable voltage range	V Vob_RANGE	EFP0111, DCDC Enabled at Startup ${ }^{2}$	0.8	-	3.3	V
Default output voltage	$\mathrm{V}_{\mathrm{VOB}}$	EFP0111	-	1.858	-	V
Output load current ${ }^{3}$	LLOAD_MAX	$\begin{aligned} & \text { Buck-only, BK_IPK = 31, EMO, } \\ & \text { VDDB - VOB > 660mV, } \\ & \text { TON_MAX }=7^{4}, 5,1 \end{aligned}$	141	-	-	mA
		$\begin{aligned} & \text { Buck-only, BK_IPK_EM2 = 7, } \\ & \text { EM2, VDDB - VOB > } 660 \mathrm{mV} \text {, } \\ & \text { TON_MAX }=7^{4}, 5,1 \end{aligned}$	20	-	-	mA
		Buck w/LDO, BK_IPK = 31, LDOB_IGAIN = 15, EM0, VDDB VOB > 365 mV , TON_MAX = 74, ${ }^{4}, 1$	150	-	-	mA
		Buck w/LDO, BK_IPK_EM2 = 7, LDOB_IGAIN = 15, EM2, VDDB VOB > 365 mV , TON_MAX = 74,5,1	20	-	-	mA
		LDO-only, LDOB_IGAIN = 15, EMO, VDDB - VOB > $365 \mathrm{mV}^{5}, 1$	150	-	-	mA
		LDO-only, LDOB_IGAIN = 15, EM2, VDDB - VOB > $365 \mathrm{mV}^{5}, 1$	20	-	-	mA
Output voltage accuracy	V VOB_ACC	$\begin{aligned} & \mathrm{EMO}, \mathrm{VOB} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{5} \end{aligned}$	-	15.9	74.9	mV
		$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOB} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{5} \end{aligned}$	-	20.9	89.2	mV
		$\begin{aligned} & \mathrm{EMO}, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{5} \end{aligned}$	-	-0.6	14.7	mV
		$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{5} \end{aligned}$	-	4.1	17.9	mV
LDO dropout voltage (headroom required to ensure output in regulation)	$V_{\text {DROPOUT }}$	$\begin{aligned} & \mathrm{LDO} \text { mode, } \mathrm{VOB}=1.8 \mathrm{~V}, \mathrm{ILOAD}= \\ & 10 \mathrm{~mA} \end{aligned}$	-	20	-	mV
		$\begin{aligned} & \mathrm{LDO} \text { mode, } \mathrm{VOB}=1.8 \mathrm{~V}, \mathrm{ILOAD}= \\ & 150 \mathrm{~mA} \end{aligned}$	-	-	365	mV
Load transient	V VOB_LOADPULL	Buck-only, ILOAD changes between 10 and $80 \mathrm{~mA}^{5}$	-	0.454	-	mV
		Buck with LDO in parallel, ILOAD changes between 10 and $80 \mathrm{~mA}^{5}$	-	2.339	-	mV
DC line regulation	$\mathrm{LINE}_{\text {REG }}$	Buck-only or Buck w/LDO ${ }^{5}$	-	1.76	-	mV / V
		LDO mode ${ }^{5}$	-	1.32	-	mV / V
DC load regulation	LOAD REG	Buck-only or Buck w/LDO ${ }^{5}$	-	0.07	-	$\mathrm{mV} / \mathrm{mA}$
		LDO mode ${ }^{5}$	-	0.116	-	$\mathrm{mV} / \mathrm{mA}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output voltage range, coarse regulator enabled ${ }^{6}$	V Vob_COARSE	EM4, OuA < ILOAD < 100uA	1.69	-	$\begin{gathered} \operatorname{MIN}(3.40, \\ \text { VDDB }) \end{gathered}$	V
Output load current, coarse regulator enabled ${ }^{6}$	lload_COARSE	EM4, VOB output within V_VOB_COARSE range	-	-	100	$\mu \mathrm{A}$
Nominal inductor (20\% Tolerance)	$L_{\text {DCDCB }}$	VDDB - VOB > 3.0V	-	3.3	-	$\mu \mathrm{H}$
		$\mathrm{VDDB}-\mathrm{VOB} \leq 3.0 \mathrm{~V}$	-	2.2	-	$\mu \mathrm{H}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{7}$	TStart	Wired buck / wired buck with LDO (VOB), BK_IPK = 18, ILOAD = 10 mA	-	193	-	$\mu \mathrm{s}$

Note:

1. In Single-Cell Boost (EFP0108) and Boost Bootstrap (EFP0111) configurations, the DCDC B input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output current of DCDC B will also be limited by the maximum output current of the DCDC A converter.
2. In Single-Cell Boost (EFP0108) and Boost Bootstrap (EFP0111) configurations, the DCDC B input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output voltage of the VOB converter will be limited by the VOA output voltage.
3. Maximum output load current is determined by first measuring the output voltage with a 5 mA load. Maximum output load is the the maximum load at which measured output voltage is no lower than 50 mV from the original 5 mA load measured voltage.
4. With less than 660 mV of headroom in buck mode, Ton will be limited and the desired peak current can never be reached, resulting in a reduction in output load current. BK_TON_MAX = 7 (2030ns) supports the lowest headroom.
5. Specifications assume minimum headroom requirement has been met if (i.e., VDDB - VOB $>660 \mathrm{mV}$, if operating in buck DCDC mode, or VDDB - VOB $>365 \mathrm{mV}$, if operating in LDO mode).
6. For certain OPN variants, VOB is expected to drive an output in the range of 1.1 V to 1.2 V , and the maximum output voltage of the converter is internally limited to 1.26 V . Any programmed VOB_EMO_V or VOB_EM2_V values that would result in a voltage higher than 1.26 V will not affect the output voltage. In addition, for these OPNs, the VOB coarse regulator and bypass functionality is disabled in hardware (i.e., setting the enable bit has no effect).
7. For converters enabled by default, total startup time will be Tstart + Tboot (found in the General Operating Conditions table)

Table 5.18. EFP0111 VOC Output

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
VDDB input voltage range	$\mathrm{V}_{\mathrm{VDDB}}$	VDDB powered from VOA output ${ }^{1}$	1.8	-	VOA	V
Output programmable range	VVoc_RANGE	VDDB powered from VOA output ${ }^{2}$	1.7	-	3.3	V
Default output voltage	V Voc	EFP0111	-	1.87	-	V
Output load current ${ }^{3}$	LLOAD_MAX	$\begin{aligned} & \text { EMO, LDOC_IGAIN }=15 \text {, VDDB- } \\ & \text { VOC }>365 \mathrm{mV}^{4}, 1 \end{aligned}$	150	-	-	mA
		$\begin{aligned} & \text { EM2, LDOC_IGAIN = 15, VDDB- } \\ & \text { VOC >365mV4,1 } \end{aligned}$	20	-	-	mA
LDO dropout voltage (headroom required to ensure output in regulation)	V ${ }_{\text {DROPOUT }}$	$\mathrm{VOC}=1.8 \mathrm{~V}, \mathrm{ILOAD}=10 \mathrm{~mA}$	-	20	-	mV
		$\mathrm{VOC}=1.8 \mathrm{~V}, \mathrm{ILOAD}=150 \mathrm{~mA}$	-	-	365	mV
Output voltage accuracy	V VOC_ACC	$\begin{aligned} & \mathrm{EMO}, \mathrm{VOC} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	-1.8	48.7	mV
		$\begin{aligned} & \mathrm{EM} 2, \mathrm{VOC} \geq 1.8 \mathrm{~V}, \mathrm{ILOAD}=25 \\ & \mathrm{~mA}^{4} \end{aligned}$	-	6.6	69.8	mV
Load Transient	V VOC_LOADPULL	Load changes between 10 and 80 mA^{4}	-	0.774	-	mV
DC line regulation	$\mathrm{LINE}_{\text {REG }}$	4	-	2.6	-	mV / V
DC load regulation	LOAD ${ }_{\text {REG }}$	4	-	0.13	-	$\mathrm{mV} / \mathrm{mA}$
Output voltage range, coarse Regulator enabled	V VOC_COARSE	EM4, $0 \mu \mathrm{~A}<\mathrm{ILOAD}<100 \mu \mathrm{~A}$	1.69	-	$\operatorname{MIN}(3.40$, VDDB)	V
Output load current, coarse Regulator enabled	ILOAD_COARSE	EM4, VOC output within V_VOC_COARSE range	-	-	100	$\mu \mathrm{A}$
Startup time from output enabled to output within 1% of final target voltage ${ }^{5}$	TSTART	LDO C (VOC), LDOC_IGAIN = 12, ILOAD $=10 \mathrm{~mA}$	-	259	-	$\mu \mathrm{s}$

Note:

1. In Single-Cell Boost and Boost Bootstrap configurations (e.g., EFP0108 and EFP0111), the LDO C input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output current of LDO C will also be limited by the maximum output current of the DCDC A converter.
2. In Single-Cell Boost (EFP0108) and Boost Bootstrap (EFP0111) configurations, the LDO C input (VDDB) is powered by the DCDC A output (VOA). Therefore, the maximum output voltage at VOC will be limited by the VOA output voltage.
3. Maximum output load current is determined by first measuring the output voltage with a 5 mA load. Maximum output load is the the maximum load at which measured output voltage is no lower than 50 mV from the original 5 mA load measured voltage.
4. Specifications assume minimum LDO dropout requirement has been met (i.e., VDDB - VOC > 365mV)
5. For converters enabled by default, total startup time will be Tstart + Tboot (found in the General Operating Conditions table)

5.2 Typical Performance Curves

Typical performance curves indicate typical characterized performance under the stated conditions.

