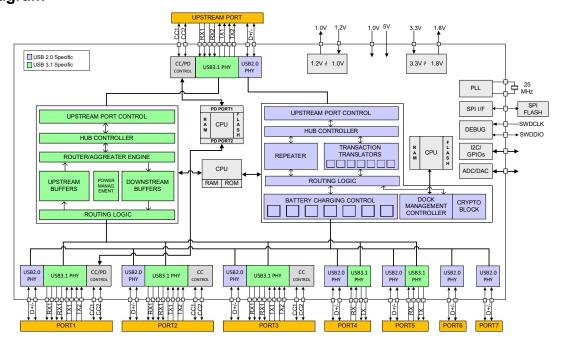


# HX3PD USB 3.1 Gen 2 Type-C Hub with PD

### **Functional Description**


HX3PD is a family of USB 3.1 Gen 2 Type-C hub with USB Power Delivery (PD) that complies with the USB 3.1 Gen 2 (10 Gbps) specification, and the latest Type-C and PD standards. HX3PD supports SuperSpeed USB (10 Gbps), SuperSpeed (5 Gbps), High-Speed (HS), Full-Speed (FS), and Low-Speed (LS) on selective ports. HX3PD provides a complete Type-C and USB PD port controller solution in Upstream (US) and one Downstream (DS) port.

#### **Features**

- USB-IF Certified USB 3.1 Gen 2 Hub Silicon, TID#5030000008
- USB 3.1 Gen 2-compliant Hub Controller with 7 downstream ports
  - □ Five downstream ports support SS (10 Gbps), SS (5 Gbps), and are backward-compatible with HS (480 Mbps), FS (12 Mbps), and LS (1.5 Mbps)
  - □ Two downstream ports support HS, and are backward-compatible with FS, and LS
  - ¬ SS (10 Gbps), SS (5 Gbps) and USB 2.0 Link Power Management (LPM)
  - □ Dedicated Hi-Speed Transaction Translators (Multi-TT)
- Integrated Type-C transceivers, supporting Type-C plug orientation
  - ☐ Type-C supported in four ports (1 US port and 3 DS ports)
  - □ Integrated transceiver (baseband PHY)
  - □ Integrated UFP (R<sub>D</sub>), and current sources for DFP (R<sub>P</sub>)
- Integrated PD controllers, supporting PD 3.0 specification in US port and 1 DS port

- Upstream: Configurable as either Type-C or Type-B port
- Downstream: Configurable as either three Type-C and four Type-A ports, or seven Type-A ports
- Compound USB PD hub with integrated USB device controller support:
  - USB Billboard
  - □ In-system firmware upgrade
  - □ Vendor specific messaging
- Integrated Dock Management Controller support
  - □ Signed and unsigned firmware updates
  - □ Firmware upgrade over USB
  - Dynamic configurations of port enable and disable from Embedded Controllers over I2C
- Charging Standard support:
  - $\hfill \square$  USB PD 3.0, Battery Charging v1.2 and Apple Charging Standards
- PD policy engine configures power profiles dynamically
- Ghost Charge™: Charging DS port without US connection
- 192-ball BGA (12 mm × 12 mm, 0.8-mm ball-pitch)

# **Block Diagram**



Cypress Semiconductor Corporation
Document Number: 002-16615 Rev. \*F

198 Champion Court

San Jose, CA 95134-1709

408-943-2600

Revised June 14, 2019

# **PRELIMINARY**



### **Contents**

| Architecture Overview                    | 3  |
|------------------------------------------|----|
| SS (10 Gbps) Hub Controller              | 3  |
| USB 2.0 Hub Controller                   | 3  |
| USB-PD Controller                        | 3  |
| SPI, I2C, and GPIO Interfaces            | 3  |
| Dock Management Controller               | 3  |
| Crypto Block                             | 4  |
| Application Diagrams                     | 4  |
| Docking Stations                         | 4  |
| HX3PD Product Options                    |    |
| Pinouts                                  | 6  |
| Pin Description                          | 7  |
| System Interfaces                        |    |
| Upstream Port (US)                       |    |
| Downstream Ports (DS1, 2, 3, 4, 5, 6, 7) |    |
| Communication Interfaces                 |    |
| Configuration Options                    | 13 |

| Absolute Maximum Ratings                | 15 |
|-----------------------------------------|----|
| Electrical Specifications               | 15 |
| DC Electrical Characteristics           |    |
| Power Consumption                       | 16 |
| Ordering Information                    | 17 |
| Ordering Code Definitions               |    |
| Package Diagram                         |    |
| Acronyms                                |    |
| Reference Documents                     |    |
| Document Conventions                    |    |
| Units of Measure                        | 19 |
| Document History Page                   |    |
| Sales, Solutions, and Legal Information |    |
| Worldwide Sales and Design Support      |    |
| Products                                |    |
| PSoC® Solutions                         |    |
| Cypress Developer Community             |    |
| Tochnical Support                       |    |



#### **Architecture Overview**

The Block Diagram on page 1 shows the HX3PD architecture. HX3PD consists of two independent hub controllers (SS (10 Gbps) and USB 2.0), the Arm<sup>®</sup> Cortex<sup>®</sup>-M0 CPU subsystem, 2-port USB-PD controllers, Dock Management Controller (DMC), SPI interface, Serial communication block, and GPIOs.

#### SS (10 Gbps) Hub Controller

This block supports the SS (10 Gbps) hub functionality based on the USB 3.1 Gen 2 (10 Gbps) specification. The SS (10 Gbps) hub controller supports the following:

- USB precision time management (PTM)
- Link power management (U0, U1, U2, U3 states)
- Store and forward packet architecture
- Full-duplex data transmission

#### **USB 2.0 Hub Controller**

This block supports the LS, FS, and HS hub functionalities. It includes the repeater, frame timer, and seven transaction translators. The USB 2.0 hub controller block supports the following:

- USB 2.0 link power management (L0, L1, L2, L3 states)
- Suspend, resume, and remote wake-up signaling
- Multi-TT (one TT for each DS port)

The hub is also integrated with USB device, which can function as a DMC and USB Billboard.

#### **USB-PD Controller**

HX3PD supports two USB PD ports, consisting of USB Type-C baseband transceivers and physical-layer logic. The USB-PD PHY consists of a transmitter and receiver that communicate Biphase Mark Coding (BMC) and 4b/5b encoded data over the CC channel based on the PD 3.0 standard. In addition, the USB-PD block includes all termination resistors ( $R_P$  and  $R_D$ ) as required by the USB Type-C spec.  $R_P$  and  $R_D$  resistors are required to implement connection detection, plug orientation detection, and for establishing the USB source/sink roles.

The integrated  $R_P$  resistor enables the PD port to be configured as a DFP. The  $R_P$  resistor is implemented as a current source and can be programmed to support the complete range of current capacity on the VBUS defined in the USB Type-C Spec.

The  $R_D$  resistor is used to identify the HX3PD port as a UFP in a DRP application. The  $R_D$  resistor on the CC pins is required even when the part is not powered for dead battery termination detection and charging. HX3PD's PD ports respond to all USB-PD communication.

HX3PD is designed to be fully interoperable with revision 3.0 as well as revision 2.0 of the USB PD specification. HX3PD supports Extended Messages containing data up to 260 bytes. The Extended Messages will be larger than expected by the USB-PD 2.0 hardware. To accommodate Revision 2.0 based systems, a Chunking mechanism is implemented such that Messages are limited to Revision 2.0 sizes unless it is discovered that both systems support the longer Message lengths.

The CPU in HX3PD's USB-PD controller is a Cortex-M0 32-bit MCU controller, which is optimized for low-power operation with extensive clock gating. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user. The CPU also includes a serial wire debug (SWD) interface, which is a two-wire form of JTAG.

#### SPI, I<sup>2</sup>C, and GPIO Interfaces

HX3PD has dedicated SPI flash interfaces, used for downloading configuration/firmware of the hub during boot-up.

HX3PD has dedicated I<sup>2</sup>C interfaces for Hub, DMC, and PD controllers. These I<sup>2</sup>C interfaces shall be used for configurations of individual blocks, communication between individual blocks, and/or interface with external controllers.

