Features

- Audio Processor
- Proprietary Digital Signal Processor
- MP3 and WMA Decoders
- WAV PCM and ADPCM Decoder/Coder with AGC
- JPEG decoder
- Video Animation (MTV up to 16fps)
- Audio Codec
- 16-bit Stereo D/A Converters ${ }^{(3)}$
- Headphone Amplifier with Analog Volume Control ${ }^{(3)}$
- Microphone Pre-Amplifier with Bias Control
- 16-bit Mono A/D Converter: Microphone or Line Inputs Recording
- Stereo Lines Input for FM Playback or Mono Recording
- 3-band EQ and Bass Boost and 3D Sound Effects
- Graphical EQ
- Digital Audio DAC Interface
- PCM / I ${ }^{2}$ S Format Compatible
- USB Rev 2.0 Controller
- 7 Endpoints, Multiple Enumeration
- High Speed Mode (480 Mbps)
- Full Speed Mode (12 Mbps)
- On The Go Full Speed Mode
- File Management
- Fat 12, 16, 32 Management
- Multiple Drive Management: Nand Flash, Card, U-Disk...
- Multiple Folders and Sub-Folders (user defined)
- Multiple File Read and Write
- Playlist and Lyrics Support
- Data Flow Controller
- 16-bit Multimedia Bus with 2 DMA Channels for high speed transfer with USB
- Nand Flash Controller
- Multiple Nand as 1 Drive, Support All Page Size
- Read up to 10MB/s, Write up to $8 \mathrm{MB} / \mathrm{s}$
- Built-in ECC and Hardware Write Protection
- MultiMediaCard ${ }^{\circledR}$ Controller
- MultiMediaCard 1-bit / 4-bits Modes (V4 compatible)
- Secure Digital Card 1-bit / 4-bit Modes
- Man Machine Interface
- Glueless Generic LCD Interface
- Keyboard Interface
- FM Tuner Input and Control including RDS
- PSI 180 Slave Interface (EBI Compatible) up to 6Mbytes/s
- SPI Master and Slave Modes
- Full Duplex UART with Baud Rate Generator up to 6 Mbit/s (Rx, Tx, RTS, CTS)
- Control Processor
- Enhanced 8-bit MCU C51 Core ($\mathrm{F}_{\mathrm{MAX}}=24 \mathrm{MHz}$)
- 64K Bytes of Internal RAM for application code and data
- Boot ROM Memory: Secured Nand Flash Boot Strap (standard), USB Boot Loader
- Two 16-bit Timers/Counters: Hardware Watchdog Timer
- In-System and In-Application Programming
- Power Management
- 1.8V 40 mA Single AAA or AA Battery Powered ${ }^{(4)}$
- Direct USB V ${ }_{\text {BUS }}$ Supply
- 3V or 1.8V-50 mA Regulator Output
- Battery Voltage Monitoring
- Power-on Reset, Idle, Power-Down, Power-Off Modes
- Software Programmable MCU Clock
- Operating Conditions
- Supply 1.8 V to 5 V for all Product range, plus 0.9 V to $1.8 \mathrm{~V}^{(4)}$
- 25 mA Typical Operating at $25^{\circ} \mathrm{C}$ (estimation to be confirmed)
- Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Packages
- LQFP100, BGA100, Dice

Notes: 1. See Ordering Information
2. AT85C51SND3B1 \& AT85C51SND3B2 only
3. AT85C51SND3B2 only

Description

Digital Music Players, Mobile Phones need ready to use low-cost solutions for very fast time to market. The AT85C51SND3B with associated firmware embeds in a single chip all features, hardware and software, for Digital Music Players, Mobile Phones and Industrial or Toys applications: MP3 decoder, WMA decoder, Display interface, serial interface, parallel interface, USB high speed and USB host.

Close to a plug and play solution for most applications, the AT85C51SND3B drastically reduces system development for the best time to market. The AT85C51SND3B handles full file system management with Nand Flash and Flash Cards, including full detection and operation of a thumb drive. The AT85C51SND3Bx is used either as a master controller, or as a slave controller interfacing easily with most of the base-band or host processors available on the market.
The AT85C51SND3B includes Power Management with: 5V USB $V_{\text {Bus }}$ direct supply, 2.7 V to 3.6 V supply, 1.8 V supply or alkaline battery supply (0.9 V to 1.8 V). External Nand Flash or Flash Card can be supplied by the AT85C51SND3B at 1.8 V or 3 V .

The AT85C51SND3B supports many applications including: mobile phones, music players, portable navigation, car audio, music in shopping centers, applications including MMC/SD Flash Cards in Industrial applications.

To facilitate custom applications with the AT85C51SND3B, a development kit AT85DVK-07 and a reference design AT85RFD-07 are available with hardware and firmware database.

Key Features

- Firmware to support
- MP3
- WMA
- ADPCM/WAV voice or line recording
- JPEG Decoder
- Audio Codec
- Internal DAC
- FM inputs
- Memory Support
- Up to $4 x$ Nand-Flash
- SD/MMC cards
- USB
- High Speed, Full Speed
- OTG (reduced Host)

Block Diagram

Figure 1. AT85C51SND3B Block Diagram

Notes: 1. AT85C51SND3B2 only
2. AT85C51SND3B1 \& AT85C51SND3B2 only

Application Information

The AT85C51SND3B derivatives allow design of 2 typical applications which differentiate by the power supply voltage:

- The Very Low Voltage System

The player operates at 1.8 V and allows very low power consumption.

- The Low Voltage System

The player operates at 3 V and allows low power consumption.
Figure 2. Typical Low Voltage 3V Application

Pin Description

Pinouts

Figure 3. AT85C51SND3B 100-pin QFP Package

Notes: 1. Leave these pins unconnected for AT85C51SND3B0 \& AT85C51SND3B1 products
2. Leave these pins unconnected for AT85C51SND3B0 product

Figure 4. AT85C51SND3B 100-pin BGA Package (no ADC)

Signals Description

System

Table 1. System Signal Description

Signal Name	Type	Description	Alternate Function
$\overline{\mathrm{RST}}$	I/O	Reset Input Holding this pin low for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage lower than $V_{\text {IL }}$ is applied, whether or not the oscillator is running. This pin has an internal pull-up resistor $\left(R_{\text {RST }}\right)$ which allows the device to be reset by connecting a capacitor between this pin and $V_{S S}$ Asserting $\overline{\text { RST when the chip is in Idle mode or Power-Down mode }}$ returns the chip to normal operation. In order to reset external components connected to the $\overline{R S T}$ line a low level 96-clock period pulse is generated when the watchdog timer reaches its time-out period.	-
$\overline{\mathrm{ISP}}$	I	In System Programming Assert this pin during reset phase to enter the in system programming mode.	OCDT