5.2.1 DCDC A Efficiency

Figure 5.2. Typical DCDC A Buck Efficiency

Figure 5.3. Typical DCDC A Boost Efficiency, VOA=3.3V, NOADJ=0

Figure 5.6. Typical DCDC A Boost Efficiency, VOA=5.2V, NOADJ=0

DCDC A Boost Mode Efficiency, NOADJ=0

Figure 5.9. Typical DCDC A Boost Efficiency, VOA=3.3V, NOADJ=1

Figure 5.12. Typical DCDC A Boost Efficiency, VOA=5.2V, NOADJ=1

DCDC A Boost Mode Efficiency, NOADJ=1

DCDC A Boost Mode Efficiency, NOADJ=1

Figure 5.15. Typical DCDC A Buck/Boost Efficiency, VOA=3.3V

DCDC A Buck/Boost Mode Efficiency, $\mathrm{EMO}, \mathrm{VDDB}=3.6 \mathrm{~V}, \mathrm{VOA}=3.3 \mathrm{~V}, \mathrm{~L}=2.2 \mathrm{uH}$

DCDC A Buck/Boost Mode Efficiency, $\mathrm{EM} 2, \mathrm{VDDB}=2.2 \mathrm{~V}, \mathrm{VOA}=3.3 \mathrm{~V}, \mathrm{~L}=2.2 \mathrm{uH}$

DCDC A Buck/Boost Mode Efficiency, $\mathrm{EM} 2, \mathrm{VDDB}=3.6 \mathrm{~V}, \mathrm{VOA}=3.3 \mathrm{~V}, \mathrm{~L}=2.2 \mathrm{uH}$

5.2.2 DCDC B Efficiency

DCDC B Buck Mode Efficiency $\mathrm{EMO}, \mathrm{VDDB}=3.0 \mathrm{~V}, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{~L}=2.2 \mathrm{uH}$

DCDC B Buck Mode Efficiency $\mathrm{EMO}, \mathrm{VDDB}=2.5 \mathrm{~V}, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{~L}=2.2 \mathrm{uH}$

DCDC B Buck Mode Efficiency $\mathrm{EM} 2, \mathrm{VDDB}=3.0 \mathrm{~V}, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{~L}=2.2 \mathrm{uH}$

DCDC B Buck Mode Efficiency $\mathrm{EM} 2, \mathrm{VDDB}=2.5 \mathrm{~V}, \mathrm{VOB}=1.1 \mathrm{~V}, \mathrm{~L}=2.2 \mathrm{uH}$

Figure 5.8. Typical DCDC B Buck Efficiency

5.2.3 Quiescent Current

Figure 5.9. Typical EMO Quiescent Current vs Temperature vs \# of Outputs Enabled

Figure 5.10. Typical EM2 Quiescent Current vs Temperature vs \# of Outputs Enabled

Figure 5.11. Typical EM4 Quiescent Current vs Temperature vs \# of Outputs Enabled

5.2.4 RDS ON

Figure 5.12. Typical DCDC A Boost Powertrain RDS ON vs Temperature

Figure 5.13. Typical DCDC A Buck Powertrain RDS ON vs Temperature

Figure 5.14. Typical DCDC B Buck Powertrain RDS ON vs Temperature

Figure 5.15. Typical VOASW RDS ON vs Temperature

5.2.5 Short Circuit Current

Figure 5.16. Typical Short Circuit Current vs VDDB

5.2.6 ADC

Figure 5.17. Typical ADC Accuracy vs Temperature

6. Register Definitions

6.1 Register Map

Note: Those registers below with a corresponding OTP Address will have their default values automatically overwritten by OTP-programmed values out of reset. Therefore, the actual values of those registers after reset may differ from the default reset values listed below. The OTP Defaults table shows the expected value of those registers out of reset.

Address	Name	Access	OTP Address	Description
0x00	STATUS_G	read-write	-	Status Flags
0x01	STATUS_V	read-write	-	Status Flags
0x02	STATUS_GM	read-write	-	Status Flag Unmask
0x03	STATUS_VM	read-write	-	Status Flag Unmask
0x04	STATUS_LIVE	read-only	-	Live Status
0x05	DEVREV_ID	read-only	-	Device Information
0x0A	CC_CAL	read-write	-	Coulomb Counting Configuration
0x0B	OTP_ADDR	read-write	-	OTP Write Address
0x0C	OTP_RDATA	read-only	-	OTP Read Address
0x0E	OTP_STATCTRL	varies	-	OTP Control
0x10	CMD	write-only	-	Command
0x12	CC_MODE	read-only	-	Coulomb Counting Configuration
0x13	CCA_MSBY	read-only	-	VOA Coulomb Counter MS Byte
0x14	CCA_LSBY	read-only	-	VOA Coulomb Counter LS Byte
0x15	CCBO_MSBY	read-only	-	VOB EM0 Coulomb Counter MS Byte
0x16	CCB0_LSBY	read-only	-	VOB EM0 Coulomb Counter LS Byte
0x17	CCB2_MSBY	read-only	-	VOB EM2 Coulomb Counter MS Byte
0x18	CCB2_LSBY	read-only	-	VOB EM2 Coulomb Counter LS Byte
0x19	CCC_MSBY	read-only	-	VOC Coulomb Counter MS Byte
$0 \times 1 \mathrm{~A}$	CCC_LSBY	read-only	-	VOC Coulomb Counter LS Byte
0x1B	VDD_AVG_MSN	read-only	-	Average Measured VDDA/VDDB Voltage MS Nibble
0x1C	VDD_AVG_LSBY	read-only	-	Average Measured VDDA/VDDB Voltage LS Byte
0x1D	VDD_MIN_MSN	read-only	-	Minimum Measured VDDA/VDDB Voltage MS Nibble
0x1E	VDD_MIN_LSBY	read-only	-	Minimum Measured VDDA/VDDB Voltage LS Byte
0x1F	VDD_MAX_MSN	read-only	-	Maximum Measured VDDA/VDDB Voltage MS Nibble
0x20	VDD_MAX_LSBY	read-only	-	Maximum Measured VDDA/VDDB Voltage LS Byte
0×21	TEMP_MSN	read-only	-	Measured Temperature MS Nibble
0x22	TEMP_LSBY	read-only	-	Measured Temperature LS Byte
0x23	VOA_SW_STAT	read-only	-	Status
0x40	I2C_CTRL	read-write	0x00	I2C Control
0x41	CC_CTRL	read-write	0x01	Coulomb Counting Control
0×43	EM_CRSREG_CTRL	read-write	0x03	Energy Mode Control

Address	Name	Access	OTP Address	Description
0x49	VOA_V	read-write	0x09	VOA Target Voltage
0x4B	VOC_V	read-write	0x0B	VOC Target Voltage
0x4C	VOB_EM0_V	read-write	0x0C	VOB EM0 Target Voltage
0x4D	VOB_EM2_V	read-write	0x0D	VOB EM2 Target Voltage
0x4E	BIAS_SW	read-write	0x0E	Bias Control
0x4F	BB_IPK	read-write	0x0F	DCDC A Control
0x50	BB_CTRL3	read-write	0x10	DCDC A Control
0x51	BB_CTRL5	read-write	0×11	DCDC A Control
0x52	BB_CTRL6	read-write	0×12	DCDC A Control
0x53	LDOB_CTRL	read-write	0×13	LDO B Control
0x54	LDOC_CTRL	read-write	0x14	LDO C Control
0x55	LDOC_BB_CTRL	read-write	0×15	LDO C / DCDC A Control
0x56	BK_CTRLO	read-write	0x16	DCDC B Control
0x57	BK_CTRL1	read-write	0×17	DCDC B Control
0x58	BK_IPK	read-write	0x18	DCDC B Control
0x59	BK_CTRL2	read-write	0x19	DCDC B Control
0x5C	ADC_CC_CTRL	read-write	0x1C	ADC Control
0x5D	ADC_LIMITS	read-write	0x1D	ADC Limits

6.2 Register Description

6.2.1 STATUS_G

Offset	Bit Position							
0x00	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access								
Name	$\begin{aligned} & 3 \\ & \hline-1 \\ & 0 \\ & \hline- \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & 0 \\ & 0 \\ & \text { N } \\ & \text { U } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ل1 } \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{\llcorner }{\stackrel{\rightharpoonup}{\text { ® }}}$			

Table 6.1. STATUS_G

Bit	Name	Reset	Access	Description
7	VDD_LOW	0	read-write	Status flag indicating VDDB (or VDDA if CC_MODE.SC_MODE=1) has fallen below threshhold programmed in ADC_LIMITS.ADC_V_LIM since last clear. This flag requires ADC_CC_CTRL.ADC_INTERVAL be set to a non-zero value to ensure automatic periodic ADC readings are taken. Note this flag is masked by default - set corresponding bit in the STATUS_GM register to unmask. Can be cleared by writing a "1".
6	CCC_ISDONE	0	read-write	Status flag indicating coloumb counter calibration has completed since last clear. Note this flag is masked by default - set corresponding bit in the STATUS_GM register to unmask. Can be cleared by writing a "1".
5	CC_FULL	0	read-write	Status flag indicating any coloumb counter is over its programmed threshold (set by CC_CTRL>CC_THRSH) since last clear. Note this flag is masked by default - set corresponding bit in the STATUS_GM register to unmask. Can be cleared by writing a " 1 ".
4	VOLT_FAULT	0	read-write	Status flag indicating any unmasked assertion of any flag in the STATUS_V register. To minimize firmware overhead, the VOLT_FAULT flag allows firmware to simply read a single status register (STATUS_G) on an IRQ event. Firmware would only need to read the STATUS_V register after determing the STATUS_G.VOLT_FAULT was set. Note this flag is masked by default - set corresponding bit in the STATUS_GM register to unmask. Can be cleared by writing a "1".

$\left.\begin{array}{llll}\hline \text { Bit } & \text { Rame } & \text { Access } & \text { Description }\end{array}\right]$| read-write |
| :--- |

6.2.2 STATUS_V

Offset	Bit Position							
0x01	7	6	5	4	3	2	1	0
Reset			0	0	0	0	0	0
Access								
Name				$\begin{aligned} & 3 \\ & \frac{3}{0} \\ & \frac{1}{\varrho} \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & \frac{1}{\varrho} \\ & \stackrel{1}{8} \end{aligned}$		0 0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 10 \\ & \hline 1 \end{aligned}$

Table 6.2. STATUS_V

Bit	Name	Reset	Access	Description
$7: 6$	RESERVED	0		Reserved. Always write bits to 0.

2 VOC_ISGOOD 0 read-write Status flag indicating the VOC output has transitioned from out of regulation -> into regulation since last clear. Note that if an output voltage target change is very small, the output may never be reported as out of regulation, and this flag will therefore never be set.

It is recommended to use the STATUS_LIVE.VOC_INREG_LIVE bit instead to determine if the output is in regulation.

Can be cleared by writing a "1".

1 VOB_ISGOOD	read-write	Status flag indicating the VOB output has transitioned from out of regulation $->$ into regulation since last clear. Note that when changing the output voltage target, if the change
is very small the output will never be reported as out of		
regulation, and this flag will therefore never be set.		

Bit	Name	Reset	Access	Description
0	VOA_ISGOOD	0	read-write	Status flag indicating the VOA output has transitioned from out of regulation -> into regulation since last clear. Note that when changing the output voltage target, if the change is very small the output will never be reported as out of regulation, and this flag will therefore never be set. It is recommended to use the STATUS_LIVE.VOA_INREG_LIVE bit instead to determine if the output is in regulation. Can be cleared by writing a "1".

