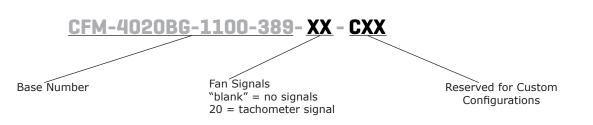
CUI DEVICES

SERIES: CFM-40BG **DESCRIPTION:** DC AXIAL FAN

FEATURES

- dual ball bearing system
- 40 x 40 mm frame
- multiple speed options
- tachometer signal available

MODEL		nput Iltage	input current ¹	input power ¹	rated speed ¹	airflow ²	static pressure ³	noise⁴
	rated (Vdc)	range (Vdc)	max (A)	max (W)	typ (RPM±10%)	(CFM)	(inch H ₂ O)	typ (dBA)
CFM-4020BG-1100-389	12	10.8~13.2	0.20	2.40	10,000	11.77	0.40	38.9
CFM-4020BG-1120-429	12	10.8~13.2	0.30	3.60	12,000	14.13	0.57	42.9
CFM-4020BG-1140-462	12	10.8~13.2	0.50	6.00	14,000	17.52	0.89	46.2
CFM-4020BG-1165-498	12	10.8~13.2	0.59	7.08	16,500	19.42	1.08	49.8
CFM-4020BG-1185-523	12	10.8~13.2	0.72	8.64	18,500	22.52	1.46	51.7
CFM-4028BG-180-369	12	10.8~13.2	0.21	2.52	8,000	9.75	0.39	37.0
CFM-4028BG-1100-418	12	10.8~13.2	0.30	3.60	10,000	12.19	0.61	41.8
CFM-4028BG-1130-475	12	10.8~13.2	0.39	4.68	13,000	15.85	1.03	47.5
CFM-4028BG-1160-520	12	10.8~13.2	0.54	6.48	16,000	19.51	1.56	52.0
CFM-4028BG-1200-568	12	10.8~13.2	0.94	11.28	20,000	24.38	2.44	56.9


Notes: 1. At rated voltage, after 3 minutes.

2. At rated voltage, room temperature, 65% humidity, 0 inch $\rm H_20$ static pressure. 3. At rated voltage, 0 CFM airflow.

4. Measured in an anechoic chamber as per ISO3745/GB4214-84 at rated voltage, with background noise 20±2 dBA at 1 m from the fan intake.

5. All specifications are measured at 25°C, 65% relative humidity unless otherwise specified.

PART NUMBER KEY

.....

INPUT

parameter	conditions/description	min	typ	max	units
operating input voltage		10.8	12	13.2	Vdc
starting voltage			7.0		Vdc

PERFORMANCE⁶

parameter	conditions/description	min	typ	max	units
rated speed	at rated voltage, 25°C, after 3 minutes	8,000		20,000	RPM
air flow	at 0 inch H_2O , see performance curves	9.75		24.38	CFM
static pressure	at 0 CFM, see performance curves	0.39		2.44	inch H ₂ O
noise	at 1 m, rated speed	37.0		56.9	dBA

Note: 6. See Model section on page 1 for specific values.

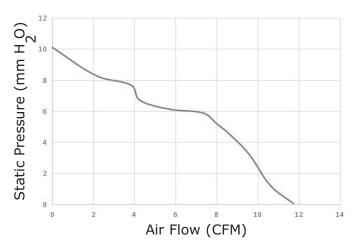
PROTECTIONS / FEATURES⁷

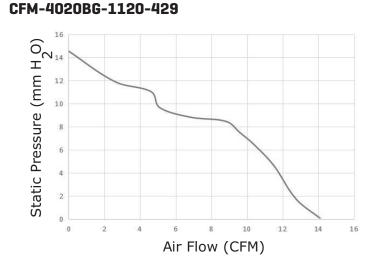
conditions/description	min	typ	max	units
on all models				
on all models				
on all models except CFM-4020BG-1185-523				
available on "20" models				
	on all models on all models except CFM-4020BG-1185-523	on all models on all models except CFM-4020BG-1185-523	on all models on all models except CFM-4020BG-1185-523	on all models on all models except CFM-4020BG-1185-523

Notes: 7. See Application Notes for details.