Table 2. Ports Signal Description

Signal Name	Type	Description	Alternate Function
P0.7:0	I/O	Port 0 PO is an 8 -bit bidirectional I/O port with internal pull-ups.	LD7:0
P1.7:0	I/O	Port 1 P1 is an 8-bit bidirectional I/O port with internal pull-ups.	KIN3:0
P2.7:0	I/O	Port 2 P2 is an 8-bit bidirectional I/O port with internal pull-ups.	$\begin{gathered} \overline{\text { SDINS }} \\ \hline \text { SDLCK } \\ \text { SDCMD } \\ \text { SDCLK } \\ \text { SDDAT3:0 } \end{gathered}$
$\begin{aligned} & \text { P3.4:0 } \\ & \text { P3.7:6 } \end{aligned}$	I/O	Port 3 P3 is a 7-bit bidirectional I/O port with internal pull-ups.	RXD MISO TXD MOSI $\overline{\text { INTO }}$ RTS SCK $\overline{\text { INT1 }}$ $\overline{\text { CTS }}$ $\overline{S S}$ T0 UVCON UID

Signal Name	Type	Description	Alternate Function
P4.6:0	I/O	Port 4 P4 is a 7-bit bidirectional I/O port with internal pull-ups.	OCLK DCLK DDAT DSEL NFCE1/SMLCK NFCE2/SMINS NFCE3/SMCE
P5.3:0	I/O	Port 5 P5 is a 4-bit bidirectional I/O port with internal pull-ups.	$\overline{\mathrm{LRD} / L D E}$ $\frac{\mathrm{SDR}}{\overline{L C S}}$ $\overline{\mathrm{SCS}}$ $\frac{\mathrm{LAO} / \mathrm{LRS}}{}$ $\frac{\mathrm{SA0}}{\mathrm{LWR} / L R W}$ $\overline{S W R}$

Table 3. Timer 0 and Timer 1 Signal Description

Signal Name	Type	Description	Alternate Function
$\overline{\text { INTO }}$	1	Timer 0 Gate Input $\overline{\text { INTO }}$ serves as external run control for timer 0 , when selected by GATEO bit in TCON register. External Interrupt 0 $\overline{\text { INTO }}$ input sets IEO in the TCON register. If bit ITO in this register is set, bit IEO is set by a falling edge on $\widehat{\text { INTO. If bit ITO is cleared, bit IEO is set }}$ by a low level on $\overline{\mathrm{INTO}}$.	$\begin{aligned} & \frac{\text { P3.2 }}{\frac{R}{R T S}} \\ & \text { SCK } \end{aligned}$
$\overline{\text { INT1 }}$	1	Timer 1 Gate Input $\overline{\text { INT1 }}$ serves as external run control for timer 1 , when selected by GATE1 bit in TCON register. External Interrupt 1 INT1 input sets IE1 in the TCON register. If bit IT1 in this register is set, bit IE1 is set by a falling edge on $\overline{\mathrm{INT} 1 \text {. If bit IT1 is cleared, bit IE1 is set }}$ by a low level on $\overline{\mathrm{NT} 1}$.	$\frac{\mathrm{P} 3.3}{\frac{\mathrm{CTS}}{\overline{S S}}}$
T0	1	Timer 0 External Clock Input When timer 0 operates as a counter, a falling edge on the T0 pin increments the count.	P3.4

Clock Controller

Memory Controllers

Table 4. Clock Signal Description

Signal Name	Type	Description	Alternate Function
X1	I	Input of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin. X1 is the clock source for internal timing.	-
X2	O	Output of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, leave X2 unconnected.	-
UPVDD	PWR	USB PLL Supply voltage Connect this pin to LVDD pin.	-
UPVSS	GND	USB PLL Circuit Ground Connect this pin to LVSS pin.	-
APVDD	PWR	Audio PLL / Oscillator Supply voltage Connect this pin to LVDD pin.	-
APVSS	GND	Audio PLL / Oscillator Circuit Ground Connect this pin to LVSS pin.	-

Table 5. Secure Digital Card / MutiMediaCard Controller Signal Description

Signal Name	Type	Description	Alternate Function
SDCLK	O	SD/MMC Clock Data or command clock transfer.	P2.3
SDCMD	I/O	SD/MMC Command Line Bidirectional command line used for commands and responses transfer.	P2.2
SDDAT3:0	I/O	SD/MMC Data Lines Bidirectional data lines. In 1-bit mode configuration SDDAT0 is the DAT signal and SDDAT3:1 are not used and can be reused as I/O ports.	P2.7:4
SDINS	I	SD/MMC Card Insertion Signal SDINS is the card presence signal. A low level on this input indicates the card is present in its slot. Note: This signal is generated by the SD/MMC card connector. $\overline{\text { SDLCK }}$$\quad$ I	SD Card Write Lock Signal SDLCK is the SD Card write protected input. A low level on this pin indicates the card is write protected. Note: This signal is generated by the SD/MMC card connector.

Table 6. Nand Flash / SmartMedia Card Controller Signal Description

Signal Name	Type	Description	Alternate Function
NFD7:0	I/O	Memory Data Bus 8-bit bidirectional data bus.	-
NFALE	O	Address Latch Enable Signal Asserted high during address write cycle.	-