HX3PD contains many GPIOs which can be configured as input, output to support custom features, these I/Os can be used for serial communication with external master/slave devices. The serial communication protocols supported are I2C, SPI, and UART.

### **Dock Management Controller**

Dock Management Controller (DMC) integrates a Full-Speed USB controller that is designed for managing the USB dock system. DMC supports USB Billboard as well as firmware download over USB to externally interfaced peripherals (over I2C/SPI).

#### Firmware Update Support

DMC has the capability to do firmware update to Hub controller, PD controller, DMC controller, and other dock components. It implements the firmware update functionality and status reporting on a vendor interface using a full-speed USB 2.0 device controller.

#### Unsigned Firmware Update

The firmware update procedure expects the host to send the metadata of the programmable component's FW information.

This metadata includes SHA-256 of the individual firmware image. DMC notifies the host to send the individual component's firmware image one by one and update to the dock components. DMC verifies the firmware validity by comparing the received SHA-256 with the calculated SHA-256 of the firmware received.

#### Signed Firmware Update

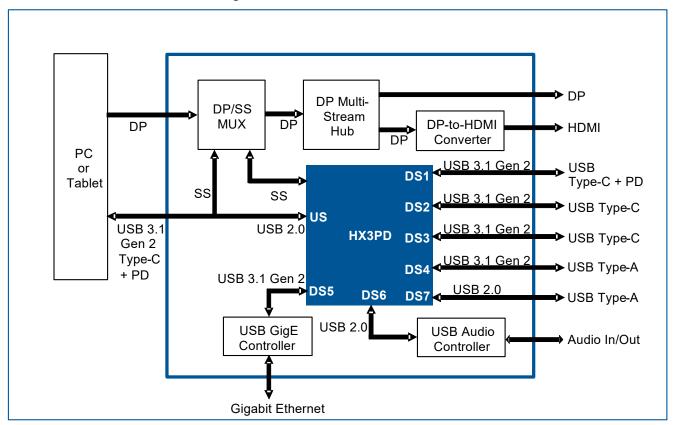
The signed firmware update follows the same procedure as the unsigned firmware update but is uses RSA-2018/SHA-256 for signing.

Contact Cypress customer support for more information on the signed firmware update.

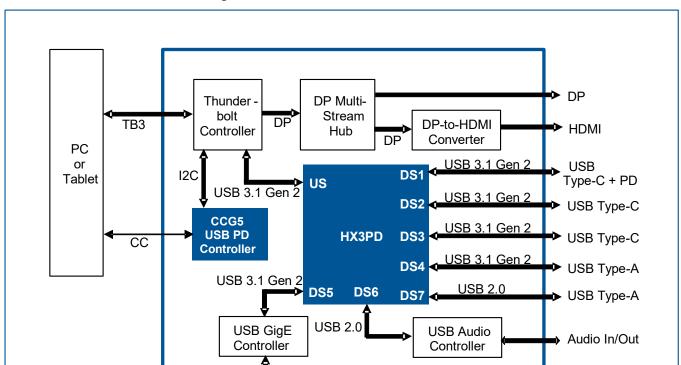


#### Crypto Block

HX3PD integrates a Crypto block for hardware assisted authentication of firmware images. It supports field upgradeability of firmware in a trusted ecosystem. The Crypto block provides cryptography functionality. It includes hardware acceleration blocks for Advanced Encryption Standard (AES) block cipher, Secure Hash Algorithm (SHA), Cyclic Redundancy Check (CRC), and pseudo random number generation.


### **Application Diagrams**

#### **Docking Stations**


Figure 2 and Figure 3 show USB-C Dock design application diagrams using HX3PD.

HX3PD integrates five chips (two 4-port USB Hubs, two USB-PD controllers, and Dock Management controller) in typical dock designs to a single chip; significantly reducing BOM and design complexity. HX3PD Dock solution provides seven downstream ports (five USB 3.1 Gen 2, and two USB 2.0) and supports PD 3.0, BC 1.2, and Apple charging standards. It also supports signed firmware upgrades via DMC, thereby enable to keep pace with future specification changes.

Figure 1. USB-C Dock for Notebook PCs







Gigabit Ethernet

Figure 2. Thunderbolt Dock for Notebook PCs



# **HX3PD Product Options**

Table 1. HX3PD Product Options

| Marketing<br>Part Number | Application                 | No of DS<br>Ports | US PD<br>Port | DS PD<br>Port | Legacy Charging on DS | USB<br>Billboard | Signed FW<br>Download | Package      |
|--------------------------|-----------------------------|-------------------|---------------|---------------|-----------------------|------------------|-----------------------|--------------|
| CYUSB4347                | Docking Station,<br>Monitor | 7                 | DRP           | DFP           | Yes                   | Yes              | No                    | 192-Ball BGA |
| CYUSB4357                | Docking Station,<br>Monitor | 7                 | DRP           | DFP           | Yes                   | Yes              | Yes                   | 192-Ball BGA |

# **Pinouts**

Figure 3. 192-Ball BGA Pin Diagram

|   | 1       | 2       | 3            | 4                        | 5                  | 6                          | 7               | 8                | 9            | 10               | 11           | 12               | 13      | 14      |
|---|---------|---------|--------------|--------------------------|--------------------|----------------------------|-----------------|------------------|--------------|------------------|--------------|------------------|---------|---------|
| Α | -       | DM_P7   | DP_P7        | VBUS<br>DISCHĀR<br>GE_P1 | VDDD               | XIN                        | XOUT            | HPD_P1           | I2C_SCL2     | SPI_MIS<br>O_DMC | DMC_P24      | DM_P6            | DP_P6   | _       |
| В | DM_P1   | DP_P1   | CC2_P0       | SWDCLK<br>_PD            | VBUS_M<br>ON_P1    | VCCD_P<br>D                | VSEL_<br>GPIO3  | VSEL_GPI<br>O4   | I2C_SDA2     | SPI_SS_<br>DMC   | DMC_P25      | DMC_P2           | DM_P2   | DP_P2   |
| С | TXP1_P1 | TXN1_P1 | VDDIO        | V5P0_P0                  | VBUS_C_<br>CTRL_P1 | OCP_DE<br>T_P1             | CC2_P1          | VCONN_M<br>ON_P1 | VDDD         | SWDIO_<br>DMC    | XRES_D<br>MC | VDDIO            | TXP2_P2 | TXN2_P2 |
| D | RXP1_P1 | RXN1_P1 | CC1_P0       | VBUS_M<br>ON_P0          | VSEL_GP<br>IO1     | VBUS_P_<br>CTRL_P1         | V5P0_P<br>1     | CC1_P1           | VCCD_DM<br>C | SWDCLK<br>_DMC   | I2C_SDA<br>1 | SPI_CLK<br>_DMC  | RXP2_P2 | RXN2_P2 |
| Е | RXN2_P1 | RXP2_P1 | PD_P15       | VBUS_P_<br>CTRL_P0       | HPD_P0             | VBUS -<br>DISCHĀR<br>GE_P0 | V5P0            | AVDD33           | PWREN_P      | PGANG            | I2C_SCL1     | DMC_P3           | RXN1_P2 | RXP1_P2 |
| F | TXN2_P1 | TXP2_P1 | SWDIO_P<br>D | DVDD10                   | VSEL_GP<br>IO2     | GND                        | GND             | GND              | GND          | OVCUR_<br>P2     | DVDD10       | SPI_MO<br>SI_DMC | TXN1_P2 | TXP1_P2 |
| G | TXP_P5  | TXN_P5  | V3P3         | V1P0_P7                  | OCP_DE<br>T_P0     | GND                        | GND             | GND              | GND          | I2C_S-<br>DA_HUB | V1P0_P6      | V3P3             | RXN_P4  | RXP_P4  |
| н | RXP_P5  | RXN_P5  | V1P0_P1      | VBUS_C_<br>CTRL_P0       | SPI_MOS<br>I_HUB   | GND                        | GND             | GND              | GND          | OVCUR_<br>P6     | V1P0_P2      | V1P0_P2          | TXN_P4  | TXP_P4  |
| J | DP_P5   | DM_P5   | V1P0_P1      | DVDD10                   | SPI_MIS<br>O_HUB   | PWREN_<br>P1               | GND             | GND              | GND          | PWREN_<br>P6     | DVDD10       | VDDIO            | DM_P4   | DP_P4   |
| ĸ | DM_P0   | DP_P0   | V1P0_P5      | XRES_P<br>D              | VCONN_<br>MON_P0   | OVCUR_<br>P1               | SPI_CL<br>K_HUB | AVDD10           | CC1_P2       | CC2_P2           | PSELF        | V1P0_P4          | DM_P3   | DP_P3   |
| L | TXP1_P0 | TXN1_P0 | V3P3         | V1P0_P0                  | OVCUR_<br>P5       | PWREN_<br>P5               | OVCUR<br>_P4    | CC1_P3           | CC2_P3       | VDDIO            | V1P0_P3      | V3P3             | TXP2_P3 | TXN2_P3 |
| М | RXP1_P0 | RXN1_P0 | V3P3         | V1P0_P0                  | I2C_S-<br>CL_HUB   | SPI_SS_<br>HUB             | VBUS            | RESET_H<br>UB    | CHIPEN       | RTERM            | OVCUR_<br>P7 | V1P0_P3          | RXP2_P3 | RXN2_P3 |
| N | RXN2_P0 | RXP2_P0 | PWREN_<br>P4 | V1P0_ME<br>M_B           | V1P0_ME<br>M_A     | V1P2                       | GPIO4_<br>HUB   | V1P0_PHY         | V1P0_PHY     | FB               | PWREN_<br>P3 | OVCUR_<br>P3     | RXP1_P3 | RXN1_P3 |
| Р | -       | TXN2_P0 | TXP2_P0      | V1P2                     | V1P2               | V1P2                       | GPIO3_<br>HUB   | V1P0_PHY         | V1P0_PHY     | V3P3_RE<br>G     | PWREN_<br>P7 | TXP1_P           | TXN1_P3 | -       |