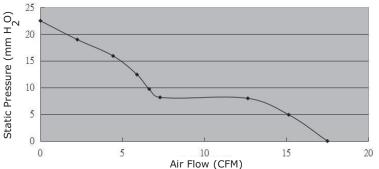
SAFETY & COMPLIANCE

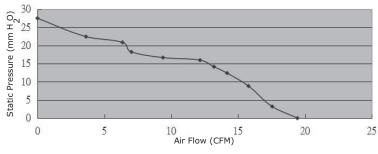
parameter	conditions/description	min	typ	max	units
insulation resistance at 500 Vdc between frame and positive terminal		10			MΩ
dielectric strength	at 500 Vac, 60 Hz, 1 minute between housing and positive terminal			5	mA
safety approvals	UL/cUL 507, TUV (EN/IEC 62368-1:2020+A11)				
EMI/EMC	EN 55032:2015, EN 55035:2017				
life expectancy	at 40°C, 65% RH, 90% confidence level		70,000		hours
RoHS	yes				


ENVIRONMENTAL

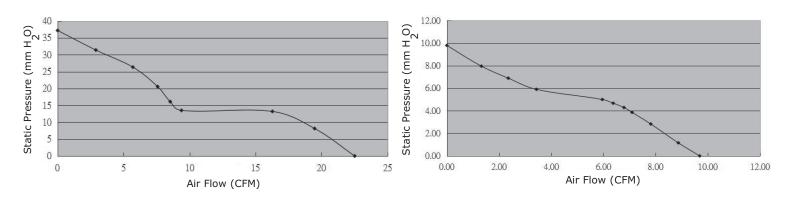

parameter	conditions/description	min	typ	max	units
operating temperature		-10		70	°C
storage temperature		-40		75	°C
operating humidity	non-condensing	35		85	%
storage humidity	non-condensing	35		85	%

.....


PERFORMANCE CURVES

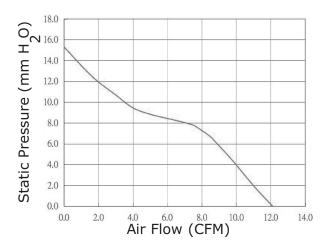


CFM-4020BG-1140-462

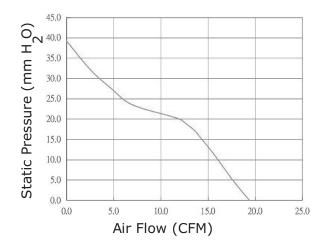


CFM-4020BG-1165-498

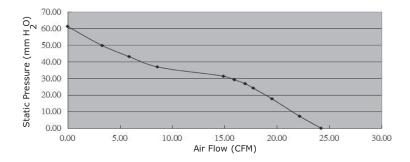
CFM-4020BG-1185-523


CFM-4028BG-180-369

cuidevices.com


PERFORMANCE CURVES (CONTINUED)

CFM-4028BG-1100-418



CFM-4028BG-1160-520

CFM-4028BG-1200-568

CFM-4028BG-1130-475

BLACK(-)

MECHANICAL

parameter	conditions/description	min	typ	max	units
motor	4 pole DC brushless				
bearing system	dual ball bearing	dual ball bearing			
direction of rotation	counter-clockwise viewed from front of fan blade				
dimensions	CFM-4020BG models: 40 x 40 x 20 CFM-4028BG models: 40 x 40 x 28			mm mm	
material	PBT (UL94V-0)				
weight	CFM-4020BG-1165-498, CFM-4020BG-1185-523 CFM-4028BG-180-369, CFM-4028BG-1100-418 CFM-4028BG-1130-475, CFM-4028BG-1160-520 CFM-4028BG-1200-568 all other models		29.7 45.9 45.7 46.6 29.63		g g g g