Signal Name	Type	Description	Alternate Function
NFCLE	0	Command Latch Enable Signal Asserted high during command write cycle.	-
$\overline{\mathrm{NFRE}}$	0	Read Enable Signal Read signal asserted low during NF/SMC read operation.	-
$\overline{\text { NFWE }}$	0	Write Enable Signal Write signal asserted low during NF/SMC write operation.	-
$\overline{\text { NFCE0 }}$	0	Nand Flash 0 Chip Enable $\overline{\mathrm{NFCEO}}$ is active low and is asserted by the nand flash controller each time it makes access to the device 0 .	-
$\begin{aligned} & \overline{\text { NFCE1 }} \\ & \overline{\text { SMLCK }} \end{aligned}$	0 1	Nand Flash 1 Chip Enable $\overline{\text { NFCE1 }}$ is active low and is asserted by the nand flash controller each time it makes access to the selected device. SmartMediaCard/xD-Picture Card Write Lock Signal $\overline{\text { SMLCK }}$ is the card write protected input. A low level on this pin indicates the card is write protected. Note: When used as SMLCK input, pad has internal pull-up.	P4.4
$\overline{\mathrm{NFCE}}$ $\overline{\text { SMINS }}$	0 1	Nand Flash 2 Chip Enable $\overline{\text { NFCE2 }}$ is active low and is asserted by the nand flash controller each time it makes access to the selected device. SmartMediaCard/xD-Picture Card Insertion Signal $\overline{\text { SMINS }}$ is the card presence signal. A low level on this input indicates the card is present in its slot. Note: When used as $\overline{\text { SMINS }}$ input, pad has internal pull-up.	P4.5
$\begin{aligned} & \overline{\text { NFCE3 }} \\ & \overline{\text { SMCE }} \end{aligned}$	0	Nand Flash 3 Chip Enable $\overline{\mathrm{NFCE3}}$ is active low and is asserted by the nand flash controller each time it makes access to the selected device. SmartMediaCard/xD-Picture Card Chip Enable $\overline{\text { SMCE }}$ is active low and is asserted by the nand flash controller each time it makes access to the card.	P4.6
$\overline{\text { NFWP }}$	0	Write Protect Signal $\overline{\mathrm{NFWP}}$ is the Nand Flash / SmartMediaCard/xD-Picture Card write protect signal. This signal is active low and is set to low during reset in order to protect the memory against parasitic writes.	-

Table 7. USB Controller Signal Description

Signal Name	Type	Description	Alternate Function
DPF	I/O	USB Full Speed Positive Data Upstream Port	-
DMF	I/O	USB Full Speed Minus Data Upstream Port	-
DPH	I/O	USB High Speed Plus Data Upstream Port	-
DMH	I/O	USB High Speed Minus Data Upstream Port	-
UVCON	O	USB VBUS Control line UVCON is used to control the external VBUS power supply ON or OFF. Note: This output is requested for OTG mode.	P3.6

Signal Name	Type	Description	Alternate Function
UID	I	USB OTG Identifier Input This pin monitors the function of the OTG device. Note: This input is requested for OTG mode.	P3.7
UVCC	PWR	USB Supply Voltage Connect this pin to USB V ${ }^{\text {BUS }}$ power line.	-
ULVDD	PWR	USB Pad Low Voltage Connect this pin to LVDD pin.	-
UHVDD	PWR	USB Pad High Voltage Connect this pin to HVDD pin.	-
UVSS	GND	USB Ground	-
UBIAS	O	USB Bias Connect this pin to external resistor and capacitor.	

Audio Processor

Table 8. I2S Output Description

Signal Name	Type	Description	Alternate Function
OCLK	O	Over-sampling Clock Line	P 4.0
DCLK	O	Data Clock Line	P 4.1
DDAT	O	Data Lines	P 4.2
DSEL	O	Data Channel Selection Line	P 4.3

Table 9. Audio Codec Description

Signal Name	Type	Description	Alternate Function
LINR	I	Right Channel Analog Input	-
LINL	I	Left Channel Analog Input	-
MICIN	I	Electret Microphone Analog Input	-
MICBIAS	O	Electret Microphone Bias Output	-
OUTR	O	Right Channel Output Do not connect on AT85C51SND3B0 product	-
OUTL	O	Left Channel Output Do not connect on AT85C51SND3B0 product	-
AVCM	I	Analog Common Mode Voltage Connect this pin to external decoupling capacitor.	-
AREF	O	Analog Reference Voltage Connect this pin to external decoupling capacitor.	-
AVDD1	PWR	Analog Power Supply 1 Connect this pin to LVDD pin.	-
AVSS1	GND	Analog Ground 1 Connect this pin to LVSS pin.	-

Signal Name	Type	Description	Alternate Function
AVDD2	PWR	Analog Power Supply 2 Low Voltage system: connect this pin to LVDD pin. High voltage system: connect this pin to external +3V power supply.	-
AVSS2	GND	Analog Ground 2 Low Voltage system: connect this pin to LVSS pin. High voltage system: connect this pin to external +3V ground.	-

Parallel Slave Interface

Serial Interfaces

Table 10. PSI Signal Description

Signal Name	Type	Description	Alternate Function
SD7:0	I/O	Slave Data Bus 8-bit bidirectional data bus.	P0.7:0 LD7:0
$\overline{\text { SRD }}$	I	Slave Read Signal Read signal asserted low during external host read operation.	$\overline{\mathrm{PRD} / \mathrm{LDE}}$
$\overline{\text { SWR }}$	I	Slave Write Signal Write signal asserted low during external host write operation.	$\overline{\mathrm{LWR} / \mathrm{LRW}}$
$\overline{\text { SCS }}$	I	Slave Chip Select Select signal asserted low during external host read or write operation.	$\overline{\mathrm{P} 5.1}$
SAO	I	Slave Address Bit 0 Address signal asserted during external host read or write operation.	P 5.2 LA0/LRS

Table 11. SPI Controller Signal Description

Signal Name	Type	Description	Alternate Function
MISO	I/O	SPI Master Input Slave Output Data Line When in master mode, MISO receives data from the slave peripheral. When in slave mode, MISO outputs data to the master controller.	P3.0 RXD
MOSI	I/O	SPI Master Output Slave Input Data Line When in master mode, MOSI outputs data to the slave peripheral. When in slave mode, MOSI receives data from the master controller.	P3.1 TXD
SCK	I/O	SPI Clock Line When in master mode, SCK outputs clock to the slave peripheral. When in slave mode, SCK receives clock from the master controller.	$\overline{\text { P33T0 }}$ RTS
$\overline{\text { SS }}$	I	SPI Slave Select Line When in controlled slave mode, $\overline{\text { SS }}$ enables the slave mode.	$\overline{\text { P3.3 }}$ NT1

Table 12. SIO Signal Description

Signal Name	Type	Description	Alternate Function
RXD	I/O	Receive Serial Data RXD sends and receives data in serial I/O mode 0 and receives data in serial I/O modes 1, 2 and 3.	P3.0 MISO

Signal Name	Type	Description	Alternate Function
TXD	O	Transmit Serial Data TXD outputs the shift clock in serial I/O mode 0 and transmits data in serial I/O modes 1, 2 and 3.	P3.1 MOSI
$\overline{\text { RTS }}$	0	Request To Send Hardware Handshake Line Asserted low by hardware when SIO is ready to receive data.	$\overline{\mathrm{P} 3.2}$ NTO SCK
$\overline{\text { CTS }}$	1	Clear To Send Hardware Handshake Line Asserted low by external hardware when SIO is allowed to send data.	$\frac{\text { P3.3 }}{\overline{\mathrm{NT} 1}}$ $\overline{\mathrm{SS}}$