Refer to the Application Note "AN222944 - HX3PD Hardware Design Guidelines and Checklist" for recommendation on individual pin schematics.

# **Pin Description**

| No.       | Pin Name             | Type     | Pin Number | Description                                        |
|-----------|----------------------|----------|------------|----------------------------------------------------|
| Upstream  | Port USB Signals     | <b>'</b> |            |                                                    |
| 1         | DP_P0                | I/O      | K2         | Upstream port USB 2.0 data plus                    |
| 2         | DM_P0                | I/O      | K1         | Upstream port USB 2.0 data minus                   |
| 3         | TXP1_P0              | 0        | L1         | Upstream port, SuperSpeed transmit plus lane 1     |
| 4         | TXN1_P0              | 0        | L2         | Upstream port, SuperSpeed transmit minus lane 1    |
| 5         | RXP1_P0              | I        | M1         | Upstream port, SuperSpeed receive plus lane 1      |
| 6         | RXN1_P0              | I        | M2         | Upstream port, SuperSpeed receive minus lane 1     |
| 7         | TXP2_P0              | 0        | P3         | Upstream port, SuperSpeed transmit plus lane 2     |
| 8         | TXN2_P0              | 0        | P2         | Upstream port, SuperSpeed transmit minus lane 2    |
| 9         | RXP2_P0              | I        | N2         | Upstream port, SuperSpeed receive plus lane 2      |
| 10        | RXN2_P0              | I        | N1         | Upstream port, SuperSpeed receive minus lane 2     |
| Downstrea | am Port1 USB Signals |          |            |                                                    |
| 11        | DP_P1                | I/O      | B2         | Downstream port1, USB 2.0 data plus                |
| 12        | DM_P1                | I/O      | B1         | Downstream port1, USB 2.0 data minus               |
| 13        | TXP1_P1              | 0        | C1         | Downstream port1, SuperSpeed transmit plus lane 1  |
| 14        | TXN1_P1              | 0        | C2         | Downstream port1, SuperSpeed transmit minus lane 1 |
| 15        | RXP1_P1              | I        | D1         | Downstream port1, SuperSpeed receive plus lane 1   |
| 16        | RXN1_P1              | I        | D2         | Downstream port1, SuperSpeed receive minus lane 1  |
| 17        | TXP2_P1              | 0        | F2         | Downstream port1, SuperSpeed transmit plus lane 2  |
| 18        | TXN2_P1              | 0        | F1         | Downstream port1, SuperSpeed transmit minus lane 2 |
| 19        | RXP2_P1              | I        | E2         | Downstream port1, SuperSpeed receive plus lane 2   |
| 20        | RXN2_P1              | I        | E1         | Downstream port1, SuperSpeed receive minus lane 2  |
| Downstrea | am Port2 USB Signals |          |            |                                                    |
| 21        | DP_P2                | I/O      | B14        | Downstream port2, USB 2.0 data plus                |
| 22        | DM_P2                | I/O      | B13        | Downstream port2, USB 2.0 data minus               |
| 23        | TXP1_P2              | 0        | F14        | Downstream port2, SuperSpeed transmit plus lane 1  |
| 24        | TXN1_P2              | 0        | F13        | Downstream port2, SuperSpeed transmit minus lane 1 |
| 25        | RXP1_P2              | I        | E14        | Downstream port2, SuperSpeed receive plus lane 1   |
| 26        | RXN1_P2              | I        | E13        | Downstream port2, SuperSpeed receive minus lane 1  |
| 27        | TXP2_P2              | 0        | C13        | Downstream port2, SuperSpeed transmit plus lane 2  |
| 28        | TXN2_P2              | 0        | C14        | Downstream port2, SuperSpeed transmit minus lane 2 |
| 29        | RXP2_P2              | I        | D13        | Downstream port2, SuperSpeed receive plus lane 2   |
| 30        | RXN2_P2              | I        | D14        | Downstream port2, SuperSpeed receive minus lane 2  |
| Downstrea | am Port3 USB Signals |          |            |                                                    |
| 31        | DP_P3                | I/O      | K14        | Downstream port3, USB 2.0 data plus                |
| 32        | DM_P3                | I/O      | K13        | Downstream port3, USB 2.0 data minus               |
| 33        | TXP1_P3              | 0        | P12        | Downstream port3, SuperSpeed transmit plus lane 1  |