6.2.3 STATUS_GM

Offset	Bit Position							
0x02	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	1
Access								
Name				VOLT_FAULT_UNMASK				

Table 6.3. STATUS_GM

Bit	Name	Reset	Access	Description
7	VDD_LOW_UNMASK	0	read-write	Set to unmask VDD Low status flag in the STATUS_G register.
6	CCC_ISDONE_UNMASK	0	read-write	Set to unmask Coulomb Counting Calibration status flag in the STATUS_G register.
5	CC_FULL_UNMASK	0	read-write	Set to unmask Coulomb Counting over Threshold status flag in the STATUS_G register.
4	VOLT_FAULT_UNMASK	0	read-write	Set to unmask Voltage Fault status flag in the STATUS_G register.
3	TEMP_FAULT_UNMASK	0	read-write	Set to unmask Temperature Fault status flag in the STATUS_G register.
2	I2C_FAULT_UNMASK	0	read-write	Set to unmask I2C Fault status flag in the STATUS_G register.
1	OTP_CRC_FAULT_UNMASK	0	read-write	Set to unmask OTP CRC violation status flag in the STATUS_G register.
0	OTP_READ_UNMASK	1	read-write	Set to unmask OTP Read status flag in the STATUS_G register. This bit is set by default - therefore, every power-up and reset deassertion (which causes an OTP read), results in an unmasked flag and the IRQ pin assertion. It is recommended to keep this flag unmasked always to ensure that any EFP01 reset will result in an IRQ to the host MCU, allowing the host MCU to reinitialize any EFP01 registers.

6.2.4 STATUS_VM

Offset	Bit Position							
0x03	7	6	5	4	3	2	1	0
Reset			0	0	0	0	0	0
Access								
Name						Y 00 \vdots 0 0 0 0 0 0 0 0 0	b 0 \sum_{1}^{1} 3 0 0 0 0 0 0 0 0	

Table 6.4. STATUS_VM

Bit	Name	Reset	Access	Description
$7: 6$	RESERVED	0	Reserved. A/ways write bits to 0.	
5	VOC_ISLOW_UNMASK	0	read-write	Set to unmask VOC_ISLOW status flag in the STATUS_V register.
4	VOB_ISLOW_UNMASK	0	read-write	Set to unmask VOB_ISLOW status flag in the STATUS_V register.
3	VOA_ISLOW_UNMASK	0	read-write	Set to unmask VOA_ISLOW status flag in the STATUS_V register.
2	VOC_ISGOOD_UNMASK	0	read-write	Set to unmask VOC_ISGOOD status flag in the STA- TUS_V register.
$\mathbf{1}$	VOB_ISGOOD_UNMASK	0	read-write	Set to unmask VOB_ISGOOD status flag in the STA- TUS_V register.

6．2．5 STATUS＿LIVE

Offset	Bit Position							
0x04	7	6	5	4	3	2	1	0
Reset			0	0	0	0	0	0
Access			$\begin{aligned} & \text { 入े} \\ & \stackrel{\rightharpoonup}{⿺} \\ & \text { ! } \end{aligned}$			$\begin{aligned} & \text { 入̀ } \\ & \stackrel{\rightharpoonup}{⿺} \\ & \stackrel{\rightharpoonup}{\ddot{D}} \end{aligned}$		
Name			$\begin{aligned} & \sum_{J}^{u} \\ & \bigcup_{U}^{\prime} \end{aligned}$	$\begin{aligned} & \sum_{i}^{\omega} \\ & \bar{I}_{1}^{\prime} \\ & \sum_{\dot{H}}^{0} \end{aligned}$	－			

Table 6．5．STATUS＿LIVE

Bit	Name	Reset	Access	Description
$7: 6$	RESERVED	0	Reserved．Always write bits to 0.	

6.2.6 DEVREV_ID

Offset	Bit Position							
0x05	7	6	5	4	3	2	1	0
Reset	0×01			0×19				
Access								
Name	$\begin{aligned} & \text { Q } \\ & \text { ৷ } \\ & \underset{\sim}{u} \end{aligned}$							

Table 6.6. DEVREV_ID

Bit	Name	Reset	Access	Description
$7: 5$	REV_ID	0×01	read-only	EFP01 Revision ID:
				REV D: 0x01
$4: 0$	DEV_ID	0×19	read-only	EFP01 Device ID:
			REV D: 0x19	

6.2.7 CC_CAL

Offset	Bit Position							
0x0A	7	6	5	4	3	2	1	0
Reset	0×00			0×00		0×00		
Access								
Name					$\begin{aligned} & \text { 山 } \\ & \text { ৷ } \\ & \text { u } \end{aligned}$		$\begin{aligned} & \perp \\ & \text { 」 } \\ & \text { - } \end{aligned}$	

Table 6.7. CC_CAL

Bit	Name	Reset	Access	Description
7:5	CC_CAL_NREQ	0x00	read-write	Configures the number of pulses required to be counted during Coulomb counter calibration, where the number of pulses required is $2^{\wedge}\left(C C _C A L _N R E Q+1\right)$. Note that the number of pulses counted during calibration is not affected by the the prescaler (CC_CTRL.CC_PRESCL).
4:3	CCL_SEL	0x00	read-write	Coulomb counter load select. During calibration, the load current selected by CCL_LVL will be applied to the output selected by CCL_SEL.
	Value	Mode		Description
	0	NONE		None
	1	VOA		VOA output
	2	VOB		VOB output
	3	VOC		VOC output
2:0	CCL_LVL	0×00	read-write	Coulomb counter load current source.

For $0<=C C L _L V L<=3$:
CC_Cal_Low = from2sComplement(OTP_CCCAL_LOW) * $1.5725 \mathrm{uA}+0.87 \mathrm{~mA}$

For $4=<$ CCL_LVL $<=7$:
CC_Cal_High = from2sComplement(OTP_CCCAL_HIGH)

* $23.4375 \mathrm{uA}+13.9 \mathrm{~mA}$

Value	Mode	Description
0	440UA	0.440 mA nominal, CC_Cal_Low * 0.5094 calibrated
1	550UA	0.550 mA nominal, CC_Cal_Low * 0.6352 calibrated
2	700UA	0.700 mA nominal, CC_Cal_Low * 0.802 calibrated
3	875UA	0.875 mA nominal, CC_Cal_Low * 1.0 calibrated

Bit	Name	Reset	Access
	4	$7060 U A$	Description
	5	$8830 U A$	7.06 mA nominal, CC_Cal_High * 0.5094 calibrated
	6	11200 UA	8.83 mA nominal, CC_Cal_High * 0.6352 calibrated
7	14000 UA	11.20 mA nominal, CC_Cal_High * 0.802 calibrated	

6.2.8 OTP_ADDR

Offset	Bit Position							
0x0B	7	6	5	4	3	2	1	0
Reset					0x00			
Access								
Name								

Table 6.8. OTP_ADDR

Bit	Name	Reset	Access	Description
7	RESERVED	0		Reserved. Always write bits to 0.
$6: 0$	OTP_ADDR	0×00	read-write	OTP address for reads and writes.

6.2.9 OTP_RDATA

Offset	Bit Position						
0x0C	7	6	5	4	2	1	0
Reset	0x00						
Access							
Name							

Table 6.9. OTP_RDATA

Bit	Name	Reset	Access	Description
$7: 0$	OTP_RDATA	0×00	read-only	OTP data from reading

6.2.10 OTP_STATCTRL

Offset	Bit Position							
0x0E	7	6	5	4	3	2	1	0
Reset					0	0		
Access								
Name					$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			

Table 6.10. OTP_STATCTRL

Bit	Name	Reset	Access	Description
$7: 4$	RESERVED	0		Reserved. Always write bits to 0.
3	OTP_BUSY	0	read-only	OTP state machine busy indicator. Firmware can poll this bit to determine when the OTP read is complete.
2	CMD_READOTP	0	read-write	Read OTP command.
$1: 0$	RESERVED	0		Reserved. Always write bits to 0.

6.2.11 CMD

Offset	Bit Position							
0x10	7	6	5	4	3	2	1	0
Reset	0	0	0	0		0		0
Access								
Name	$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \stackrel{y}{k} \\ & \omega_{1}^{\prime} \\ & 0^{\prime} \end{aligned}$		$\begin{aligned} & \stackrel{\Omega}{\mathrm{J}} \\ & 0 \\ & 0 \end{aligned}$					芻

Table 6.11. CMD

Bit	Name	Reset	Access	Description
7	ADC_START	write-only	Initiates a single ADC VDD Voltage measurement. Before kicking of the ADC measurement, firmware should set ADC_CC_CTRL.ADC_INTERVAL=0 to disable auto- mated ADC operation and clear the ADC output registers.	
6	ADC_CLR	0	write-only	If ADC_CLR is set, the next ADC voltage measurement value (triggered automatically or with ADC_STAT=1) will be loaded directly into all three 12-bit ADC output result registers.
5	CC_CLR	0	write-only	Clear all Coulomb counters (CCA_MSBY, CCA_LSBY, CCBO_MSBY, CCBO_LSBY, CCB2_MSBY, CCB2_LSBY, CCC_MSBY, CCC_LSBY)
4	CC_CAL_STRT	0	write-only	Initiate calibration of Coulomb counter
3	RESERVED	0	weserved. Always write bits to 0 .	

6.2.12 CC_MODE

Offset	Bit Position						
0×12	7	6	5	4	3	2	1
Reset					0	0	
Access							
Name					$\begin{aligned} & \text { 山 } \\ & \stackrel{\text { O }}{\text { O }} \\ & \text { ○ } \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & \stackrel{0}{O} \\ & \sum_{0}^{\prime} \\ & \text { O} \end{aligned}$	

Table 6.12. CC_MODE

Bit	Name	Reset	Access	Description
7:4	RESERVED	0		Reserved. Always write bits to 0 .
3	SC_MODE	0	read-only	Single Cell Mode indicator. Determined at power-on, based on voltage applied to VDDA pin. If a valid voltage is present at the VDDA pin, SC_MODE = 1; otherwise, SC_MODE $=0$.
2	CCB_MODE	0	read-only	Mode of buck converter driving VOB.
				Calibration of the Coulomb counter (\# of Coulombs per pulse, or CPP) depends on the mode of the converter. Calibration involves forcing the current mode (so it's not switching back and forth) for the calibration operation, which yields \# of Coulombs per pulse (CPP) in that mode. If reading the CCB_MODE as part of the counter unloading process shows that the mode has changed, firmware should compute the CPP for the new mode.
				Note that addressing this read-only register causes an inhibition in the updating of the register, to ensure that the capture of the register is not corrupted by changes during the capture process. Users should address these registers only when they are actively reading them.
	Value	Mode		Description
	0	BUCK		Buck Mode
	1	LDOB		LDO Mode

Bit	Name	Reset	Access	Description
1:0	CCA_MODE	0x00	read-only	Mode of buck/boost converter driving VOA.
				Calibration of the Coulomb counter (\# of Coulombs per pulse, or CPP) depends on the mode of the converter. Calibration involves forcing the current mode (so it's not switching back and forth) for the calibration operation, which yields \# of Coulombs per pulse (CPP) in that mode. If reading the CCA_MODE as part of the counter unloading process shows that the mode has changed, firmware should compute the CPP for the new mode.
				Note that addressing this read-only register causes an inhibition in the updating of the register, to ensure that the capture of the register is not corrupted by changes during the capture process. Users should address these registers only when they are actively reading them.
	Value	Mode		Description
	0	BUCK		Buck Mode
	1	AUTO		Autonomous Buck/Boost Mode
	2	BOOST		Boost Mode
	3	LDO		LDO C Parallel Mode

6.2.13 CCA_MSBY

Table 6.13. CCA_MSBY

Bit	Name	Reset	Access	Description
7:0	CCA_MSBY	0x00	read-only	Most significant byte of Coulomb counter value for VOA. Each count represents a number of PFM pulses, determined by the prescaler setting (CC_CTRL.CC_PRESCL).
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register. Because this can result in some small amount of missed Coulomb counter counts, users should address these registers only when they are actively reading them.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.