MMI Interface

Power Management

Table 13. Keypad Controller Signal Description

Signal Name	Type	Description	Alternate Function
KIN3:0	I	Keypad Input lines Holding one of these pins high or low for 24 oscillator periods triggers a keypad interrupt.	P1.3:0

Table 14. LCD Interface Signal Description

Signal Name	Type	Description	Alternate Function
LD7:0	I/O	Display Data Bus 8 8-bit bidirectional data bus.	P0.7:0 SD7:0
$\overline{\text { LRD/LDE }}$	O	Read Signal/Enable Signal $8080: \quad$Read signal asserted low during display read access. $6800:$ Enable signal asserted high during display access.	$\frac{\mathrm{P} 5.0}{\text { SRD }}$
$\overline{\text { LWR/LRW }}$	O	Write Signal/Read Write Signal $8080: \quad$Write signal asserted low during display write access. $6800:$ Read/Write signal asserted low/high during display read/write access	$\overline{\text { SWR }}$
$\overline{\text { LCS }}$	O	Display Chip Select Select signal asserted low during display access.	$\frac{\text { P5.1 }}{\text { SCS }}$
LA0/LRS	O	Display Address Bit 0/Register Select Address signal asserted during display access.	P5.2 SAO

Table 15. Power Signal Description

Signal Name	Type	Description	Alternate Function
$\overline{\text { DCPWR }}$	I	DC-DC Power ON Input Connect $\overline{\text { DCPWR to } V_{\text {SS }} \text { to start the DC-DC converter. }}$	-
DCLI	PWR	DC-DC Inductance Input Connect low ESR inductance to DCLI and BVDD.	
BVDD	PWR	Battery Supply Voltage Connect this pin to the positive pin of the battery.	-

Signal Name	Type	Description	Alternate Function
BVSS	GND	Battery Ground Connect this pin to the negative pin of the battery.	-
LVDD	PWR	Low Voltage DC-DC Power Supply output This pin outputs +1.8V typ. from internal DC-DC (battery powered).	-
RLVDD	PWR	Low Voltage Regulator Power Supply Output This pin outputs +1.8V typ. from internal regulator (USB powered or +3V external power supply). Connect this pin to LVDD incase of internal DC-DC usage.	-
HVDD	PWR	High Voltage Power Supply This pin outputs +3V typ. from internal regulator (USB powered). Connect this pin to +3V external power supply.	-
VSS	GND	Power Ground Connect this pin to the system ground.	-
CVSS	GND	Core Ground Connect this pin to VSS pin.	-
IOVDD	PWR	Input/Output Supply voltage Connect this pin to LVDD or HVDD pin.	-
IOVSS	GND	Input/Output Circuit Ground Connect this pin to VSS pin.	-

Table 16. OCD Signal Description

Signal Name	Type	Description	Alternate Function
OCDR	I	On Chip Debug Receive Input OCDR receives data.	-
OCDT	I/O	On Chip Debug Transmit Output OCDT transmits data.	$\overline{\text { ISP }}$

Internal Pin Structure
Table 17. Detailed Internal Pin Structure

Circuit ${ }^{(1)}$	Type	Pins
	Input/Output	$\overline{\mathrm{RST}}$
	Input/Output	$\begin{aligned} & \text { P0.7:0 } \\ & \text { P1.7:0 } \\ & \text { P2.7:0 } \\ & \text { P3.5:0 } \\ & \text { P4.6:0 } \\ & \text { P5.3:0 } \\ & \text { OCDT } \end{aligned}$
	Input/Output	P3.7:6
	Input	KIN3:0 $\frac{\text { SDINS }}{}$ $\frac{\text { SDLCK }}{}$ $\frac{\text { SMINS }}{}$ $\overline{\text { TSLCK }}$ $\frac{\text { ISP }}{}$ $\frac{\text { UID }}{\text { INT0 }}$ $\frac{\text { INT1 }}{}$ T0 RXD OCDR
	Input	$\overline{S W R}$ SA0 $\overline{S R D}$ $\overline{S C S}$ $\overline{S S}$
	Input/Output	$\begin{gathered} \text { NFD7:0 } \\ \text { SD7:0 } \\ \text { LD7:0 } \\ \text { SDCMD } \\ \text { SDDAT3:0 } \\ \text { MISO } \\ \text { MOSI } \end{gathered}$

| Pins |
| :--- | :--- | :--- | :--- |

| Circuit ${ }^{(1)}$ | Type | Pins |
| :---: | :---: | :---: | :---: |
| Output | MICBIAS | |

Notes: 1. For information on resistor value, input/output levels, and drive capability, refer to Section "DC Characteristics", page 242.
2. AT85C51SND3B2 only
3. AT85C51SND3B1 \& AT85C51SND3B2 only

Power Management

Power Supply

The Power Management of AT85C51SND3B dervatives implements all the internal power circuitry (regulators, links...) as well as power failure detector and reset circuitry.

The AT85C51SND3B2 embeds the regulators and a DC to DC step-up convertor to be able to operate from either USB power supply (5 V nominal) or from a single cell battery such as AAA battery.
The AT85C51SND3B0 and AT85C51SND3B1 embed the regulators to be able to operate from either USB power supply (5 V nominal) or from an external 3 volts supply.

Figure 5. Power Supply Diagram

Note: 1. External connection mandatory when 1.8 V DC-DC is used.
The high voltage regulator supplies power to the external devices through HVDD power pin. Its nominal voltage output is 3 V .
The low voltage regulator supplies power to the internal device and external devices through RLVDD power pin. Its nominal voltage output is 1.8 V .
Figure 6 shows how to connect external components, capacitors value along with power characteristics are specified in the section "DC characteristics".

Schematic

Low Voltage DC-DC in AT85C51SND3B2

DC-DC Start-Up

DC-DC Shut-Down

DC-DC Connection

Figure 6. Regulator Connection

Note: Depending on power supply scheme, C_{LV} may replace C_{DC} capacitor (see Figure 8).
The low voltage output DC-DC converter supplies power to the internal device and external devices through LVDD power pin. It operates from a single AAA battery. Its nominal voltage output is 1.8 V .

DC-DC start-up is done by asserting the DCPWR input until the voltage reaches its nominal value (see Section "Power Fail Detector") and firmware starts execution and sets the DCEN bit in PCON to maintain the DC-DC enabled. DCPWR input can then be released. As shown in Figure 8 DCPWR input is asserted by pressing a key connected to BVSS.