| No.             | Pin Name             | Туре | Pin Number | Description                                        |
|-----------------|----------------------|------|------------|----------------------------------------------------|
| 34              | TXN1_P3              | 0    | P13        | Downstream port3, SuperSpeed transmit minus lane 1 |
| 35              | RXP1_P3              | I    | N13        | Downstream port3, SuperSpeed receive plus lane 1   |
| 36              | RXN1_P3              | I    | N14        | Downstream port3, SuperSpeed receive minus lane 1  |
| 37              | TXP2_P3              | 0    | L13        | Downstream port3, SuperSpeed transmit plus lane 2  |
| 38              | TXN2_P3              | 0    | L14        | Downstream port3, SuperSpeed transmit minus lane 2 |
| 39              | RXP2_P3              | I    | M13        | Downstream port3, SuperSpeed receive plus lane 2   |
| 40              | RXN2_P3              | I    | M14        | Downstream port3, SuperSpeed receive minus lane 2  |
| Downstre        | am Port4 USB Signals |      |            |                                                    |
| 41              | DP_P4                | I/O  | J14        | Downstream port4, USB 2.0 data plus                |
| 42              | DM_P4                | I/O  | J13        | Downstream port4, USB 2.0 data minus               |
| 43              | TXP_P4               | 0    | H14        | Downstream port4, SuperSpeed transmit plus         |
| 44              | TXN_P4               | 0    | H13        | Downstream port4, SuperSpeed transmit minus        |
| 45              | RXP_P4               | I    | G14        | Downstream port4, SuperSpeed receive plus          |
| 46              | RXN_P4               | I    | G13        | Downstream port4, SuperSpeed receive minus         |
| Downstre        | am Port5 USB Signals |      |            |                                                    |
| 47              | DP_P5                | I/O  | J1         | Downstream port5, USB 2.0 data plus                |
| 48              | DM_P5                | I/O  | J2         | Downstream port5, USB 2.0 data minus               |
| 49              | TXP_P5               | 0    | G1         | Downstream port5, SuperSpeed transmit plus         |
| 50              | TXN_P5               | 0    | G2         | Downstream port5, SuperSpeed transmit minus        |
| 51              | RXP_P5               | I    | H1         | Downstream port5, SuperSpeed receive plus          |
| 52              | RXN_P5               | I    | H2         | Downstream port5, SuperSpeed receive minus         |
| Downstre        | am Port6 USB Signals |      |            |                                                    |
| 53              | DP_P6                | I/O  | A13        | Downstream port6, USB 2.0 data plus                |
| 54              | DM_P6                | I/O  | A12        | Downstream port6, USB 2.0 data minus               |
| Downstre        | am Port7 USB Signals |      |            |                                                    |
| 55              | DP_P7                | I/O  | A3         | Downstream port7, USB 2.0 data plus                |
| 56              | DM_P7                | I/O  | A2         | Downstream port7, USB 2.0 data minus               |
| <b>USB Port</b> | Control Signals      |      |            |                                                    |
| 57              | OVCUR_P1             | I    | K6         | Downstream port1, Active low Over current detect   |
| 58              | OVCUR_P2             | I    | F10        | Downstream port2, Active low Over current detect   |
| 59              | OVCUR_P3             | I    | N12        | Downstream port3, Active low Over current detect   |
| 60              | OVCUR_P4             | I    | L7         | Downstream port4, Active low Over current detect   |
| 61              | OVCUR_P5             | I    | L5         | Downstream port5, Active low Over current detect   |
| 62              | OVCUR_P6             | I    | H10        | Downstream port6, Active low Over current detect   |
| 63              | OVCUR_P7             | I    | M11        | Downstream port7, Active low Over current detect   |
| 64              | PWREN_P1             | 0    | J6         | Downstream port1, Active low Power enable          |
| 65              | PWREN_P2             | 0    | E9         | Downstream port2, Active low Power enable          |
| 66              | PWREN_P3             | 0    | N11        | Downstream port3, Active low Power enable          |
| 67              | PWREN_P4             | 0    | N3         | Downstream port4, Active low Power enable          |
| 68              | PWREN_P5             | 0    | L6         | Downstream port5, Active low Power enable          |



| No.      | Pin Name          | Туре | Pin Number | Description                                                                                                                    |
|----------|-------------------|------|------------|--------------------------------------------------------------------------------------------------------------------------------|
| 69       | PWREN_P6          | 0    | J10        | Downstream port6, Active low Power enable                                                                                      |
| 70       | PWREN_P7          | 0    | P11        | Downstream port7, Active low Power enable                                                                                      |
| 71       | VBUS              | I    | M7         | Upstream VBUS input                                                                                                            |
| Upstream | n PD Control      |      |            |                                                                                                                                |
| 72       | VBUS_MON_P0       | Α    | D4         | GPIO used as VBUS monitor for Upstream PD port                                                                                 |
| 73       | VCONN_MON_P0      | PWR  | K5         | VCONN monitor for Upstream PD port                                                                                             |
| 74       | VBUS_P_CTRL_P0    | I/O  | E4         | GPIO used for controlling provider power switch of Upstream PD port                                                            |
| 75       | VBUS_C_CTRL_P0    | I/O  | H4         | GPIO used for controlling consumer power switch of Upstream PD port                                                            |
| 76       | VBUS_DISCHARGE_P0 | I/O  | E6         | GPIO for controlling VBUS discharge switch of<br>Upstream PD port                                                              |
| Downstre | eam PD Control    |      |            |                                                                                                                                |
| 77       | VBUS_MON_P1       | Α    | B5         | GPIO used as VBUS monitor for Downstream PD port                                                                               |
| 78       | VCONN_MON_P1      | PWR  | C8         | VCONN monitor for Downstream PD port                                                                                           |
| 79       | VBUS_P_CTRL_P1    | I/O  | D6         | GPIO used for controlling provider power switch of Downstream PD port                                                          |
| 80       | VBUS_C_CTRL_P1    | I/O  | C5         | GPIO used for controlling consumer power switch of Downstream PD port                                                          |
| 81       | VBUS_DISCHARGE_P1 | I/O  | A4         | GPIO for controlling VBUS discharge switch of Downstream PD port                                                               |
| Type-C P | D Control Signals |      |            | ·                                                                                                                              |
| 82       | CC1_P0            | Α    | D3         | Upstream port connect detect/Configuration Channel 1                                                                           |
| 83       | CC1_P1            | Α    | D8         | Downstream port1 connect detect/Configuration<br>Channel 1                                                                     |
| 84       | CC1_P2            | Α    | K9         | Downstream port2 connect detect/Configuration<br>Channel 1                                                                     |
| 85       | CC1_P3            | Α    | L8         | Downstream port3 connect detect/Configuration<br>Channel 1                                                                     |
| 86       | CC2_P0            | Α    | В3         | Upstream port connect detect/Configuration Channel 2                                                                           |
| 87       | CC2_P1            | Α    | C7         | Downstream port1 connect detect/Configuration<br>Channel 2                                                                     |
| 88       | CC2_P2            | Α    | K10        | Downstream port2 connect detect/Configuration<br>Channel 2                                                                     |
| 89       | CC2_P3            | Α    | L9         | Downstream port3 connect detect/Configuration<br>Channel 2                                                                     |
| 90       | OCP_DET_P0        | I    | G5         | Over current detection input for upstream Type-C port                                                                          |
| 91       | OCP_DET_P1        | I    | C6         | Over current detection input for downstream Type-C port 1                                                                      |
| 92       | VSEL_GPIO1        | I/O  | D5         | GPIO for selecting VBUS voltage level of PD ports;<br>When used for I2C interface, this pin must be used as<br>I2C_MASTER_SDA. |
| 93       | VSEL_GPIO2        | I/O  | F5         | GPIO for selecting VBUS voltage level of PD ports;<br>When used for I2C interface, this pin must be used as<br>I2C_MASTER_SCL. |



| No.         | Pin Name                | Туре | Pin Number | Description                                                                  |
|-------------|-------------------------|------|------------|------------------------------------------------------------------------------|
| 94          | VSEL_GPIO3              | I/O  | B7         | GPIO                                                                         |
| 95          | VSEL_GPIO4              | I/O  | B8         | GPIO                                                                         |
| SPI, I2C, a | nd GPIOs                | L    |            |                                                                              |
| 96          | SPI_CLK_HUB             | 0    | K7         | SPI clock. Connect to SPI EEPROM                                             |
| 97          | SPI_SS_HUB              | 0    | M6         | SPI select. Connect to SPI EEPROM                                            |
| 98          | SPI_MISO_HUB            | I    | J5         | SPI data in. Connect to SPI EEPROM                                           |
| 99          | SPI_MOSI_HUB            | 0    | H5         | SPI data out. Connect to SPI EEPROM                                          |
| 100         | SPI_MISO_DMC            | I/O  | A10        | SPI data in. This SPI interface from DMC block                               |
| 101         | SPI_SS_DMC              | I/O  | B10        | SPI slave select. This SPI interface from DMC block                          |
| 102         | SPI_MOSI_DMC            | I/O  | F12        | SPI data out. This SPI interface from DMC block                              |
| 103         | SPI_CLK_DMC             | I/O  | D12        | SPI clock. This SPI interface from DMC block                                 |
| 104         | I2C_SCL1                | I/O  | E11        | I2C clock - 1; Connected to DMC (I2C master)                                 |
| 105         | I2C_SDA1                | I/O  | D11        | I2C data - 1; Connected to DMC (I2C master)                                  |
| 106         | I2C_SCL2                | I/O  | A9         | I2C clock - 2; Connected to DMC (I2C slave)                                  |
| 107         | I2C_SDA2                | I/O  | B9         | I2C data - 2; Connected to DMC (I2C slave)                                   |
| 108         | I2C_SCL_HUB             | I/O  | M5         | I2C clock, Connected to Hub controller (I2C slave) block                     |
| 109         | I2C_SDA_HUB             | I/O  | G10        | I2C data, Connected to Hub controller (I2C slave) block                      |
| 110         | GPIO3_HUB               | I/O  | P7         | GPIO from Hub                                                                |
| 111         | GPIO4_HUB               | I/O  | N7         | GPIO from Hub                                                                |
| 112         | DMC_P24                 | I/O  | A11        | GPIO                                                                         |
| 113         | DMC_P25                 | I/O  | B11        | GPIO                                                                         |
| 114         | DMC_P26                 | I/O  | B12        | GPIO                                                                         |
| 115         | DMC_P32                 | I/O  | E12        | GPIO                                                                         |
| 116         | HPD_P0                  | I/O  | E5         | GPIO used as Hot plug detect input from DisplayPort (DP) of Upstream PD port |
| 117         | HPD_P1                  | I/O  | A8         | GPIO used as Hot plug detect output to DP of Downstream PD port              |
| 118         | PD_P15                  | I/O  | E3         | GPIO                                                                         |
| Clock, Res  | et, Debug, and Mode Sel | ect  |            |                                                                              |
| 119         | XIN                     | Α    | A6         | Crystal In                                                                   |
| 120         | XOUT                    | Α    | A7         | Crystal Out                                                                  |
| 121         | CHIPEN                  | I    | M9         | Chip enable, Recommend to connect it HIGH. Chip has a weak internal pull-up. |
| 122         | RESET_HUB               | I    | M8         | Active Low reset input of hub controller                                     |
| 123         | XRES_DMC                | I    | C11        | Active Low reset input of DMC                                                |
| 124         | XRES_PD                 | I    | K4         | Active Low reset input of PD controller                                      |
| 125         | SWDCLK_DMC              | I/O  | D10        | SWD clock input for DMC                                                      |
| 126         | SWDIO_DMC               | I/O  | C10        | SWD data I/O for DMC                                                         |
| 127         | SWDCLK_PD               | I/O  | B4         | SWD clock input for PD controller                                            |
| 128         | SWDIO_PD                | I/O  | F3         | SWD data I/O for PD controller                                               |