6.2.14 CCA_LSBY

Table 6.14. CCA_LSBY

Bit	Name	Reset	Access	Description
7:0	CCA_LSBY	0x00	read-only	Least significant byte of Coulomb counter for VOA. Each count represents a number of PFM pulses, determined by the prescaler setting (CC_CTRL.CC_PRESCL).
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register. Because this can result in some small amount of missed Coulomb counter counts, users should address these registers only when they are actively reading them.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.

6.2.15 CCB0_MSBY

Offset	Bit Position						
0x15	7	6	5	4	2	1	0
Reset	0x00						
Access							
Name	$\begin{aligned} & \text { خ} \\ & \text { N } \\ & \sum_{0}^{N} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						

Table 6.15. CCB0_MSBY

Bit	Name	Reset	Access	Description
7:0	CCBO_MSBY	0x00	read-only	Most significant byte of Coulomb counter for VOB in EMO. Each count represents a number of PFM pulses, determined by the prescaler setting (CC_CTRL.CC_PRESCL).
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register. Because this can result in some small amount of missed Coulomb counter counts, users should address these registers only when they are actively reading them.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.

6.2.16 CCB0_LSBY

Offset	Bit Position							
0x16	7	6	5	4	3	2	1	0
Reset	0×00							
Access								
Name	$\begin{aligned} & \text { خo } \\ & \text { © } \\ & \text { 1 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$							

Table 6.16. CCBO_LSBY

Bit	Name	Reset	Access	Description
7:0	CCBO_LSBY	0x00	read-only	Least significant byte of Coulomb counter for VOB in EMO. Each count represents a number of PFM pulses, determined by the prescaler setting (CC_CTRL.CC_PRESCL).
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register. Because this can result in some small amount of missed Coulomb counter counts, users should address these registers only when they are actively reading them.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.

6.2.17 CCB2_MSBY

Offset	Bit Position						
0x17	7	6	5	4	2	1	0
Reset	0x00						
Access							
Name							

Table 6.17. CCB2_MSBY

Bit	Name	Reset	Access	Description
7:0	CCB2_MSBY	0x00	read-only	Most significant byte of Coulomb counter for VOB in EM2. Each count represents a number of PFM pulses, determined by the prescaler setting (CC_CTRL.CC_PRESCL).
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register. Because this can result in some small amount of missed Coulomb counter counts, users should address these registers only when they are actively reading them.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.

6.2.18 CCB2_LSBY

Table 6.18. CCB2_LSBY

Bit	Name	Reset	Access	Description
7:0	CCB2_LSBY	0x00	read-only	Least significant byte of Coulomb counter for VOB in EM2. Each count represents a number of PFM pulses, determined by the prescaler setting (CC_CTRL.CC_PRESCL).
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register. Because this can result in some small amount of missed Coulomb counter counts, users should address these registers only when they are actively reading them.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.

6.2.19 CCC_MSBY

Offset	Bit Position							
0x19	7	6	5	4	3	2	1	0
Reset	0x00							
Access								
Name	$\begin{aligned} & \text { 产 } \\ & \sum_{0}^{\infty} \\ & 0 \\ & 0 \end{aligned}$							

Table 6.19. CCC_MSBY

Bit	Name	Reset	Access	Description
7:0	CCC_MSBY	0x00	read-only	Most significant byte of Coulomb counter for VOC in LDOC stand-alone mode. Each count represents a number of PFM pulses, determined by the prescaler setting (CC_CTRL.CC_PRESCL).

Note that during the calibratin of all 3 Coulomb Counters, the CCC counter is used for counting the 10 MHz clock cycles that occur during the calibration event. Until the next subsequent CC_CLR event, reading the CCC_MSBY and CCC_LSBY registers returns the 16-bit result from the 10 MHz counting operation. To preserve any existing count in the CCC counter, firmware should read and store the CCC registers before initiating a Coulomb Counter calibration event.

Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register. Because this can result in some small amount of missed Coulomb counter counts, users should address these registers only when they are actively reading them.

To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.

6.2.20 CCC_LSBY

Offset	Bit Position							
0x1A	7	6	5	4	3	2	1	0
Reset	0x00							
Access								
Name	$\begin{aligned} & \grave{\vdots} \\ & \text { en } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$							

Table 6.20. CCC_LSBY

| Bit | Name | Reset | Access |
| :--- | :--- | :--- | :--- | Description | 7:0 | CCC_LSBY |
| :--- | :--- |

Note that during the calibratin of all 3 Coulomb Counters, the CCC counter is used for counting the 10 MHz clock cycles that occur during the calibration event. Until the next subsequent CC_CLR event, reading the CCC_MSBY and CCC_LSBY registers returns the 16-bit result from the 10 MHz counting operation. To preserve any existing count in the CCC counter, firmware should read and store the CCC registers before initiating a Coulomb Counter calibration event.

Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register. Because this can result in some small amount of missed Coulomb counter counts, users should address these registers only when they are actively reading them.

To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.

6.2.21 VDD_AVG_MSN

Offset	Bit Position							
0x1B	7	6	5	4	3	2	1	0
Reset								
Access								
Name								

Table 6.21. VDD_AVG_MSN

| Bit | Name | Reset | Access |
| :--- | :--- | :--- | :--- | Description | Reserved. Always write bits to 0. |
| :--- | :--- |

6.2.22 VDD_AVG_LSBY

Table 6.22. VDD_AVG_LSBY

Bit	Name	Reset	Access	Description
7:0	VDD_AVG_LSBY	0x00	read-only	Least significant byte of measured VDDA or VDDB pin IIR low-pass filtered average voltage since last clear. The time constant of the IIR filter is set by ADC_CC_CTRL.ADC_IIR_TAU. The VDDA pin will be measured only if a supply is present on that pin (i.e., CC_MODE.SC_MODE=1), otherwise the VDDB pin is
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.
				$\begin{aligned} & \text { VDDB }(m V)=\left(\left(V D D _x x x _M S N \ll 8\right)+V D D _x x x _L S B Y\right) \times \\ & 1.49 \end{aligned}$
				$\begin{aligned} & \text { VDDA }(m V)=\left(\left(V D D_{-} x x x _M S N \ll 8\right)+V D D_{-} x x x _L S B Y\right) \times \\ & 1.01 \end{aligned}$

6.2.23 VDD_MIN_MSN

Offset	Bit Position							
0x1D	7	6	5	4	3	2	1	0
Reset								
Access								
Name								

Table 6.23. VDD_MIN_MSN

Bit	Name	Reset	Access	Description
7:4	RESERVED	0		Reserved. Always write bits to 0 .
3:0	VDD_MIN_MSN	0x00	read-only	Most significant nibble of measured VDDA or VDDB voltage min since last clear. The VDDA pin will be measured only if a supply is present on that pin (i.e., CC_MODE.SC_MODE=1), otherwise the VDDB pin is measured.
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.
				$\begin{aligned} & \text { VDDB }(m V)=\left(\left(V D D_{-} x x x _M S N \ll 8\right)+V D D_{-} x x x _L S B Y\right) \times \\ & 1.49 \end{aligned}$
				$\begin{aligned} & \text { VDDA }(m V)=\left(\left(V D D_{-} x x x _M S N \ll 8\right)+V D D_{-} x x x _L S B Y\right) \times \\ & 1.01 \end{aligned}$

6.2.24 VDD_MIN_LSBY

Offset	Bit Position							
0x1E	7	6	5	4	3	2	1	0
Reset	0x00							
Access								
Name								

Table 6.24. VDD_MIN_LSBY

Bit	Name	Reset	Access	Description
7:0	VDD_MIN_LSBY	0x00	read-only	Least significant byte of measured VDDA or VDDB voltage min since last clear. The VDDA pin will be measured only if a supply is present on that pin (i.e., CC_MODE.SC_MODE=1), otherwise the VDDB pin is measured.
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.
				$\begin{aligned} & \text { VDDB }(m V)=\left(\left(V D D_{-} x x x _M S N \ll 8\right)+\text { VDD_xxx_LSBY }\right) \times \\ & 1.49 \end{aligned}$
				$\begin{aligned} & \text { VDDA }(m V)=\left(\left(V D D_{-} x x x_{-M S N \ll 8)}^{1.01}\right.\right. \\ & \text { +VDD_xxx_LSBY }) \times \end{aligned}$

6.2.25 VDD_MAX_MSN

Offset	Bit Position							
0x1F	7	6	5	4	3	2	1	0
Reset							0x00	
Access								
Name								

Table 6.25. VDD_MAX_MSN

| Bit | Name | Reset | Access |
| :--- | :--- | :--- | :--- | Description | Reserved. Always write bits to 0. |
| :--- | :--- |

6.2.26 VDD_MAX_LSBY

Offset	Bit Position						
0x20	7	6	5	4	2	1	0
Reset	0x00						
Access							
Name							

Table 6.26. VDD_MAX_LSBY

Bit	Name	Reset	Access	Description
7:0	VDD_MAX_LSBY	0x00	read-only	Least significant byte of measured VDDA or VDDB voltage max since last clear. The VDDA pin will be measured only if a supply is present on that pin (i.e., CC_MODE.SC_MODE=1), otherwise the VDDB pin is measured.
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.
				$\begin{aligned} & \text { VDDB }(m V)=\left(\left(V D D _x x x _M S N \ll 8\right)+V D D _x x x _L S B Y\right) \times \\ & 1.49 \end{aligned}$
				$\begin{aligned} & \text { VDDA }(m V)=\left(\left(V D D_{-} x x x _M S N \ll 8\right)+V D D_{-} x x x _L S B Y\right) \times \\ & 1.01 \end{aligned}$