Figure 7. DC-DC Start-Up Phase

DC-DC shut-down is done by two different ways:

- Clearing the DCEN bit while $\overline{\text { DCPWR }}$ pin is de-asserted
- Detecting the presence of an internal or external 3V supply, e.g. when the device is connected to USB, DC-DC is disabled to save battery power ${ }^{(1)}$.
Note: 1. If DCEN bit is left set, the DC-DC will restart as soon as the USB power supply disappears.

Figure 8 shows how to connect external components, inductance and components value along with power characteristics are specified in the section "DC characteristics".

Figure 8. Battery DC-DC Connection

Note: Depending on power supply scheme, $\mathrm{C}_{\mathrm{DC} 1}$ may replace C_{LV} capacitor (see Figure 6).

Battery Voltage Monitor

Conversion Management

Power Reduction Mode

Lock Mode

The battery voltage monitor is a 5-bit / 50 mV resolution A to D converter with fixed conversion range as detailed in Table 18.

Table 18. Battery Voltage Value

VB4:0	Battery Voltage (V)
00000	$[0.9-0.95[$
00001	$[0.95-1.0[$
00010	$[1.0-1.05[$
\ldots	\ldots
01110	$[1.6-1.65[$
01111	$[1.65-1.7[$
10000	$[1.7-1.75[$

The battery voltage monitor is turned on by setting the VBPEN and VBCEN bits in PCON (see Table 20). VBPEN bit is set first and VBCEN bit is set 1 ms later. An additional delay of 16 cycles is required before lauching any conversion.
Launching a conversion is done by setting VBEN bit in VBAT (see Table 22). VBEN is automatically cleared at the end of the conversion which takes 34 clock periods. At this step two cases occur:

- Voltage is valid (inside conversion range)

VBERR is cleared and conversion value is set in VB4:0 according to Table 18.

- Voltage is invalid (out of conversion range)

VBERR is set and value reported by VB4:0 is indeterminate.
Two power reduction modes are implemented in the AT85C51SND3B: the Idle mode and the Power-down mode. These modes are detailed in the following sections. In addition to these power reduction modes, the clocks of the core and peripherals can be dynamically divided by 2 using the X2 mode as detailed in Section "X2 Feature", page 31.

In order to allow firmware to efficiently enter in idle mode and not to lose any events that should come from one or more interrupts, power reduction modes entry are conditioned to an hardware bit: PMLCK in PCON.
PMLCK is set by software in each ISR that needs to report an event to the system and thus disables entry in power reduction mode and allows immediate processing of this event. It is cleared by software after exiting power reduction mode.
As shown in Figure 9, when power reduction modes are disabled by setting PMLCK, IDL and PD bits in PCON can not be set and idle or power down modes are not entered.

Figure 9. Power Reduction Controller Block Diagram

Idle Mode

Entering Idle Mode

Exiting Idle Mode

Power-down Mode

Entering Power-down Mode

Exiting Power-down Mode

Idle mode is a power reduction mode that reduces the power consumption. In this mode, program execution halts. Idle mode freezes the clock to the CPU at known states while the peripherals continue to be clocked (refer to Section "System Clock Generator", page 30). The CPU status before entering Idle mode is preserved, i.e., the program counter and program status word register retain their data for the duration of Idle mode. The contents of the SFRs and RAM are also retained.

To enter Idle mode, the user must set the IDL bit in PCON register while PMLCK is cleared. The AT85C51SND3B enters Idle mode upon execution of the instruction that sets IDL bit. The instruction that sets IDL bit is the last instruction executed.
Note: If IDL bit and PD bit are set simultaneously, the AT85C51SND3B enter Power-down mode. Then it does not go in Idle mode when exiting Power-down mode.

There are 2 ways to exit Idle mode:

1. Generate an enabled interrupt.

- Hardware clears IDL bit in PCON register which restores the clock to the CPU. Execution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Idle mode. The generalpurpose flags (GF1 and GF0 in PCON register) may be used to indicate whether an interrupt occurred during normal operation or during Idle mode. When Idle mode is exited by an interrupt, the interrupt service routine may examine GF1 and GF0.

2. Generate a reset.

- A logic high on the RST pin clears IDL bit in PCON register directly and asynchronously. This restores the clock to the CPU. Program execution momentarily resumes with the instruction immediately following the instruction that activated the Idle mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the AT85C51SND3B and vectors the CPU to address 0000h.
Note: During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the instruction that activated Idle mode should not write to a Port pin or to the external RAM.

The Power-down mode places the AT85C51SND3B in a very low power state. Powerdown mode stops the oscillator and freezes all clocks at known states (refer to the Section "Oscillator", page 28). The CPU status prior to entering Power-down mode is preserved, i.e., the program counter, program status word register retain their data for the duration of Power-down mode. In addition, the SFRs and RAM contents are preserved.

To enter Power-down mode, set PD bit in PCON register while PMLCK is cleared. The AT85C51SND3B enters the Power-down mode upon execution of the instruction that sets PD bit. The instruction that sets PD bit is the last instruction executed.

There are 2 ways to exit the Power-down mode:

1. Generate an enabled external interrupt.

- The AT85C51SND3B provides capability to exit from Power-down using $\overline{\text { INTO, }}$ $\overline{\text { INT1 }}$, and KIN3:0 inputs. In addition, using KIN input provides high or low level exit capability (see Section "Keyboard Interface", page 240). Hardware clears PD bit in PCON register which starts the oscillator and restores
the clocks to the CPU and peripherals. Using INTn input, execution resumes when the input is released (see Figure 10) while using KINx input, execution resumes after counting 1024 clock ensuring the oscillator is restarted properly (see Figure 11). This behavior is necessary for decoding the key while it is still pressed. In both cases, execution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Powerdown mode.

Note: 1. The external interrupt used to exit Power-down mode must be configured as level sensitive (INT0 and INT1) and must be assigned the highest priority. In addition, the duration of the interrupt must be long enough to allow the oscillator to stabilize. The execution will only resume when the interrupt is de-asserted.
2. Exit from power-down by external interrupt does not affect the SFRs nor the internal RAM content.

Figure 10. Power-down Exit Waveform Using $\overline{\mathrm{NT} T 1: 0}$

Figure 11. Power-down Exit Waveform Using KIN3:0

Note: 1. KIN3:0 can be high or low-level triggered.
2. Generate a reset.

- A logic high on the RST pin clears PD bit in PCON register directly and asynchronously. This starts the oscillator and restores the clock to the CPU and peripherals. Program execution momentarily resumes with the instruction immediately following the instruction that activated Power-down mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the AT85C51SND3B and vectors the CPU to address 0000h.
Notes: 1. During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the instruction that activated the Power-down mode should not write to a Port pin or to the external RAM.