| No.        | Pin Name     | Type | Pin Number                                                       | Description                                                                                              |
|------------|--------------|------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 129        | PSELF        | I    | K11                                                              | Self/Bus power mode: This pin must be pulled HIGH for SELF power mode and pulled LOW for BUS power mode. |
| 130        | PGANG        | I    | E10                                                              | Gang/Individual mode: This pin must be pulled HIGH for GANG mode and pulled LOW for INDIVIDUAL mode.     |
| 131        | RTERM        | А    | M10                                                              | Connect this pin to a precision resistor (20 kΩ ±1%)                                                     |
| Ground, Po | ower, and NC |      |                                                                  |                                                                                                          |
| 132        | AVDD10       | PWR  | K8                                                               | 1.0-V Input (1.0-V power for Analog)                                                                     |
| 133        | AVDD33       | PWR  | E8                                                               | 3.3-V Input (3.3-V power for Analog)                                                                     |
| 134–137    | DVDD10       | PWR  | F4, F11, J4, J11                                                 | 1.0-V Input (1.0-V power for Digital)                                                                    |
| 138        | FB           | PWR  | N10                                                              | Reserved. Connect this pin to Ground.                                                                    |
| 139        | VCCD_DMC     | PWR  | D9                                                               | Regulator output of DMC                                                                                  |
| 140        | VCCD_PD      | PWR  | B6                                                               | Regulator output of PD controller                                                                        |
| 141–144    | VDDIO        | PWR  | C3, C12, L10, J12                                                | 3.3-V I/O supply                                                                                         |
| 145        | VDDD (DMC)   | PWR  | C9                                                               | 3.3-V supply for DMC                                                                                     |
| 146        | VDDD (PD)    | PWR  | A5                                                               | 3.3-V supply for PD controller                                                                           |
| 147        | V1P0_MEM_A   | PWR  | N5                                                               | 1.0-V supply for internal memory                                                                         |
| 148        | V1P0_MEM_B   | PWR  | N4                                                               | 1.0-V supply for internal memory                                                                         |
| 149–150    | V1P0_P0      | PWR  | L4, M4                                                           | 1.0-V supply for US port                                                                                 |
| 151–152    | V1P0_P1      | PWR  | J3, H3                                                           | 1.0-V supply for port 1                                                                                  |
| 153–154    | V1P0_P2      | PWR  | H12, H11                                                         | 1.0-V supply for port 2                                                                                  |
| 155–156    | V1P0_P3      | PWR  | M12, L11                                                         | 1.0-V supply for port 3                                                                                  |
| 157        | V1P0_P4      | PWR  | K12                                                              | 1.0-V supply for port 4                                                                                  |
| 158        | V1P0_P5      | PWR  | K3                                                               | 1.0-V supply for port 5                                                                                  |
| 159        | V1P0_P6      | PWR  | G11                                                              | 1.0-V supply for port 6                                                                                  |
| 160        | V1P0_P7      | PWR  | G4                                                               | 1.0-V supply for port 7                                                                                  |
| 161–164    | V1P0_PHY     | PWR  | P8, N8, P9, N9                                                   | 1.0-V supply for PHY                                                                                     |
| 165–168    | V1P2         | PWR  | P4, P5, P6, N6                                                   | 1.2-V input for internal LDO                                                                             |
| 169        | V3P3_REG     | PWR  | P10                                                              | 3.3-V input for internal LDO. Connect to VDDIO                                                           |
| 170–174    | V3P3         | PWR  | L3, G3, G12, L12, M3                                             | 3.3-V supply for USB 2.0                                                                                 |
| 175        | V5P0_P0      | PWR  | C4                                                               | 5-V VCONN input to Upstream PD port                                                                      |
| 176        | V5P0_P1      | PWR  | D7                                                               | 5-V VCONN input to Downstream PD port                                                                    |
| 177        | V5P0         | PWR  | E7                                                               | 5-V input supply to hub controller                                                                       |
| 178–192    | GND          | GND  | F6, F7, F8, F9, G6,<br>G7, G8, G9, H6, H7,<br>H8, H9, J7, J8, J9 | Ground                                                                                                   |



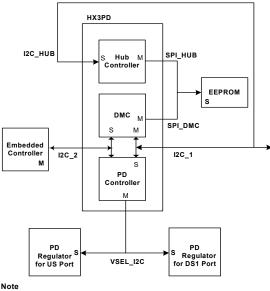
### **System Interfaces**

### **Upstream Port (US)**

The HX3PD USB port can function in Type-C or Legacy Type-B modes; it operates in the USB 3.1 Gen 2 (10 Gbps) specification. This port includes an integrated 1.5-k $\Omega$  pull-up resistor and termination resistors. The HX3PD US port has an integrated PD controller, which supports the PD 3.0 specification and can charge up to 5A at 20 V.

#### Downstream Ports (DS1, 2, 3, 4, 5, 6, 7)

The following table summarizes the operations of HX3PD DS ports.


Table 2. Operations of HX3PD DS Ports

| DS<br>Port | Connector | USB<br>Speed     | Charging Mode | Max Charging<br>Current |
|------------|-----------|------------------|---------------|-------------------------|
| DS1        | Type-C    | USB 3.1<br>Gen 2 | PD 3.0        | 5A at 20 V              |
| DS2        | Type-C    | USB 3.1<br>Gen 2 | BC 1.2, Apple | 3A at 5 V               |
| DS3        | Type-C    | USB 3.1<br>Gen 2 | BC 1.2, Apple | 3A at 5 V               |
| DS4        | Type-A    | USB 3.1<br>Gen 2 | BC 1.2, Apple | 2.4A at 5 V             |
| DS5        | Type-A    | USB 3.1<br>Gen 2 | BC 1.2, Apple | 2.4A at 5 V             |
| DS6        | Type-A    | USB 2.0          | BC 1.2, Apple | 2.4A at 5 V             |
| DS7        | Type-A    | USB 2.0          | BC 1.2, Apple | 2.4A at 5 V             |

Three HX3PD DS ports (DS1, DS2, and DS3) work in the Type-C mode. The other ports work in the Type-A mode. USB 3.1 Gen 2 (10 Gbps) is supported in ports DS1 to DS5 and USB 2.0 (480 Mbps) is supported in ports DS6 and DS7. All DS ports support, by default, the Battery Charging Specification 1.2. DS1 has an integrated PD controller which supports the PD 3.0 specification. Port enable/disable and charging modes shall be configured using configuration options.