6.2.27 TEMP_MSN

Offset	Bit Position						
0x21	7	6	5	4	3	2	0
Reset					0×00		
Access							
Name							

Table 6.27. TEMP_MSN

| Bit | Name | Reset | Access |
| :--- | :--- | :--- | :--- | | Description |
| :--- |
| $7: 4$ |
| RESERVED |
| |
| |

6.2.28 TEMP_LSBY

Offset	Bit Position						
0×22	7	6	5	4	2	1	0
Reset	0×00						
Access							
Name							

Table 6.28. TEMP_LSBY

Bit	Name	Reset	Access	Description
7:0	TEMP_LSBY	0×00	read-only	Least significant byte of most recently measured temperature.
				Note that this value is spread over 2 registers and may be continuously updated. To ensure that the capture of the register is not corrupted by changes during the capture process, addressing this read-only register causes an inhibition in the updating of the register.
				To ensure coherence when reading the most significant and least significant bytes, a MSBY register read causes the corresponding LSBY register value to be stored into a shadow register. Reading the LSBY register will then return the value stored in the LSBY shadow register.
				Temperature (C) $=40+$ (convert_from_2s_complement $\left(\left(T E M P _M S N \ll 8\right)+\right.$ TEMP_LSBȲ $\left.)+2\right) / 6.04236$

6.2.29 VOA_SW_STAT

Offset	Bit Position							
0×23	7	6	5	4	3	2	1	0
Reset								0
Access								
Name								3 0 0 3 3 3 3 3

Table 6.29. VOA_SW_STAT

| Bit | Name | Reset | Access |
| :--- | :--- | :--- | :--- | Description | Reserved. Always write bits to 0. |
| :--- | :--- |

6.2.30 I2C_CTRL

Offset	Bit Position							
0x40	7	6	5	4	3	2	1	0
Reset								0
Access								
Name								

Table 6.30. 12C_CTRL

Bit	Name	Reset	Access	Description
$7: 1$	RESERVED	0		Reserved. Always write bits to 0.
0	I2C_PU	0	read-write	Enable internal I2C pull-ups on SDA and SCL

6.2.31 CC_CTRL

Offset	Bit Position									
0×41	7	6		5	4	3		2	1	0
Reset			0×00		0		0x00			
Access										
Name					$\begin{aligned} & \text { Z } \\ & \mathbf{U}^{\prime} \end{aligned}$					

Table 6.31. CC_CTRL

Bit	Name	Reset	Access	Description
7	RESERVED	0	Reserved. Always write bits to 0.	
$6: 5$	CC_THRSH	0×00	read-write	Determines threshold for declaring Coulomb counter full and setting the the STATUS_G.CC_FULL flag. Note that the STATUS_G.CC_FULL flag will be set when *any* of the Coulomb counters reaches the threshold.
	Value	Mode	Description	

6.2.32 EM_CRSREG_CTRL

Offset	Bit Position								
0x43	7	6	5	4	3	2		1	0
Reset	0	0	0	0	0		0x00		0
Access									
Name							$\begin{aligned} & \vec{\omega} \\ & \sum_{\dot{\sim}}^{\prime} \end{aligned}$		

Table 6.32. EM_CRSREG_CTRL

Bit	Name	Reset	Access	Description
7	CRSREG_EN_C	0	read-write	If set, VOC coarse regulator will be enabled in EM4 mode
6	CRSREG_EN_B	0	read-write	If set, VOB coarse regulator will be enabled in EM4 mode
5	CRSREG_EN_A	0	read-write	If set, VOA coarse regulator will be enabled in EM4 mode
4	CRSREG_BYP	0	read-write	If set, any enabled coarse regulator outputs are shorted to VDDB through an internal switch.
3	FORCE_EM0	0	read-write	Force EM0 state on any I2C start condition. Recommend to always set FORCE_EM0=1 when using Direct Mode. Refer to usage notes in the EM_SEL bit description.
2:1	EM_SEL	0x00	read-write	Selects energy mode when not using direct mode. Note that this rbit may not accurately reflect the current energy mode state when FORCE_EMO is set. For example, if FORCE_EM0 $=1$ and EM_SEL is set to 2 , the EFP01 enters EM2 mode. If an I2C read/write occurs at that point, the EFP01 automatically enters EM0, but the EM_SEL bitfield is not updated and will still read 2 . Firmware can reliably determine the current EFP01 energy mode as shown below: EFP01 Energy Mode = EM_CRSREG_CTRL.FORCE_EMO ? 'EMO’ : EM_CRSREG_CTRL.EM_STSEL
	Value	Mode		Description
	0	EM0		Energy Mode 0
	1	RESERVED		Reserved
	2	EM2		Energy Mode 2
	3	EM4		Energy Mode 4

$\left.\begin{array}{llll}\hline \text { Bit } & \text { Rame } & \text { Access } & \text { Description } \\ \hline 0 & \text { DIRECT_MODE_EN } & 0 & \text { read-write }\end{array} \begin{array}{l}\text { Set to enable Direct Mode. After DIRECT_MODE_EN is } \\ \text { set, on the next I2C stop condition the EFP01 will disable } \\ \text { the internal pullups on the I2C lines. At that point, the }\end{array}\right\}$

6.2.33 VOA_V

Offset	Bit Position							
0x49	7	6	5	4	3	2	1	0
Reset					0x00			
Access								
Name					$\xrightarrow{>}$			

Table 6.33. VOA_V

| Bit | Name | Reset | Access |
| :--- | :--- | :--- | :--- | Description | Reserved. Always write bits to 0. |
| :--- | :--- |

6.2.34 VOC_V

Offset	Bit Position							
0x4B	7	6	5	4	3	2	1	0
Reset			0x00					
Access								
Name			$\begin{aligned} & > \\ & 0 \\ & 0 \end{aligned}$					

Table 6.34. VOC_V

Bit	Name	Reset	Access	Description
$7: 6$	RESERVED	0	Reserved. Always write bits to 0.	
$5: 0$	VOC_V	0×00	read-write	Controls LDO C output voltage target in EM0/EM2
		VOC target $=1.7178 \mathrm{~V}+\left(\mathrm{VOC}, \mathrm{V}^{*} 0.0305 \mathrm{~V}\right)$		

6.2.35 VOB_EMO_V

Offset	Bit Position							
0x4C	7	6	5	4	3	2	1	0
Reset	0				0x00			
Access								
Name	∞ 0 0 0 0 0				$\begin{aligned} & >, \\ & \rangle_{1}^{\prime} \\ & \sum_{1}^{\prime} \\ & \varrho_{1}^{\prime} \\ & > \end{aligned}$			

Table 6.35. VOB_EMO_V

Bit	Name	Reset	Access	Description
7	OOR_DIS	0	read-write	Set to disable the "Out of Range" detector feature in all converters. This will disable all the STATUS_V flags.
$6: 0$	VOB_EMO_V	0×00	read-write	Controls DCDC B output voltage target in EMO VOB target in EMO $=0.8095 \mathrm{~V}+($ VOB_EMO_V * 0.0223 V $)$
		The VOB Output Accuracy specifications should be taken into consideration to ensure the output voltage range meets the load's input voltage requirements.		

6.2.36 VOB_EM2_V

Offset	Bit Position							
0x4D	7	6	5	4	3	2	1	0
Reset		0×00						
Access								
Name					$\begin{aligned} & > \\ & \sum_{\mid}^{N^{\prime}} \\ & { }^{\prime} \\ & \ominus^{\prime} \end{aligned}$			

Table 6.36. VOB_EM2_V

Bit	Name	Reset	Access	Description
7	RESERVED	0		Reserved. Always write bits to 0 .
6:0	VOB_EM2_V	0x00	read-write	Controls DCDC B output voltage target in EM2 VOB target in EM2 $=0.8095 \mathrm{~V}+(\mathrm{VOB}$ _EM2_V * 0.0223 V)
				The VOB Output Accuracy specifications should be taken into consideration to ensure the output voltage range meets the load's input voltage requirements.

6.2.37 BIAS_SW

Offset	Bit Position								
0x4E	7		6	5	4	3	2	1	0
Reset		0×00			0×00			0x00	
Access									
Name		2 0 0 3 0 0 8			$\begin{aligned} & \text { N } \\ & \stackrel{\infty}{ธ} \end{aligned}$			¢	

Table 6.37. BIAS_SW

Bit	Name	Reset	Access	Description
7:6	VOA_SW_CON	0x00	read-write	Enables switch between VOA output and VOA_SW pin Note that if VOA is low, enabling the VOA_SW is disallowed, and can cause extra quiescent current.
	Value	Mode		Description
	0	OFF		Disabled unconditionally
	1	ON		Enabled in EM0, EM2, and EM4
	2	ONINEMO		Enabled in EM0 only
	3	ONINEM02		Enabled in EM0 and EM2 only
5:3	BIAS2	0x00	read-write	Controls bias of all DCDCs and LDOs in EM2
	Value	Mode		Description
	0	87NA		
	1	100NA		
	2	114NA		
	3	147NA		
	4	325NA		
	5	386NA		
	6	453NA		
	7	600NA		
2:0	BIAS0	0x00	read-write	Controls bias of all DCDCs and LDOs in EM0
	Value	Mode		Description
	0	87NA		
	1	100NA		
	2	114NA		

Bit	Reme	Reset
3	$147 N A$	
4	$325 N A$	
5	$386 N A$	
6	$453 N A$	
7	$600 N A$	

6.2.38 BB_IPK

Offset	Bit Position							
0x4F	7	6	5	4	3	2	1	0
Reset	0x00			0x00				
Access								
Name				$\begin{aligned} & \frac{\mathrm{x}}{\underline{\varrho}} \\ & \text { 毋 } \end{aligned}$				

Table 6.38. BB_IPK

Bit	Name	Reset	Access	Description
$7: 5$	BB_IPK_EM2	0×00	read-write	Peak Current setting for DCDC A in EM2.

Note that unlike DCDC B, there is only a single Coulomb counter for DCDC A that is used in both EM0 and EM2 modes. Therefore, if Coulomb counting is used with DCDC A, BB_IPK_EM2 must be set such that the peak current in EM2 is the same as the peak current in EM0 to ensure the charge per pulse is the same in both energy modes.
Roughly equivalent peak currents in EM2 and EM0 can be achieved by setting BB_IPK_EM2 $=($ BB_IPK - 2$) / 4$.