MECHANICAL DRAWING

units: mm

wire: UL 1007, 26 AWG

MOUNTING SCREW (Pan Head)						
Screw Type	Size	Standard	Torque			
Machine Screw	М3	JIS B1111-1974	7.5 kgf-cm			
Self-tapping Screw	M4	JIS B1122 Type 2	7.5 kgf-cm			

CFM-4020BG

WIRE COI	NNECTIONS	ROTATION	AIR FLOW	ROTATION
Wire Color	Function			
Red	+Vin	40.0±0.5		
Black	-Vin	32.0±0.3	$= \frac{20.0 \pm 0.5}{100}$	
Yellow ⁸	Tach Signal			
		40.0±0.5 40.0±0.3 32.0±0.3 32.0±0.3 5.0±0.3		SITTOR

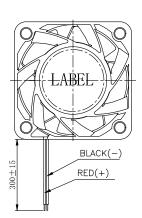
Notes: 8. Wires only present on versions with output signals.

MECHANICAL DRAWING (CONTINUED)

units: mm

wire: UL 1007, 26 AWG

MOUNTING SCREW (Pan Head)Screw TypeSizeStandardTorqueMachine ScrewM3JIS B1111-19747.5 kgf-cmSelf-tapping ScrewM4JIS B1122 Type 27.5 kgf-cm


CFM-4028BG

WIRE CONNECTIONS				
Wire Color	Function			
Red	+Vin			
Black	-Vin			
Yellow ⁸	Tach Signal			

+(()))))))))))))))))))))))))))))))))))	

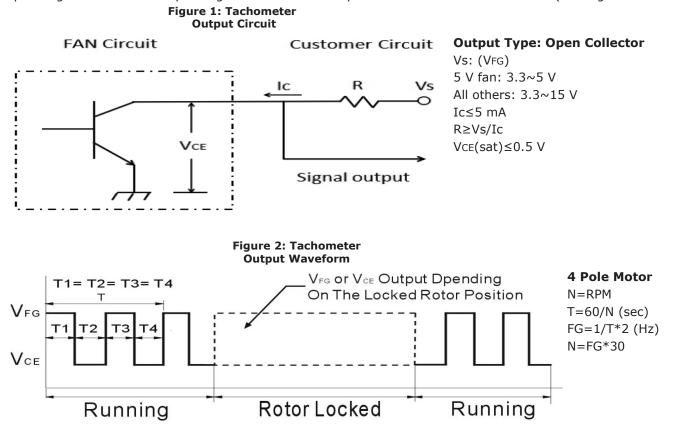
AIR FLOW

ROTATION

Notes: 8. Wires only present on versions with output signals.

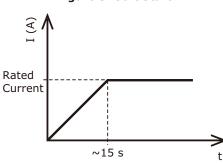
APPLICATION NOTES

Auto Restart Protection


When the fan motor is locked by an external force, the device will temporarily turn off electrical power to the motor and restart automatically when the locked rotor condition is released.

Polarity Protection

Able to withstand 10 minutes of reverse polarity connection between the positive and negative wires without causing damage.


Tachometer Signal (Yellow Wire)

The tachometer signal is for detecting the rotational speed of the fan motor. The output will be a square wave when fan is operating and VFG or VCE depending on the locked rotor position when fan motor is locked (See Figures 1~2 below).

Soft Start

When the fan power is on, the current will increase slowly (~15 seconds) until the fan reaches the rated speed.

Figure 3: Soft Start

REVISION HISTORY

rev.	description	date
1.0	initial release	10/14/2021

The revision history provided is for informational purposes only and is believed to be accurate.

CUI DEVICES

CUI Devices offers a one (1) year limited warranty. Complete warranty information is listed on our website.

CUI Devices reserves the right to make changes to the product at any time without notice. Information provided by CUI Devices is believed to be accurate and reliable. However, no responsibility is assumed by CUI Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

.....

CUI Devices products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

cuidevices.com