#### **Communication Interfaces**

Figure 4. Communication Interfaces



M = Master; S = Slave

HX3PD supports SPI and I<sup>2</sup>C interfaces for communications between individual blocks and with the Embedded Controller (EC).

HX3PD has two SPI and four I<sup>2</sup>C interfaces.

#### SPI\_HUB

This interface is connected to an SPI EEPROM. Hub controller uses this interface to read firmware and configurations from EEPROM.

#### SPI DMC

DMC also shall access SPI EEPROM using the SPI\_DMC interface.

#### I2C\_1

The  $I^2C$  interface I2C-1 is connected to the DMC and PD controllers. DMC acts as an  $I^2C$  master and PD controller acts as the  $I^2C$  slave for this interface.

#### I2C\_2

The  $I^2C$  interface I2C-2 is connected to the DMC and PD controllers – DMC  $I^2C$  is a slave; and PD  $I^2C$  is unused with default firmware. An external  $I^2C$  master, such as Embedded Controller (EC), shall use this interface to communicate to the DMC and PD controllers.

#### I2C\_HUB

The  $I^2C$  interface  $I^2C$ \_HUB is connected to the Hub controller – Hub controller acting as  $I^2C$  slave. DMC shall access  $I^2C$ \_HUB by connecting externally using  $I^2C_1$  to read hub status and write hub configurations.



#### VSEL\_I2C

VSEL\_GPIO1 and VSEL\_GPIO2 shall be used for selecting the VBUS voltage level of PD ports. VSEL\_GPIO1 acts as I2C\_MASTER\_SDA and VSEL\_GPIO2 acts as I2C\_MASTER\_SCL. These pins must be connected to the external NCP's I<sup>2</sup>C interface to configure voltage levels for PD ports.

#### Reset

There are three reset pins for the HX3PD device. These pins control reset operations for the Hub controller (RESET\_HUB), reset to DMC (XRES\_DMC), and reset to PD controller (XRES\_PD). Additionally, the HX3PD reset shall be controlled by DMC using a Software reset mechanism during configuration and initialization.

#### Clock

HX3PD requires an external crystal connected to XIN/XOUT with 25 MHz ( $\pm 150$  ppm), parallel resonant, fundamental mode, and be capable of low drive level (<200  $\mu$ W) with a peak-to-peak jitter less than 50 ps.

#### **Configuration Options**

EZ-USB HX3PD Configuration tool can be used to update firmware and configurations of Hub controller, PD controller, and DMC. Firmware and configuration image for the hub controller is stored in an external SPI EEPROM. PD controller and DMC controller images will be stored in device flash.

Following configuration options are available in EZ-USB HX3PD Configuration tool.

Table 3. EZ-USB HX3PD Configuration Options

| No              | Settings                           | Description                                                                                                                                                                                                              |  |  |  |
|-----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <b>Hub Cont</b> | roller Configurations              |                                                                                                                                                                                                                          |  |  |  |
| 1               | VID                                | Custom Vendor ID                                                                                                                                                                                                         |  |  |  |
| 2               | USB 2.0 PID                        | Custom Product ID for USB 2.0 Hub                                                                                                                                                                                        |  |  |  |
| 3               | USB 3.1 PID                        | Custom Product ID for USB 3.1 Hub                                                                                                                                                                                        |  |  |  |
| 4               | Power good time                    | Time for Power-On sequence start in a port to Power is good to that port                                                                                                                                                 |  |  |  |
| 5               | PolyFuse                           | Set the hub for polyfuse mode operation. Power good time is set to '0' for polyfused mode                                                                                                                                |  |  |  |
| 6               | String descriptor: Vendor          | String descriptor for Vendor name                                                                                                                                                                                        |  |  |  |
| 7               | String descriptor: USB 2.0 Product | String descriptor for USB 2.0 Hub Product Name                                                                                                                                                                           |  |  |  |
| 8               | String descriptor: USB 3.1 Product | String descriptor for USB 3.1 Hub Product Name                                                                                                                                                                           |  |  |  |
| 9               | Serial                             | Product Serial Number                                                                                                                                                                                                    |  |  |  |
| 10              | Number of USB 2.0 ports            | Number of active USB 2.0 ports                                                                                                                                                                                           |  |  |  |
| 11              | Number of USB 3.1 ports            | Number of active USB 3.1 ports.  Note "Number of USB 3.1 ports" should be equal or lower than "Number of US 2.0 ports".                                                                                                  |  |  |  |
| 12              | Charging port                      | Enable or disable of BC 1.2 or Apple charging for DS ports                                                                                                                                                               |  |  |  |
| 13              | Compound hub                       | Removable or non-removable settings for DS ports.  Note DMC port is always set as "Non-removable".                                                                                                                       |  |  |  |
| 14              | DFP fast charging                  | Enable or disable of CDP, Pure DCP, and Auto DCP modes in downstream ports <b>Note</b> Pure DCP used for compliance tests. Auto DCP allows fast charging for Apple 2.1A/2.4A supported device or Samsung Galaxy devices. |  |  |  |
| 15              | USB type-C current                 | Maximum Type-C current, 1.5A or 3.0 A                                                                                                                                                                                    |  |  |  |
| 16              | High active power switch           | Enable Active-High power switch                                                                                                                                                                                          |  |  |  |
| PD Contro       | oller Configurations               |                                                                                                                                                                                                                          |  |  |  |
| 1               | VID                                | PD controller Vendor ID                                                                                                                                                                                                  |  |  |  |
| 2               | PID                                | PD controller Product ID                                                                                                                                                                                                 |  |  |  |
| 3               | PD version                         | PD version supported by device. PD controller support PD 2.0 and PD 3.0 versions supported.                                                                                                                              |  |  |  |
| 4               | Port power role                    | Selection of Sink, Source, or Dual Role modes                                                                                                                                                                            |  |  |  |
| 5               | Rp supported                       | Rp values supported by the PD ports. Both PD ports support Default, 1.5A and 3A current levels                                                                                                                           |  |  |  |

Document Number: 002-16615 Rev. \*F Page 13 of 22



 Table 3. EZ-USB HX3PD Configuration Options (continued)

| No                            | Settings                  | Description                                                                                               |  |  |  |
|-------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| Hub Controller Configurations |                           |                                                                                                           |  |  |  |
| 6                             | Power data objects (PDOs) | Power source and sink capabilities of the PD ports. Default PD firmware support 5V, 9V, 15V and 20V PDOs. |  |  |  |
| 7                             | Overvoltage protection    | Enable, threshold, and debounce of Over voltage protection                                                |  |  |  |
| 8                             | Overcurrent protection    | Enable, threshold, and debounce of Over current protection                                                |  |  |  |
| 9                             | VCONN OCP                 | Enable, threshold, and debounce of VCONN over current protection                                          |  |  |  |
| DMC Con                       | troller Configurations    |                                                                                                           |  |  |  |
| 1                             | VID                       | DMC Vendor ID                                                                                             |  |  |  |
| 2                             | PID                       | DMC Product ID                                                                                            |  |  |  |
| 3                             | Billboard enable          | Billboard enable selection                                                                                |  |  |  |

You can download the EZ-USB HX3PD Configuration tool and its associated documentation at the following link: www.cypress.com/products/ez-usb-hx3pd-usb-31-gen-2-hub-power-delivery

Document Number: 002-16615 Rev. \*F Page 14 of 22



# **Absolute Maximum Ratings**

Exceeding maximum ratings may shorten the useful life of the device.

# **Electrical Specifications**

HX3PD meets all USB-IF Electrical Compliance specifications.