The BB_IPK_EM2 setting is used differently depending on the operating mode of the DCDC A converter, but the resulting peak currents for all modes are derived from the following base peak current equation:

IPK_BASE $=0.090 \mathrm{~A}+\left(0.009 \mathrm{~A}\right.$ * ($\left(4^{*}\right.$ BB_IPK_EM2 $)+$ 2))

Although the IPK_BASE equation differs between EM2 and EMO, the equations that govern the resulting peak current for each operating mode are the same as documented in the BB_IPK description.

6.2.39 BB_CTRL3

Offset	Bit Position							
0x50	7	6	5	4	3	2	1	0
Reset		0×00			0x00		0x00	
Access								
Name					$\begin{aligned} & \stackrel{\sim}{\partial} \\ & \sum_{\mathrm{Z}}^{\prime} \\ & \hline \end{aligned}$			

Table 6.39. BB_CTRL3

Bit	Name	Reset	Access	Description
7:5	NTM_LDO_THRSH	0x00	read-write	Sets the threshold for DCDC A in Buck/Boost mode to enter either NTM or LDO operating modes (depending on BB_MODE setting).
				For Buck/Boost or Buck with LDO, the buck-to-NTM or buck-to-LDO boundary, respectively, is:
				```Falling => VDDB-VOA = 105mV + ( 87.5mV * NTM_LDO_THRSH )```
				```Rising => VDDB-VOA = 130mV + ( 87.5mV * NTM_LDO_THRSH )```
				For Buck/Boost, the NTM-to-boost boundary is:
				$\begin{aligned} & \text { Falling => VOA-VDDB }=60 \mathrm{mV}+(50 \mathrm{mV} \text { * } \\ & \text { NTM_LDO_THRSH) } \end{aligned}$
				$\begin{aligned} & \text { Rising => VOA-VDDB }=85 \mathrm{mV}+(50 \mathrm{mV} \text { * } \\ & \text { NTM_LDO_THRSH) } \end{aligned}$
4:3	NTM_DUR	0x00	read-write	NTM duration in Buck/Boost mode.
				Normalized to the time required for charging the inductor to Ipeak.
	Value	Mode		Description
	0	60PCT		60\%
	1	83PCT		83\%
	2	107PCT		107\%
	3	130PCT		130\%
2:0	BB_MODE	0x00	read-write	Buck/Boost converter's mode control. In EM4, Buck/Boost converter is disabled regardless of this setting.
	Value	Mode		Description

Bit	Name	Reset	Access	Description
	0	DISABL		Disabled
	1	AUTON		Autonomous Buck/Boost/NTM mode switching Used in Buck/Boost configuration.
	2	FORCE		Forced Buck mode only. Used in Buck/Boost configuration.
	3	FORCE		Forced NTM mode only. Used in Buck/Boost configuration.
	4	FORCE		Forced Boost mode only. Used in Buck/Boost configuration.
	5	WIRED	LDO	Wired Buck mode only with auto switch to LDO mode when input voltage is too low. Used in Wired Buck w/LDO Configuration.
	6	WIRED		Wired Buck mode only. Used in Wired Buck configuration.
	7	WIRED		Wired Boost mode only. Used in Wired Boost configuration.

6.2.40 BB_CTRL5

Offset	Bit Position							
0x51	7	6	5	4	3	2	1	0
Reset		0×00				0x00		
Access								
Name								

Table 6.40. BB_CTRL5

| Bit | Name | Reset | Access |
| :--- | :--- | :--- | :--- | | Description |
| :--- |

6.2.41 BB_CTRL6

Table 6.41. BB_CTRL6

Bit	Name	Reset	Access	Description
7	BB_IPK_NOADJ	0	read-write	If 0 , the boost mode peak current in EMO is increased as the battery voltage drops to allow a near constant maximum output current to be delivered to the load. If 1 , the voltage-dependent adjustment of peak current in EMO is disabled. Peak current adjustment is always disabled in EM2 regardless of this setting.
6	SW_FAST	0	read-write	VOA switch driver uses high speed mode when asserted. Recommend to set SW_FAST=0, unless the load on VOA_SW is $>55 \mathrm{~mA}$ during the switching process. Firmware should wait until VOA_SW_STAT.VOA_SW_ISLOW has transitioned to 0 before enabling a larger load than 55 mA on VOA_SW.
5:2	BB_IRI_CON	0×00	read-write	Controls inrush current for DCDC A by forcing a minimum time between pulse events (i.e. Tsw, the switching period). Inrush current limiting may be needed for operation with batteries that have a large internal impedance and/or limited output current. If $B B _I R I _C O N>0$, the minimum switching period ($T s w$) is determined by the following equation: $\text { Tsw (ns) = 300ns * (} 2 \text { * BB_IRI_CON + } 1 \text {) }$ If $B B _I R I _C O N==0$, there is no bound on the switching period. The resulting battery current can be calculated as: (L * lpk^2) / (2 * (VDDB - VOA) * Tsw). To maintain a constant current limit over the battery voltage range, firmware should occasionally read the battery voltage and recalculate the BB_IRI_CON value.

$\begin{array}{llll}\hline \text { Bit } & \text { Name } & \text { Reset } & \text { Access }\end{array}$ Description $\left.\begin{array}{l}\text { read-write }\end{array} \begin{array}{l}\text { Allows setting a limit for Toff max in Boost modes to en- } \\ \text { sure there is no hang-up when inductor fails to discharge } \\ \text { naturally. Allows operation in boost or wired boost modes } \\ \text { with VOA slightly lower than battery voltage. No limit if } \\ \text { BB_TOFF_MAX==0. }\end{array}\right]$
6.2.42 LDOB_CTRL

Offset	Bit Position							
0x53	7	6	5	4	3	2	1	0
Reset	0	0		0x00			0x00	
Access								
Name	0 0 0 0 0 0 0 2 0 0 1	0 0 0 0 0 0		2 \sum \vdots 0 0 0			$\begin{aligned} & \underline{Z} \\ & \frac{0}{0} \\ & \underline{0} \\ & 0 \\ & 0 \end{aligned}$	

Table 6.42. LDOB_CTRL

Bit	Name	Reset	Access	Description
7	LDO_NO_AUTO_BYP	0	read-write	If set, neither LDO B or LDO C goes into bypass automatically.
6	LDOB_BYP	0	read-write	If set, when LDO B is enabled it acts only as a bypass switch
5:4	LDOB_VMIN	0×00	read-write	Defines voltage at which output current becomes voltage independent for LDO B. Recommended to set LDOB_VMIN based on the target VOB voltage as given below: LDOB_VMIN=3 for VOB targets $>=2.7 \mathrm{~V}$ LDOB_VMIN=2 for VOB targets between 2.4 V and 2.7 V LDOB_VMIN=1 for VOB targets between 2.0 V and 2.4 V LDOB_VMIN=0 for VOB targets < 2.0V
3:0	LDOB_IGAIN	0×00	read-write	Determines the maximum output current supported by LDO B. Recommend to set to the maximum expected load current plus some margin. $\text { i_max = VOB / (2.76 * (} 17 \text { - LDOB_IGAIN)) }$

6.2.43 LDOC_CTRL

Offset	Bit Position									
0x54	7	6	5		4	3	2		1	0
Reset	0	0		0x00				0x00		
Access										
Name	$\mathbb{6}$ $\$_{1}$ 1 0 0 0	$\begin{aligned} & 0 \\ & \sum_{0}^{0} \\ & 0_{1}^{\prime} \\ & 0 \\ & a \end{aligned}$		$\begin{aligned} & \text { Z } \\ & \sum_{i}^{\prime} \\ & \mathrm{O}_{1}^{\prime} \\ & 0 \end{aligned}$						

Table 6.43. LDOC_CTRL

| Bit | Name | Reset | Access |
| :--- | :--- | :--- | :--- | | Lead-write |
| :--- |
| 7 |
| |

6.2.44 LDOC_BB_CTRL

Offset	Bit Position							
0x55	7	6	5	4	3	2	1	0
Reset	0		0x00				0x00	
Access								
Name							$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \underline{\underline{r}} \\ & \vdots \\ & 0 \end{aligned}$	

Table 6.44. LDOC_BB_CTRL

Bit	Name	Reset	Access	Description
7	SEQ_BB_FIRST	0	read-write	For Bootstrap modes (i.e., modes where the VDDB is supplied from VOA output), setting this bit delays the enabling of the DCDC B Buck converter and/or LDO C (in stand alone) until after VOA has reached regulation.
6:4	BB_TON_MAX	0x00	read-write	Max Ton is bounded to $70 \mathrm{~ns}^{*}\left(4^{*} \mathrm{BB}\right.$ _TON_MAX+1) No bound if BB_TON_MAX==0
	Value	Mode		Description
	0	NOLIMIT		
	1	350NS		
	2	630NS		
	3	910NS		
	4	1190NS		
	5	1470NS		
	6	1750NS		
	7	2030NS		
3:0	VOC_IRI_CON	0x00	read-write	Controls inrush current for LDO C by forcing a minimum time between pulse events (i.e. Tsw, the switching period). Inrush current limiting may be needed for operation with batteries that have a large internal impedance and/or limited output current.
				If VOC_IRI_CON>0, the minimum switching period (Tsw) is determined by the following equation: Tsw (ns) $=300 \mathrm{~ns}$ * (2 * VOC_IRI_CON + 1) If VOC_IRI_CON==0, there is no bound on the switching period.

6.2.45 BK_CTRLO

Offset	Bit Position							
0x56	7	6	5	4	3	2	1	0
Reset							0	0
Access								¢ $\substack{1 \\ 1 \\ 1 \\ \text { ¢ } \\ \text { d }}$
Name								$\sum_{\substack{0}}^{\infty}$

Table 6.45. BK_CTRLO

Bit	Name	Reset	Access	Description
$7: 2$	RESERVED	0	Reserved. Always write bits to 0.	

6.2.46 BK_CTRL1

Offset	Bit Position							
0x57	7	6	5	4	3	2	1	0
Reset		0×00			0x00		0×00	
Access								
Name								

Table 6.46. BK_CTRL1

Bit	Name	Reset	Access	Description
7:5	BK_TON_MAX	0x00	read-write	Max Ton is bounded to 70ns * (4 * BK_TON_MAX + 1)
				Ton is not bounded if BK _TON_MAX $==0$
	Value	Mode		Description
	0	NOLIMIT		
	1	350NS		
	2	630NS		
	3	910NS		
	4	1190NS		
	5	1470NS		
	6	1750NS		
	7	2030NS		
4:3	BK_MODE	0x00	read-write	Sets the mode of the DCDC B converter. Regardless of this setting, in EM4 the DCDC B converter will be disabled.
	Value	Mode		Description
	0	DISABLED		Off
	1	BUCKONLY		Buck Mode Only
	2	LDOONLY		LDOB enabled, Buck Disabled
	3	BUCKLDO		Buck or LDOB, depending on DV=VDDB-VOB
2:1	BK_DRVR_SPEED	0x00	read-write	DCDC B pre-driver speed control. Recommend to set to 2 for the highest efficiency, but will also generate the most EMI. Lower settings can be used to reduce EMI at the expense of efficiency.
0	RESERVED	0		Reserved. Always write bits to 0 .