2. Exit from power-down by reset redefines all the SFRs, but does not affect the internal RAM content.

Reset

Reset Source Reporting

Pads Level Control

External $\overline{\text { RST }}$ Input

In order to secure the product functionality while in power-up or power-down phase or while in running phase, a number of internal mechanisms have been implemented. These mechanisms are listed below and detailed in the following paragraphs.

- External $\overline{\mathrm{RST}}$ input
- Power Fail Detector (brown-out)
- Watchdog timer
- Pads control

Figure 12 details the internal reset circuitry.
In order for the firmware to take specific actions depending on the source which has currently reset the device, activated reset source is reported to the CPU by EXTRST, WDTRST, and PFDRST flags in PSTA register.

Figure 12. Internal Reset Circuitry

As soon as one reset source is asserted, the pads go to their reset value. This ensures that pads level is steady during reset (e.g. NFWP set to low level and then protecting Nand Flash against spurious writing).
The status of the Port pins during reset is detailed in Table 19.
Table 19. Pin State Under Reset Condition.

Port 0	Port 1	Port 2	Port 3	Port 4	Port 5	NFD7:0	$\overline{\text { NFWP }}$	$\overline{\text { NFCE0 }}$
Float	H	H	H	H	H	Float	L	H

In order to start-up (cold reset) or to restart (warm reset) properly the microcontroller, a low level has to be applied on the RST pin. A bad level leads to a wrong initialization of the internal registers like SFRs, Program Counter... and to unpredictable behavior of the microcontroller. A proper device reset initializes the AT85C51SND3B and vectors the CPU to address 0000 h . $\overline{\mathrm{RST}}$ input has a pull-up resistor allowing power-on reset by simply connecting an external capacitor to $\mathrm{V}_{\text {SS }}$ as shown in Figure 13. A warm reset can be applied either directly on the RST pin or indirectly by an internal reset source such as the watchdog timer. Resistor value and input characteristics are discussed in the Section "DC Characteristics", page 242.

Figure 13. Reset Circuitry and Power-On Reset

Cold Reset

Warm Reset

Watchdog Timer Reset

2 conditions are required before enabling a CPU start-up:

- $V_{D D}$ must reach the specified $V_{D D}$ range
- The level on X 1 input pin must be outside the specification $\left(\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}\right)$

If one of these 2 conditions are not met, the microcontroller does not start correctly and can execute an instruction fetch from anywhere in the program space. An active level applied on the RST pin must be asserted till both of the above conditions are met. A reset is active when the level V_{IL} is reached and when the pulse width covers the period of time where $V_{D D}$ and the oscillator are not stabilized. 2 parameters have to be taken into account to determine the reset pulse width:

- $V_{D D}$ rise time,
- Oscillator startup time.

To determine the capacitor value to implement, the highest value of these 2 parameters has to be chosen.

To achieve a valid reset, the reset signal must be maintained for at least 2 machine cycles (24 oscillator clock periods) while the oscillator is running. The number of clock periods is mode independent (X2 or X1).

As detailed in Section "Watchdog Timer", page 75, the WDT generates a 96-clock period pulse on the $\overline{\mathrm{RST}}$ pin. In order to properly propagate this pulse to the rest of the application in case of external capacitor or power-supply supervisor circuit, a $1 \mathrm{k} \Omega$ resistor must be added as shown in Figure 14.

Figure 14. Reset Circuitry for WDT Reset-out Usage

The Power Fail Detector (PFD) ensures that whole product is in reset when internal voltage is out of its limits specification. PFD limits are detailed in the Section "DC Characteristics", page 242.

Registers

Table 20. PCON Register
PCON (0.87h) - Power Control Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
VBCEN	VBPEN	DCPBST	GF0	DCEN	PMLCK	PD	IDL

$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description
7	VBCEN	Battery Monitor Clock Enable Bit Set to enable the clock of the battery monitoring. Clear to disable the clock of the battery monitoring.
6	VBPEN	Battery Monitor Power Enable Bit Set to power the battery monitoring. Clear to unpower the battery monitoring.
5	DCPBST	DC-DC Converter Power Boost Bit Set to disable DC-DC high power boost mode. Clear to enable DC-DC high power boost mode.
4	GF0	General-purpose flag 0 One use is to indicate whether an interrupt occurred during normal operation or during Idle mode.
3	DCEN	DC-DC Converter Enable Bit Set to start the DC-DC converter or maintain its activity while $\overline{\text { DCPWR }}$ pin is asserted. Clear to stop the DC-DC converter and shut off the device if not powered by an external power supply.
2	PMLCK	Power Mode Lock Bit Set to lock power-down or Idle mode entry by preventing PD or IDL bits from being set by software. Clear to unlock power-down or Idle mode entry.
1	PD	Power-down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-down mode when PMLCK is cleared. If IDL and PD are both set, PD takes precedence.
0	IDL	Idle Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Idle mode when PMLCK is cleared. If IDL and PD are both set, PD takes precedence.

Reset Value $=00011$ 0000b

Table 21. PSTA Register
PSTA (0.86h) - Power Status Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
UVDET	HVDET	-	-	-	WDTRST	EXTRST	PFDRST
Bit Number	Bit Mnemonic	Description					
7	UVDET	USB Voltage Detect Flag Set by hardware when 5V is detected on UVDD pin. Cleared by hardware when 5V is not detected on UVDD pin.					

Bit Number	Bit Mnemonic	Description
6	HVDET	High Voltage Detect Flag Set by hardware when 3V is detected on HVDD pin. Cleared by hardware when 3V is not detected on HVDD pin.
$5-3$	-	Reserved The value of these bits is always 0. Do not set these bits.
2	WDTRST	Watchdog Timer Reset Flag Set by hardware when the watchdog timer has overflowed triggering and internal reset. Must be cleared by software at power-up.
1	EXTRST	External Reset Flag Set by hardware when the external $\overline{\text { RST pin is asserted (warm reset). }}$ Must be cleared by software at power-up.
0	PFDRST	Power Failure Detector Reset Flag Set by hardware when the power voltage has been triggered outside its specified value (cold reset). Must be cleared by software at power-up.