#### **DC Electrical Characteristics**

| Parameter                               | Description                                             | Min  | Тур | Max  | Unit |  |  |
|-----------------------------------------|---------------------------------------------------------|------|-----|------|------|--|--|
| V1P2                                    | 1.2-V voltage supply                                    | 1.14 | 1.2 | 1.26 | V    |  |  |
| $V_{DDIO}$                              | 3.3-V I/O voltage supply                                | 3.0  | 3.3 | 3.6  | V    |  |  |
| V3P3                                    | 3.3-V voltage supply                                    | 3    | 3.3 | 3.6  | V    |  |  |
| $V_{DD10}$                              | 1.0-V core supply voltage                               | 0.95 | 1.0 | 1.05 | V    |  |  |
| V3P3_U2                                 | 3.3-V supply for the USB 2.0 PHY                        | 3    | 3.3 | 3.6  | V    |  |  |
| V <sub>DDD (PD)</sub>                   | 3.3-V supply input to PD controller                     | 3    | 3.3 | 5.5  | V    |  |  |
| V <sub>CCD_PD</sub>                     | Regulator output for PD controller                      | _    | 1.8 | _    | V    |  |  |
| V <sub>DDD (DMC)</sub>                  | 3.3-V supply input to DMC                               | 2.7  | 3.3 | 5.5  | V    |  |  |
| V <sub>CCD_DMC</sub>                    | Regulator output for DMC                                | _    | 1.8 | _    | V    |  |  |
| V <sub>BUS</sub>                        | VBUS for upstream port                                  | 0    | 5   | 5.25 | V    |  |  |
| V5P0_P0                                 | VCONN input to Upstream PD port                         | 2.7  | _   | 5.5  | V    |  |  |
| V5P0_P1                                 | VCONN input to Downstream PD port                       | 2.7  | _   | 5.5  | V    |  |  |
| VRAMP                                   | Voltage ramp rate on core and I/O supplies              | 0.05 | _   | 5    | V/s  |  |  |
| ESD_HBM                                 | Electrostatic discharge human body model                | _    | _   | 2200 | V    |  |  |
| ESD_CDM                                 | Electrostatic discharge charged device model            | _    | _   | 500  | V    |  |  |
| LU                                      | Pin current for latch-up                                | -100 | _   | 100  | mA   |  |  |
| Power Supply                            | Specifications                                          | ·    |     |      |      |  |  |
| ICC12                                   | 1.2 V supplies operating current                        | _    | _   | 750  | mA   |  |  |
| Icc33                                   | 3.3 V supplies operating current                        | _    | _   | 70   | mA   |  |  |
| ISB12                                   | 1.2 V supplies combined suspend current                 | _    | 23  | _    | mA   |  |  |
| ISB33                                   | 3.3 V supplies combined suspend current                 | _    | 3   | _    | mA   |  |  |
| I/O Specifications - Except USB Signals |                                                         |      |     |      |      |  |  |
| V <sub>IH</sub>                         | Input voltage HIGH threshold                            | 2    | _   | 5.5  | V    |  |  |
| V <sub>IL</sub>                         | Input voltage LOW threshold                             | _    | _   | 0.8  | V    |  |  |
| V <sub>OH</sub>                         | Output voltage HIGH level (when I <sub>OH</sub> = 4 mA) | 2.4  | _   | _    | V    |  |  |
| V <sub>OL</sub>                         | Output voltage LOW level (when I <sub>OL</sub> = 8 mA)  | _    | _   | 0.4  | V    |  |  |
| I <sub>IL</sub>                         | Input leakage current                                   | -1   | _   | 1    | μΑ   |  |  |



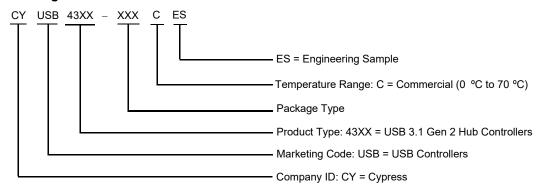
### **Power Consumption**

Table 4 provides the power consumption estimates for HX3PD under different conditions.

**Table 4. Power Consumption** 

|                      | Hole On small on O small bloom            | Measured Current (mA) |      |  |
|----------------------|-------------------------------------------|-----------------------|------|--|
|                      | Hub Operating Condition                   | V1P2                  | V3P3 |  |
| Upstream not connec  | ted to Host                               | 22.2                  | 2.3  |  |
| Hub in Suspend Mode  | 9                                         | 22.3                  | 2.8  |  |
| Connected to Host ar | nd Hub in Idle Mode                       | 228.0                 | 54.6 |  |
| Write                | 1 USB 3.1 device connected                | 325.0                 | 59.4 |  |
|                      | 2 USB 3.1 devices connected               | 418.7                 | 59.4 |  |
|                      | 3 USB 3.1 devices connected               | 517.0                 | 59.4 |  |
|                      | 4 USB 3.1 devices connected               | 607.0                 | 59.4 |  |
|                      | 5 USB 3.1 devices connected               | 700.7                 | 59.4 |  |
|                      | 5 USB 3.1 and 1 USB 2.0 devices connected | 705.7                 | 59.4 |  |
|                      | 5 USB 3.1 and 2 USB 2.0 devices connected | 712.0                 | 59.4 |  |
| Read                 | 1 USB 3.1 device connected                | 318.3                 | 58.9 |  |
|                      | 2 USB 3.1 devices connected               | 412.7                 | 58.9 |  |
|                      | 3 USB 3.1 devices connected               | 507.0                 | 58.9 |  |
|                      | 4 USB 3.1 devices connected               | 597.7                 | 58.9 |  |
|                      | 5 USB 3.1 devices connected               | 690.3                 | 58.9 |  |
|                      | 5 USB 3.1 and 1 USB 2.0 devices connected | 696.3                 | 58.9 |  |
|                      | 5 USB 3.1 and 2 USB 2.0 devices connected | 703.0                 | 58.9 |  |

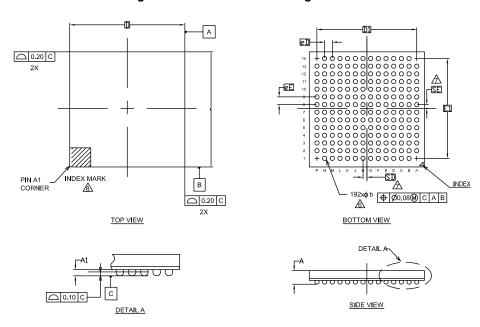



# **Ordering Information**

The following table lists HX3PD's ordering information. The table contains only the part numbers that are currently available for order. Additional part numbers with customized configurations can be made available on request. For more information, visit the Cypress website or contact the local sales representative.

Table 5. Ordering Information

| Ordering Part Number | No of Ports | US PD Port | DS PD Port | Signed FW<br>Download |
|----------------------|-------------|------------|------------|-----------------------|
| CYUSB4347-BZXCES     | 7           | DRP        | DFP        | No                    |
| CYUSB4357-BZXCES     | 7           | DRP        | DFP        | Yes                   |


### **Ordering Code Definitions**





### **Package Diagram**

Figure 5. 192-Ball FBGA Package Outline



| SYMBOL  | DIN       | DIMENSIONS |      |  |
|---------|-----------|------------|------|--|
| STWIBOL | MIN. NOM. |            | MAX. |  |
| А       | _         |            | 1.45 |  |
| A1      | 0.25      | 0.35       | 0.45 |  |
| D       | 12.00 BSC |            |      |  |
| E       | 1         | 2.00 BS    | С    |  |
| D1      | 10.40 BSC |            |      |  |
| E 1     | 10.40 BSC |            |      |  |
| MD      | 14        |            |      |  |
| ME      | 14        |            |      |  |
| n       | 192       |            |      |  |
| ФЬ      | 0.35      | 0.45       | 0.55 |  |
| eD      | 0.80 BSC  |            |      |  |
| еE      | 0.80 BSC  |            |      |  |
| SD/SE   | 0.40 BSC  |            |      |  |

#### <u>NOTES</u>

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONS AND TOLERANCES METHODS PER ASME Y14.5-2009. THIS OUTLINE CONFORMS TO JEP95, SECTION 4.5.
- 3. BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-010.
- 4. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. IN IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- ⚠ DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- ∴ "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND

  DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.

  WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW,

  "SD" OR "SE" =0.
- WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.
- ⚠ A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK. METALLIZED MARK INDENTATION OR OTHER MEANS.
- 9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.