6.2.47 BK_IPK

Offset	Bit Position							
0x58	7	6	5	4	3	2	1	0
Reset	0x00			0×00				
Access								
Name						¢		

Table 6.47. BK_IPK

Bit	Name	Reset	Access	Description
7:5	BK_IPK_EM2	0x00	read-write	Peak Current setting for DCDC B in EM2.
				Buck converter peak current in EM2 (Amps) $=0.090 \mathrm{~A}+$ 0.009A * ((BK_IPK_EM2 * 4) + 2) + (25ns * (VDDB VOB))/L
4:0	BK_IPK	0×00	read-write	Peak Current setting for DCDC B in EM0.
				Buck converter peak current in EMO (Amps) $=0.090 \mathrm{~A}+$ (0.009A * BK_IPK) + (25ns * (VDDB - VOB)) / L

6.2.48 BK_CTRL2

Offset	Bit Position						
0x59	7	6	5	4	3	2	0
Reset			0×00				
Access							
Name							

Table 6.48. BK_CTRL2

Bit	Name	Reset	Access	Description
7	RESERVED	0		Reserved. Always write bits to 0 .
6:4	BK_LDO_THRESH	0x00	read-write	Sets threshold for switching DCDC B to LDO B, DV=VDDB-VOB for buck/LDO boundary is: (DV_rising ? $25 \mathrm{mV}: 0$) +105 mV +87.5 mV *BK_LDO_THRESH
3:0	BK_IRI_CON	0×00	read-write	Controls inrush current for DCDC B by forcing a minimum time between pulse events (i.e. Tsw, the switching period). Inrush current limiting may be needed for operation with batteries that have a large internal impedance and/or limited output current. If $B K$ _IRI_CON>0, the minimum switching period (Tsw) is determined by the following equation: $\text { Tsw (ns) = 300ns * (} 2 \text { * BK_IRI_CON + } 1 \text {) }$ If BK_IRI_CON==0, there is no bound on the switching period. The resulting battery current can be calculated as: (L * lpk^2) / (2 * (VDDB - VOB) * Tsw). To maintain a constant current limit over the battery voltage range, firmware should occasionally read the battery voltage and recalculate the $B K$ IRI_CON value.

6.2.49 ADC_CC_CTRL

Offset	Bit Position							
0x5C	7	6	5	4	3	2	1	0
Reset				0x00			0x00	
Access								
Name								

Table 6.49. ADC_CC_CTRL

Bit	Name	Reset	Access	Description
7:6	RESERVED	0		Reserved. Always write bits to 0 .
5:3	ADC_IIR_TAU	0x00	read-write	Determines the time constant used in the ADC's averaging low-pass IIR filter voltage reading. Time constant $=$ $2^{\wedge}($ ADC_IIR_TAU)
2:0	ADC_INTERVAL	0x00	read-write	If ADC_INTERVAL >0, automated ADC measurements are enabled in EM0 and EM2. The automated measurements will be triggered when the count of all pulse events in all of the enabled converters is equal to 2^{\wedge} (ADC_INTERVAL+3). To ensure that measurements occur even when pulse events are very infrequent, an ADC measurement will be triggered approximately every $\sim 400 \mathrm{msec}$ at a minimum when ADC_INTERVAL > 0 , regardless of the pulse event count. If ADC_INTERVAL > 0 and BB_CTRL2.BB_IPK_NOADJ = 0 , automatic inductor peak current adjustments in boost mode will be enabled. If ADC_INTERVAL $=0$, there will be no automatic ADC measurements enabled, which means NO temperaturedependent bias refresh and/or boost-mode automated inductor peak current adjustments. In addition, any flags or bits requiring the ADC (e.g., STATUS_G.VDD_LOW and STATUS_G.TEMP_FAULT) will not be updated.

6.2.50 ADC_LIMITS

Offset	Bit Position							
0x5D	7	6	5	4	3	2	1	0
Reset	0×00					0×00		
Access								
Name	$\begin{aligned} & \underset{y}{\sum} \\ & > \\ & > \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & \underset{y}{\sum} \\ & \vdash \\ & \bullet \\ & \end{aligned}$		

Table 6.50. ADC_LIMITS

Bit	Name	Reset	Access	Description
7:3	ADC_V_LIM	0x00	read-write	Sets voltage threshold for the STATUS_G.VDD_LOW flag. If measuring VDDA (i.e., SC_MODE==1): VDD_LOW threshold $=800 \mathrm{mV}+($ ADC_V_LIM * 32.42 mV) If measuring VDDB (i.e, SC_MODE==0): VDD_LOW threshold $=1699 \mathrm{mV}+($ ADC_V_LIM * 47.66mV)
2:0	ADC_T_LIM	0×00	read-write	Defines temperature limit for over temperature fault, STATUS_G.TEMP_FAULT. Over temperature limit $\left({ }^{\circ} \mathrm{C}\right)=115^{\circ} \mathrm{C}+$ $\left(5.55^{\circ} \mathrm{C}^{*} \text { ADC_T_LIM }\right)$

7. OTP Definitions

7.1 OTP Definition

Note: Some registers will have their default values automatically overwritten by OTP-programmed values out of reset. Therefore, the actual values of those registers after reset may differ from the default reset values listed in the Register Description table. The table below shows the expected value of those registers out of reset.

OTP Register Name	OTP Address	Description
OTP_I2C_CTRL	0x00	Contains value loaded into the I2C_CTRL register out of reset
OTP_CC_CTRL	0x01	Contains value loaded into the CC_CTRL register out of reset
OTP_EM_CRSREG_CTRL	0x03	Contains value loaded into the EM_CRSREG_CTRL register out of reset
OTP_VOA_V	0x09	Contains value loaded into the VOA_V register out of reset
OTP_VOC_V	0x0B	Contains value loaded into the VOC_V register out of reset
OTP_VOB_EMO_V	0x0C	Contains value loaded into the VOB_EM0_V register out of reset
OTP_VOB_EM2_V	0x0D	Contains value loaded into the VOB_EM2_V register out of reset
OTP_BIAS_SW	0x0E	Contains value loaded into the BIAS_SW register out of reset
OTP_BB_IPK	0x0F	Contains value loaded into the BB_IPK register out of reset
OTP_BB_CTRL3	0x10	Contains value loaded into the BB_CTRL3 register out of reset
OTP_BB_CTRL5	0x11	Contains value loaded into the BB_CTRL5 register out of reset
OTP_BB_CTRL6	0x12	Contains value loaded into the BB_CTRL6 register out of reset
OTP_LDOB_CTRL	0x13	Contains value loaded into the LDOB_CTRL register out of reset
OTP_LDOC_CTRL	0x14	Contains value loaded into the LDOC_CTRL register out of reset
OTP_LDOC_BB_CTRL	0x15	Contains value loaded into the LDOC_BB_CTRL register out of reset
OTP_BK_CTRLO	0x16	Contains value loaded into the BK_CTRL0 register out of reset
OTP_BK_CTRL1	0x17	Contains value loaded into the BK_CTRL1 register out of reset
OTP_BK_IPK	0x18	Contains value loaded into the BK_IPK register out of reset
OTP_BK_CTRL2	0x19	Contains value loaded into the BK_CTRL2 register out of reset
OTP_ADC_CC_CTRL	0x1C	Contains value loaded into the ADC_CC_CTRL register out of reset
OTP_ADC_LIMITS	0x1D	Contains value loaded into the ADC_LIMITS register out of reset
OTP_UID_LOW	0x20	Lower byte of Device Unique ID
OTP_UID_HIGH	0x21	Upper byte of Device Unique ID
OTP_TEMP_CODE	0x2F	Temperature Grade: $0=$ Undefined, $1=\mathrm{G}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right), 2=1\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
OTP_OPN_NUM	0x30	OPN (4=EFP0104, 8=EFP0108, 11=EFP0111)
OTP_OPN_REV	0x31	OPN definition revision
OTP_CCCAL_LOW	0x33	Coulomb Counter Calibration for CC_LVL=3 load current
OTP_CCCAL_HIGH	0x34	Coulomb Counter Calibration for CC_LVL=7 load current
OTP_OSC10MHZ_CAL	0x35	10MHz Oscillator Calibration Constant

7.2 OTP Defaults

Note: Certain registers will have their default values automatically overwritten by OTP-programmed values out of reset, so the actual values of those registers after reset may differ from the default reset values listed in the Register Description table. The table below indicates the expected value of each affected register out of reset.

Register Name		응 0 0 10		응 $\stackrel{1}{\circ}$ 표	운 $\stackrel{5}{8}$ $\frac{1}{11}$ in	г $\frac{5}{6}$ $\frac{1}{11}$ in
OTP_OPN_REV	0x02	0x02	0x02	0x03	0x03	0x03
I2C_CTRL	0x09	0x09	0x09	0x09	0x09	0x09
CC_CTRL	0x68	0x68	0x68	0x68	0x68	0x68
EM_CRSREG_CTRL	0x28	0xA8	0xA8	0xE8	0xA8	0xE8
VOA_V	0x04	0x04	0x04	0x34	0x34	0x72
VOC_V	0x00	0x05	0x00	0x05	0x05	0x05
VOB_EM0_V	0x80	0x80	0x80	0xAF	0x80	0xAF
VOB_EM2_V	0x00	0x00	0x00	0x2F	0x00	0x2F
BIAS_SW	0x0F	0x0F	0x0F	0x0F	0x0F	0x0F
BB_IPK	0×92	0x6D	0x4A	0x6C	0x6C	$0 \times 4 \mathrm{~A}$
BB_CTRL3	0xB5	0xB1	0x17	0x17	0x17	0x17
BB_CTRL5	0x80	0x80	0x80	0x9B	0x9B	0xA7
BB_CTRL6	0x03	0x03	0x02	0x02	0x02	0xBA
LDOB_CTRL	0x00	0x00	0x00	0x0C	0x00	0x0C
LDOC_CTRL	0x0C	0x8C	0x0C	0x8C	0x8C	0x8C
LDOC_BB_CTRL	0x50	0x50	0xF0	0xF0	0xF0	0xC0
BK_CTRL0	0x00	0x00	0x00	0x00	0x00	0x00
BK_CTRL1	0xE4	0xE4	0xE4	0xFC	0xE4	0xBC
BK_IPK	0x00	0x00	0x00	0x6C	0x00	0x91
BK_CTRL2	0x50	0x50	0x50	0x50	0x50	0x40
ADC_CC_CTRL	0x3F	0x3F	0x3F	0x3F	0x3F	0x07
ADC_LIMITS	0x18	0x18	0x18	0x18	0x18	0x78