Reset Value = XX00 0XXXb ${ }^{(1)}$
Note: 1. Reset value depends on the power supply presence and on the internal reset source.
Table 22. VBAT Register
VBAT (0.85h) - Battery Voltage Monitor Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{4}$	\mathbf{c}				
VBEN	VBERR	-	VB4	VB3	VB2	VB1	VB0
Bit Number	Bit Mnemonic	Description					
7	VBEN	Battery Monitor Enable Bit Set to enable the battery monitoring. Cleared by hardware at the end of conversion					
6	VBERR	Battery Monitor Error Flag Set by hardware when conversion is out of min/max values.					
5	-	Reserved The value read from this bit is always 0. Do not set this bit.					
$4-0$	VB4:0	Battery Value Refer to Table 18 for voltage value correspondence.					

Reset Value $=0000$ 0000b

Clock Controller

Oscillator

Authorized frequency

Power Optimization

The clock controller implemented in AT85C51SND3B derivatives is based on an on-chip oscillator feeding two on-chip Phase Lock Loop (PLL) dedicated for the USB controller (see Section "USB Controller", page 85) and the Audio Controller (see Section "Audio Controller", page 149). All internal clocks to the peripherals and CPU core are generated by this controller.

X1 and X2 pins are the input and the output of a frequency power-optimized singlestage on-chip inverter (see Figure 15) that can be configured with off-chip components such as a Pierce oscillator (see Figure 16). Value of capacitors and crystal characteristics are detailed in the Section "DC Characteristics", page 242.

In order to be able to be able to properly detect the oscillating frequency when in In System Programming mode and then generate the 480 MHz requested for USB connection, only the following frequencies are authorized:
$12 \mathrm{MHz}, 13 \mathrm{MHz}, 16 \mathrm{MHz}, 19.2 \mathrm{MHz}, 19.5 \mathrm{MHz}, 20 \mathrm{MHz}, 24 \mathrm{MHz}$ and 26 MHz .
In order to optimize the power consumption, oscillator gain can be adjusted by software depending on the crystal frequency. Such optimization is done after reset using OSCF1:0 bits in CKCON register (see Table 31) according to Table 23. Moreover if external frequency signal is input (X 1 driven by a remote host) it is possible to switch off the internal amplifier by setting the OSCAMP bit in CKCON register as shown in Figure 15.

Table 23. Oscillator Frequency Configuration

OSCF1:0	Crystal Clock Frequency Range (Fosc)
00	$22-26 \mathrm{MHz}$ (default)
01	$18-22 \mathrm{MHz}$
10	$14-18 \mathrm{MHz}$
11	$10-14 \mathrm{MHz}$

The oscillator outputs a clock: the oscillator clock used to feed the clock generator and the system clock generator.
The oscillator clock can be disabled by entering the power-down reduction mode as detailed in the Section "Power Management", page 19.

Figure 15. Oscillator Block Diagram and Symbol

Figure 16. Crystal Connection

Clock Generator

480 MHz PLL
The PLL is based on a Phase Frequency Comparator and Lock Detector block (PFLD) which makes the comparison between the reference clock coming from the 4 -bit N divider (PLLN3:0 + 1 in PLLCLK) and the reverse clock coming from either fixed frequencies or the 4-bit R divider (PLLR3:0 +1 in PLLCLK) and generates some pulses on the Up or Down signal depending on the edge position of the reverse clock. These pulses feed the Charge Pump block (CHP) that generates a voltage reference to the 480 MHz Voltage Controlled Oscillator (VCO) by injecting or extracting charges from an internal filter. The reverse clock selection mechanism is implemented in order to support many oscillator frequencies and to minimize the PLL output jitter.
The clock generator provides the oscillator and higher frequency clocks to the System, the DFC, the memory controllers: Nand Flash and MMC controllers, the USB and the high speed Serial I/O port. It is based on a 480 MHz PLL namely the PLL clock followed by a frequency divider giving a broad range of available clock frequency: the CLOCK GEN clocks.
The clock generation is enabled by setting CKGENE bit in CKEN (see Table 32).
The PLL is enabled by setting PLLEN bit in CKEN and reports a filtered lock status by the PLOCK Flag in CKEN.
As soon as the PLL is locked, the generated clocks can be used by the peripherals as detailed in the following sections.

Figure 17. Clock Generator Block Diagram and Symbol

Figure 18. PLL Block Diagram and Symbol

Table 24. PLL Reverse Clock Selection

PLLCKS1:0	Clock Selection ($\mathbf{F}_{\text {REv }}$)
00	12 MHz (default)
01	16 MHz
10	20 MHz
11	$12 \mathrm{MHz} \div($ PLLR +1$)$

PLL Programming

The PLL is programmed depending on the oscillator clock frequency. In order to minimize the output jitter, $\mathrm{F}_{\mathrm{REV}}$ must be as higher as possible. Table 26 shows the PLL programming values and reverse frequency depending on some oscillator frequency.

Table 25. PLL Programming Values versus Input Frequency

$F_{\text {osc }}(\mathrm{MHz})$	PLLCKS1:0	PLLN3:0 / N	PLLR3:0 / R	$\mathrm{F}_{\text {REV }}(\mathrm{MHz})$
12	00	0000	XXXX	12
13	11	1100 / 13	1011 / 12	1
16	01	0000	XXXX	16
19.2	11	0111 / 8	0100 / 5	2.4
19.5	11	1100 / 13	0111 / 8	1.5
20	10	0000	XXXX	20
24	00	0001 / 2	XXXX	12
26	11	1100 / 13	0101/6	2

In order to increase the system computation throughput, it is possible to switch the system clock to higher value when PLL is enabled. System clock generator block diagram is shown in Figure 19 and is based on a frequency selector controlled by SYSCKS1:0 bits in CKSEL (see Table 34) according to Table 26.
The CPU clock can be disabled by entering the idle reduction mode as detailed in the Section "Power Management", page 19.
Note: In order to prevent any incorrect operation while dynamically switching the system frequency, user must be aware that all peripherals using the peripheral clock as time reference (timers, etc...) will have their time reference modified by this frequency change.

Figure 19. System Clock Generator Block Diagram and Symbols

Table 26. System Clock Selection

SYSCKS1:0	Clock Selection $\left(F_{\text {sYs }}\right)$
00	F osc (default)
01	24 MHz
10	30 MHz
11	40 MHz

X2 Feature

DFC/NFC Clock Generator

Unlike standard C51 products that require 12 clock periods per machine cycle, the AT85C51SND3B needs only 6 clock periods per machine cycle. This feature called the "X2 feature" can be enabled using the X2 bit ${ }^{(1)}$ in CKCON and allows the AT85C51SND3B to operate in 6 or 12 clock periods per machine cycle. As shown in Figure 19, both CPU and peripheral clocks are affected by this feature. Figure 20 shows the X2 mode switching waveforms. After reset the standard mode is activated. In standard mode the CPU and peripheral clock frequency is the oscillator frequency divided by 2 while in X2 mode, it is the oscillator frequency.