002-13493 \*A



# Acronyms

Table 6. Acronyms Used in this Document

| Acronym | Description                                            |  |  |
|---------|--------------------------------------------------------|--|--|
| AES     | Advanced Encryption Standard                           |  |  |
| ВС      | Battery Charging                                       |  |  |
| CC      | Configuration Channel                                  |  |  |
| CDP     | Charging Downstream Port                               |  |  |
| CPU     | Central Processing Unit                                |  |  |
| CRC     | Cyclic Redundancy Check, an Error-Checking Protocol    |  |  |
| DS      | DownStream                                             |  |  |
| DCP     | Dedicated Charging Port                                |  |  |
| DFP     | Downstream Facing Port                                 |  |  |
| DMC     | Dock Management Controller                             |  |  |
| DNU     | Do Not Use                                             |  |  |
| DP      | DisplayPort                                            |  |  |
| DRP     | Dual-Role Power Port                                   |  |  |
| DWG     | Device Working Group                                   |  |  |
| EC      | Embedded Controller                                    |  |  |
| EEPROM  | Electrically Erasable Programmable Read-Only Memory    |  |  |
| FS      | Full-Speed                                             |  |  |
| FW      | FirmWare                                               |  |  |
| GND     | GrouND                                                 |  |  |
| GPIO    | General-Purpose Input/Output                           |  |  |
| HS      | Hi-Speed                                               |  |  |
| I2C     | Inter Integrated Circuit, a communications protocol    |  |  |
| ISP     | In-System Programming                                  |  |  |
| I/O     | Input/Output                                           |  |  |
| LS      | Low-Speed                                              |  |  |
| MCU     | Microcontroller Unit                                   |  |  |
| NC      | No Connect                                             |  |  |
| OTG     | On-The-Go                                              |  |  |
| PD      | Power Delivery                                         |  |  |
| PID     | Product ID                                             |  |  |
| POR     | Power-On Reset                                         |  |  |
| ROM     | Read-Only Memory                                       |  |  |
| SCL     | Serial CLock                                           |  |  |
| SDA     | Serial DAta                                            |  |  |
| SHA     | Secure Hash Algorithm                                  |  |  |
| SPI     | Serial Peripheral Interface, a communications protocol |  |  |

Table 6. Acronyms Used in this Document

| Acronym | Description            |  |  |  |
|---------|------------------------|--|--|--|
| SS      | SuperSpeed             |  |  |  |
| TT      | Transaction Translator |  |  |  |
| UFP     | Upstream Facing Port   |  |  |  |
| US      | UpStream               |  |  |  |
| USB     | Universal Serial Bus   |  |  |  |
| VID     | Vendor ID              |  |  |  |

### **Reference Documents**

USB 2.0 Specification

USB 3.1 Specification

Battery Charging Specifications

USB Type-C Specification

USB Power Delivery Specification

# **Document Conventions**

#### **Units of Measure**

Table 7. Units of Measure

| Symbol | Unit of Measure    |  |  |
|--------|--------------------|--|--|
| °C     | degree celsius     |  |  |
| Ω      | ohm                |  |  |
| Gbps   | gigabit per second |  |  |
| KB     | kilobyte           |  |  |
| kHz    | kilohertz          |  |  |
| kΩ     | kilo-ohm           |  |  |
| Mbps   | megabit per second |  |  |
| MHz    | megahertz          |  |  |
| μΑ     | microampere        |  |  |
| mA     | milliampere        |  |  |
| ms     | millisecond        |  |  |
| mW     | milliwatt          |  |  |
| ns     | nanosecond         |  |  |
| ppm    | parts per million  |  |  |
| V      | volt               |  |  |



# **Document History Page**

| Revision | ECN     | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|---------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **       | 5894940 | HBM                | 10/03/2017         | New data sheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| *A       | 6000726 | НВМ                | 12/21/2017         | Updated Document Title to read as "CYUSB4347/CYUSB4357, HX3PD USB 3.1 Gen 2 Type-C Hub with PD". Updated Features: Updated description. Updated Block Diagram. Updated Architecture Overview: Updated USB-PD Controller: Updated description. Removed "SPI Interfaces". Removed "Serial Communication/GPIO Block". Removed "Dock Management Controller". Added SPI, I2C, and GPIO Interfaces. Added Dock Management Controller. Updated HX3PD Product Options: Updated Table 1: Updated entire table. Updated Pinouts: Updated Pinouts: Updated Pin Description: Updated entire table. Added System Interfaces. Added System Interfaces. Added Absolute Maximum Ratings. Added Electrical Specifications. Added Ordering Information. Added Errata. Updated to new template. |
| *B       | 6111605 | НВМ                | 03/27/2018         | Updated Pinouts: Updated Figure 5 (Updated details in C4 and D7). Updated Pin Description: Updated details in all columns corresponding to pins 175, 176, and 177. Updated Electrical Specifications: Updated Power Consumption: Updated Table 4 (Updated entire table). Removed Errata.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *C       | 6288356 | НВМ                | 09/27/2018         | Updated Features: Updated description. Updated Block Diagram. Updated Architecture Overview: Added Crypto Block. Updated HX3PD Product Options: Updated Table 1. Updated System Interfaces: Updated Downstream Ports (DS1, 2, 3, 4, 5, 6, 7): Updated Table 2. Updated Electrical Specifications: Updated DC Electrical Characteristics: Updated details in "Min" and "Max" columns corresponding to ESD_HBN parameter. Updated Power Consumption: Updated Table 4.                                                                                                                                                                                                                                                                                                          |



# **Document History Page** (continued)

| Document<br>Document | Document Title: CYUSB4347/CYUSB4357, HX3PD USB 3.1 Gen 2 Type-C Hub with PD<br>Document Number: 002-16615 |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Revision             | ECN                                                                                                       | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| *C (cont.)           | 6288356                                                                                                   | НВМ                | 09/27/2018         | Updated Reference Documents: Updated links. Added Silicon Revision History. Completing Sunset Review.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| *D                   | 6352040                                                                                                   | НВМ                | 10/31/2018         | Updated Architecture Overview: Updated USB-PD Controller: Updated description. Updated Pinouts: Updated Figure 5 (Updated details in A5 and C9). Updated Pin Description: Updated details in "Description" column corresponding to pins 113, and 114. Updated details in "Pin Name" and "Description" columns corresponding to pins 145, and 146. Updated System Interfaces: Updated Communication Interfaces: Updated I2C_2: Updated description. Updated Electrical Specifications: Updated DC Electrical Characteristics: Updated details in "Min" and "Max" columns corresponding to ESD_CDM parameter. Added LU parameter and its corresponding details. Updated Power Consumption: Updated Table 4. |  |  |
| *E                   | 6439058                                                                                                   | НВМ                | 04/24/2019         | Added Application Diagrams and Configuration Options. Updated Functional Description, Block Diagram, Features, Architecture Overview, Pinouts, Pin Description, Communication Interfaces, SPI_HUB, I2C_1, I2C_2, DC Electrical Characteristics, Electrical Specifications, and Acronyms. Updated Figure 4. Updated Table 2 and Table 4. Updated Copyright information.                                                                                                                                                                                                                                                                                                                                    |  |  |
| *F                   | 6534152                                                                                                   | HBM                | 06/14/2019         | Updated Ordering Information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |



# Sales, Solutions, and Legal Information

#### **Worldwide Sales and Design Support**

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

#### **Products**

**USB Controllers** 

Wireless Connectivity

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot cypress.com/memory Memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch

### PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

#### **Cypress Developer Community**

Community | Projects | Video | Blogs | Training | Components

#### **Technical Support**

cypress.com/support

**IMPORTANT NOTE REGARDING PROTECTED FIRMWARE DOWNLOAD**: Cypress has implemented protections in the product to prevent unauthorized firmware updates from being applied to the product. However, no computing device or system can be absolutely secure. Therefore, the parties agree that Cypress shall not have any liability arising out of any failure of the product's security features, such as the inability to load firmware or a breach allowing the loading of unauthorized firmware.

cypress.com/usb

cypress.com/wireless

© Cypress Semiconductor Corporation, 2017-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.