8. Pin Definitions

8.1 EFP01 Device Pinout

Figure 8.1. EFP01 Device Pinout (Top View)
The following table provides package pin connections and general descriptions of pin functionality.
Table 8.1. EFP01 Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
GND	1	Thermal Ground Connection	GND	2	Thermal Ground Connection
VDDA	3	Low-Voltage Circuitry Supply Input for Single-cell Boost (EFPO108) devices. For all other devices, this pin should be grounded.	VOB	4	DCDC B Output
LB	5	DCDC B Switching Node	GND	6	Thermal Ground Connection
LA1	7	DCDC A Switching Node 1	VDDB	8	DCDC A and B Input

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
DCDC_GND	9	DCDC Ground. Return path for power- train switch current.	VOA	10	DCDC A Output
LA2	11	DCDC A Switching Node 2	VOA_SW	12	DCDC A Switched Output
VOC	13	LDO C Output	VIO	14	IO Supply
I2C_SCL	15	I2C Clock	GND	16	Thermal Ground Connection
I2C_SDA	17	I2C Data	IRQn	18	Active Low Interrupt Output
GND	19	Thermal Ground Connection	GND	20	Thermal Ground Connection
GND	21	Paddle. Thermal Ground Connection			

9. QFN20 Package Specifications

9.1 QFN20 Package Dimensions

Figure 9.1. QFN20 Package Drawing

Table 9.1. QFN20 Package Dimensions

Dimension	Min	Typ	Max
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
A3	0.20 REF		
b	0.18	0.25	0.30
c	0.20	0.25	0.30
D	3.00 BSC		
D2	1.60	1.70	1.80
e	0.50 BSC		
E	3.00 BSC		
E2	1.60	1.70	1.80
f	2.45 BSC		
K	0.20	-	-
L	0.30	0.40	0.50
R	0.09	-	0.15
aaa	-	-	0.15
bbb	-	-	0.10
ccc	-	-	0.08
ddd	-	-	0.10
eee	-	-	0.10
ggg	-	-	0.05
Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.			

9.2 QFN20 PCB Land Pattern

Figure 9.2. QFN20 PCB Land Pattern Drawing (Top View)

Table 9.2. QFN20 PCB Land Pattern Dimensions

9.3 QFN20 Package Marking

Figure 9.3. QFN20 Package Marking
The package marking consists of the following:

- PPPP - The part number designation.

1. Family Code (1 character)
2. Feature Set Code (2 characters)
3. Temperature Grade ($\mathrm{G}=-40$ to $85^{\circ} \mathrm{C}$)

- TTTT - A trace or manufacturing code.
- YY - The last 2 digits of the assembly year.
- WW - The 2-digit workweek when the device was assembled.

10. Revision History

Revision 1.2

March, 2021

- Corrected Top Mark Line 1 of EFP0110GM20-D and EFP0111GM20-D in Table 2.1 Ordering Information on page 3
- Added EFP0107 OPN to the following sections:
- 1. Feature List
- Table 2.1 Ordering Information on page 3
- 5.1.3.4 EFP0107
- Table 3.2 DCDC A Configuration and Modes Summary on page 9
- 7.2 OTP Defaults
- Combined EFP0109 and EFP0110 Electrical Specification tables into single table 5.1.3.6 EFP0109 / EFP0110.
- Corrected out-of-reset default voltages in 3.1 Introduction and Table 2.1 Ordering Information on page 3.
- Corrected EM2 Maximum Output Current value in Table 3.8 Energy Modes Overview on page 22.
- VOB output programmable voltage maximum changed from 1.255 V to 1.26 V .
- EFP0111 VOA output programmable voltage maximum changed from 5.2 V to 5.22 V .
- Added absolute maximum voltage for EFP01 outputs pins to 5.1.1 Absolute Maximum Ratings.
- Added I2C timing in • I2C Timing Specification.
- Added default voltage at startup and LDO dropout voltage to VOA, VOB, and VOC specification tables.
- Added note about the expected VOA shutdown behavior on devices configured for Boost Mode to 3.8.2 Shutdown Behavior.
- Added footnote to VOA, VOB, and VOC specification tables clarifying that for converters enabled by default, the total startup time is the sum of the $T_{\text {START }}$ and $T_{\text {BOOT }}$ times.
- Added footnote to VOB and VOC specification tables for EFP0108 and EFP0111 clarifying that VOB and VOC maximum output voltage is limited by the VOA voltage in these configurations.
- Added 3.2.1.7 NTM Buck/Boost Transitional Mode section for Buck/Boost operation.
- Added 3.2.1.10 Low Voltage Charge Pump section.
- Added Wired Buck to Typical Connection Diagrams.
- Added Buck/Boost typical efficiency plots.

Revision 1.1

October, 2020

- Added EFP0110 OPN to the following sections:
- 1. Feature List
- 3.1 Introduction
- Table 2.1 Ordering Information on page 3
- 5.1.3.6 EFP0109 / EFP0110
- Table 3.2 DCDC A Configuration and Modes Summary on page 9
- 3.2.4 Coarse Regulators
- 7.2 OTP Defaults
- In Table 5.5 EFP0104 VOA/VOC Electrical Specs on page 45:
- Corrected Output programmable voltage range maximum value from 5.2 V to 3.3 V .
- Corrected Output voltage accuracy conditions from $1.8 \mathrm{~V} \leq \mathrm{VOA} \leq 5.0 \mathrm{~V}$ to $1.8 \mathrm{~V} \leq \mathrm{VOA} \leq 3.3 \mathrm{~V}$.
- Removed Wired Buck Configuration from 4.1 Device Configurations and Table 3.2 DCDC A Configuration and Modes Summary on page 9.
- Corrected all OPNs in Table 3.2 DCDC A Configuration and Modes Summary on page 9 and 2. Ordering Information.
- Corrected valid OTP_TEMP_CODE and OTP_OPN_NUM enumerations in 7.1 OTP Definition.
- Corrected EFP0109 Input Voltage Range in Table 2.1 Ordering Information on page 3.
- In Figure 4.6 Boost Bootstrap Configuration on page 35, corrected VOB output capacitor from $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$, added note about VOA capacitor value, added notes on VOC Output capacitors.
- In 4.1.5 Wired Boost Configuration (EFP0109 \& EFP0110), added clarification of VOB output capacitor size and added notes on VOC Output capacitors.
- In 4.1.4 Single-Cell Boost Configuration (EFP0108) and 4.1.3 Buck/Boost Configuration (EFP0107), added notes on VOC Output capacitors.
- Added VOB = 1.8V Output Voltage Accuracy Specs for the EFP0109 VOB output.
- In all VOB and VOC Electrical Specification tables, clarified footnote indicating that when VDDB was powered by VOA (EFP0108 and EFP0111), the DCDC B and LDO C output current is also limited by the VOA output current.
- Added dislaimer clarifying that Maximum Output Current formulas are not a guarantee of performance to the DCDC A Peak Current Configuration, DCDC B Peak Current Configuration, and LDO Maximum Output Current sections.
- In 5.1.3.7 EFP0111 Electrical Specifications, corrected Maximum output current footnote test current (1.25 mA instead of 5 mA) and added details on how to interpret this specification for Boost Bootstrap.
- Added note to 3.3.4 EM4 section that dedicated EM4 hardware support was available for EFP01 starting on EFR32xG22 devices.
- Clarified recommended reset mechanisms and hazards in 3.5.1 OTP section and 6.2.11 CMD register description.

Revision 1.0

June, 2020

- Corrected typical single-output enabled quiescent current on front page.
- Corrected EFP0109GM20 max input voltage range in 3.1 Introduction.
- Corrected DCDC A Max Output Current Equations in 3.2.1.2 Peak Current Configuration.
- Corrected LDO Max Output Current Equation 3.2.3.3 Maximum Output Current.
- Added section explaining Ton_max limiting use in boost mode • Boost Mode TON_MAX on page 15.
- Added notes clarifying that Direct Mode is intended for use-cases where EFP01 is the only device on the I2C bus to the I2C 3.6.1 Inter-Integrated Circuit Interface $\left(I^{2} \mathrm{C}\right)$ and Direct Mode 3.3.1.2 Direct Mode Control sections.
- Added note pointing to the AN1188: EFP01 Coulomb Counter app note in 3.4.1 Coulomb Counter.
- Updated link to Silicon Labs Quality webpage 5.1.1 Absolute Maximum Ratings.
- Updated values in Electrical Specifications:
- Added Max On-Resistance values
- Added typical ADC voltage and temperature accuracy specifications
- Added Max Output Load Current minimum values to the VOA, VOB, VOC Electrical Spec tables, along with updated conditions
- Updated Typ Line/Load Regulation values
- Updated VOC output startup time value
- Documented issues with use of the CMD.RESET bit in the 6.1 Register Map

Revision 0.5

March, 2020

- Updated QFN20 Land Pattern Diagram 9.2 QFN20 PCB Land Pattern.
- Updated all OPNs in Ordering Information Table.
- Updated Ordering Information Table to add new OPN: EFP0109.
- Updates to Electrical Specifications Table:
- Added Typical Performance Curves
- Updates to System Overview 3.1 Introduction:
- Added voltage configuration sections
- Added Startup and Shutdown behavior sections
- Updates to Register Definitions 6.1 Register Map.

Revision 0.3

September, 2019

- Updates to Ordering Information Table Table 2.1 Ordering Information on page 3.
- Updates to Electrical Specifications Table.
- Updates System Overview 3.1 Introduction.
- Updates to Register Definitions 6.1 Register Map.
- Updates to OTP Register Definitions 7.1 OTP Definition.
- Updates to Pin Definitions .

Revision 0.2

October, 2018

- Updated package marking decoder.

Revision 0.1

May, 2017

- Initial release.

IoT Portfolio
www.silabs.com/loT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support \& Community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information

 EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof,"the world's most energy friendly microcontrollers", Ember®, EZLink ${ }^{\circledR}$, EZRadio ${ }^{\oplus}$, EZRadioPRO®, Gecko ${ }^{\oplus}$, Gecko OS, Gecko OS Studio, ISOmodem ${ }^{\circledR}$, Precision 32^{\circledR}, ProSLIC ${ }^{\circledR}$, Simplicity Studio ${ }^{\circledR}$, SiPHY ${ }^{\circledR}$, Telegesis, the Telegesis Logo ${ }^{\circledR}$, USBXpress ${ }^{\circledR}$, Zentri, the Zentri logo and Zentri DMS, Z-Wave ${ }^{\circledR}$, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

