
BDX33B BDX33C BDX34B BDX34C

COMPLEMENTARY SILICON POWER DARLINGTON TRANSISTORS

DESCRIPTION

The BDX33B and BDX33C are silicon Epitaxial-Base NPN power transistors in monolithic Darlington configuration mounted in Jedec TO-220 plastic package. They are intented for use in power linear and switching applications. The complementary PNP types are BDX34B and BDX34C respectively.

ABSOLUTE MAXIMUM RATINGS

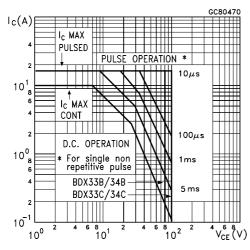
Symbol	Parameter				Unit
		NPN	BDX33B	BDX33C	
		PNP	BDX34B	BDX34C	
V _{CBO}	Collector-Base Voltage (I _E = 0)		80	100	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)		80	100	V
Ic	Collector Current		10		Α
I _{CM}	Collector Peak Current		15		Α
I_B	Base Current		0.25		Α
P _{tot}	Total Dissipation at T _c ≤ 25 °C		70		W
T _{stg}	Storage Temperature		-65 to 150		°C
Tj	Max. Operating Junction Temperature		150		°C

For PNP types voltage and current values are negative.

October 1999 1/4

BDX33B BDX33C BDX34B BDX34C

THERMAL DATA

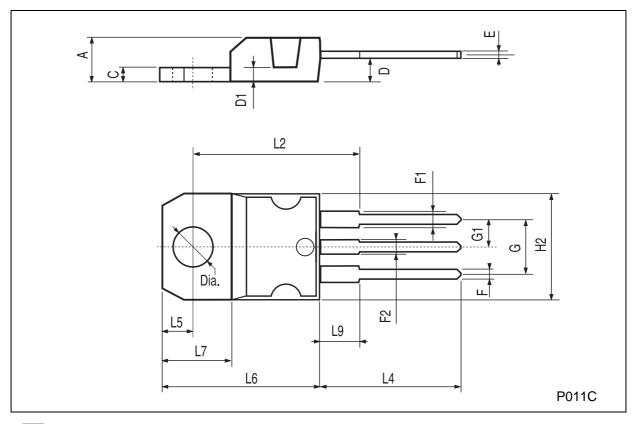

R _{thj-case} Thermal Resistance Junction-case	1.78	°C/W	Ī
--	------	------	---

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cut-off Current (I _E = 0)	for BDX33B/34B $V_{CB} = 80 \text{ V}$ for BDX33C/34C $V_{CB} = 100 \text{ V}$ $T_{case} = 100 ^{\circ}\text{C}$			0.2 0.2	mA mA
		for BDX33B/34B $V_{CB} = 80 \text{ V}$ for BDX33C/34C $V_{CB} = 100 \text{ V}$			5 5	mA mA
I _{CEO}	Collector Cut-off Current (I _B = 0)	for BDX33B/34B $V_{CE} = 40 \text{ V}$ for BDX33C/34C $V_{CE} = 50 \text{V}$ $V_{CE} = 100 \text{ °C}$ for BDX33B/34B $V_{CE} = 40 \text{ V}$ for BDX33C/34C $V_{CE} = 50 \text{ V}$			0.5 0.5 10 10	mA mA mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			5	mA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C =100 mA for BDX33B/34B for BDX33C/34C	80 100			V V
V _{CER(sus)} *	Collector-emitter Sustaining Voltage ($R_{BE} = 100 \Omega$)	I _C = 100 mA for BDX33B/34B for BDX33C/34C	80 100			V V
V _{CEV(sus)} *	Collector-emitter Sustaining Voltage (V _{BE} =-1.5 V)	I _C = 100 mA for BDX33B/34B for BDX33C/34C	80 100			V V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	$I_C = 3 A$ $I_B = 6 mA$			2.5	V
V _{BE} *	Base-emitter Voltage	I _C = 3 A V _{CE} = 3 V			2.5	V
h _{FE} *	DC Current Gain	I _C = 3 A V _{CE} = 3 V	750			V
V _F *	Parallel-Diode Forward Voltage	I _F = 8 A			4	V
h _{fe}	Small Signal Current Gain	$I_C = 1 A V_{CE} = 5 V f = 1MHz$	100			

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

Safe Operating Area



2/4

For PNP types voltage and current values are negative.

TO-220 MECHANICAL DATA

DIM.	mm		inch			
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

3/4

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

4/4