Figure 20. Mode Switching Waveforms

In order to optimize the data transfer throughput between the DFC and the NFC, both peripherals share the same clock frequency. The DFC and NFC clock generator block diagram is shown in Figure 21 and is based on a frequency selector.
Frequency selection is done using DNFCKS2:0 bits in CKSEL (see Table 33) according to Table 27.
Frequency is enabled by setting DNFCKEN bit in CKEN.

Figure 21. DFC/NFC Clock Generator Block Diagram and Symbol

Table 27. DFC/NFC Clock Selection

DNFCKS2:0	Clock Selection ($\mathbf{F}_{\mathbf{s}}$)
000	Fosc $^{\text {(default) }}$
001	60 MHz
010	48 MHz
011	40 MHz
100	30 MHz
101	24 MHz
110	20 MHz
111	16 MHz

MMC Clock Generator

The MMC clock generator block diagram is shown in Figure 22 and is based on a frequency selector followed by a frequency divider.
Frequency selection is done using MMCCKS2:0 bits in MMCCLK (see Table 35) according to Table $28^{(1)}$.
Frequency division is done using MMCDIV4:0 bits in MMCCLK according to Table 29.
Frequency configuration (selection and division) must be done prior to enable the MMC clock generation by setting MMCKEN bit in CKEN.
Note: 1. To allow low frequency as low as 400 KHz (frequency needed in MMC identification phase), $\mathrm{F}_{\text {osc }}$ selection can be divided by 2.

Figure 22. MMC Clock Generator Block Diagram and Symbol

Table 28. MMC Clock Selection

MMCCKS2:0	Clock Selection $\left(\mathbf{F}_{\mathrm{S}}\right)$
000	Fosc (default)
001	60 MHz
010	48 MHz
011	30 MHz
100	24 MHz
101	20 MHz
110	16 MHz
111	$\mathrm{~F}_{\text {OSC }} \div 2$

Table 29. MMC Clock Divider

MMCDIV4:0	Clock Division
00000	Disabled (no clock out)
≥ 00001	$\mathrm{~F}_{\text {MMC }}=\mathrm{F}_{\mathrm{S}} \div$ MMCDIV

SIO Clock Generator

As detailed in Figure 23, the SIO clock which feeds the internal SIO baud rate generator can be programmed using SIOCKS bit in CKSEL register according to Table 30 to generate either the oscillator frequency or a very high frequency allowing very high baud rate when PLL is enabled. SIO clock is enabled by SIOCKEN bit in CKEN register.

Figure 23. SIO Clock Generator Block Diagram and Symbol

Table 30. SIO Clock Selection

SIOCKS	Clock Selection $\left(F_{\mathbf{S}}\right)$
0	Fosc $^{\text {O }}$
1	120 MHz

Registers

Table 31. CKCON Register
CKCON (0.8Fh) - Clock Control Register

7	6	5	4	3	2	1	0
	WDX2	OSCAMP	OSCF1	OSCFO	T1X2	T0X2	X2
$\begin{gathered} \hline \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
6	WDX2	Watchdog Clock Control Bit Set to select the oscillator clock divided by 2 as watchdog clock input (X2 independent). Clear to select the peripheral clock as watchdog clock input (X2 dependent).					
5	OSCAMP	Oscillator Amplifier Control Bit Set to optimize power consumption by disabling the oscillator amplifier when an external clock is used. Clear to enable the oscillator amplifier in case of crystal usage (default).					
4-3	OSCF1:0	Oscillator Frequency Range Bits Set this bits according to Table 23 to optimize power consumption.					
2	T1X2	Timer 1 Clock Control Bit Set to select the oscillator clock divided by 2 as timer 1 clock input (X2 independent). Clear to select the peripheral clock as timer 1 clock input (X2 dependent).					
1	T0X2	Timer 0 Clock Control Bit Set to select the oscillator clock divided by 2 as timer 0 clock input (X2 independent). Clear to select the peripheral clock as timer 0 clock input (X2 dependent).					
0	X2	System Clock Control Bit Clear to select 12 clock periods per machine cycle (STD mode, $\mathrm{F}_{\mathrm{CPU}}=\mathrm{F}_{\text {PER }}=$ $\mathrm{F}_{\mathrm{osc}} / 2$). Set to select 6 clock periods per machine cycle (X 2 mode, $\mathrm{F}_{\mathrm{CPU}}=\mathrm{F}_{\text {PER }}=\mathrm{F}_{\mathrm{OSC}}$).					

Reset Value $=0000$ 0000b

Table 32. CKEN Register
CKEN (0.B9h) - Clock Enable Register

7	6	5	4	3	2	1	0
CKGENE	PLLEN	-	PLOCK	MMCKEN		SIOCKEN	DNFCKEN
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7	CKGENE	Clock Generator Enable Bit Set to enable the clock generator. Clear to disable the clock generators.					
6	PLLEN	PLL Enable Bit Set to enable the 480 MHz PLL. Clear to disable the 480 MHz PLL.					
5	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
4	PLOCK	PLL Lock Flag Set by hardware when the PLL is locked. Cleared by hardware when the PLL is not locked.					
3	MMCKEN	MMC Controller Clock Enable Bit Set to enable the MMC controller Clock. Clear to disable the MMC controller Clock.					
2	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
1	SIOCKEN	SIO Controller Clock Enable Bit Set to enable the SIO Clock. Clear to disable the SIO Clock.					
0	DNFCKEN	DF Controller / NF Controller Clock Enable Bit Set to enable the DFC/NFC Clock. Clear to disable the DFC/NFC Clock.					

Reset Value $=0000$ 0000b

Table 33. CKSEL Register
CKSEL (0.BAh) - Clock Selection Register

$\mathbf{7} \mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$			
DNFCKS2	DNFCKS1	DFCCKS0	PLLCKS1	PLLCKS0	SIOCKS	SYSCKS1	SYSCKS0
Bit Number	Bit Mnemonic	Description					
$7-5$	DNFCKS2:0	DFC/NFC Clock Select Bits Refer to Table 27 for information on selected clock value.					
$4-3$	PLLCKS1:0	PLL Reverse Clock Select Bits Refer to Table 24 for information on selected clock value.					
2	SIOCKS	SIO Clock Select Bit Refer to Table 30 for information on divided clock value.					
$1-0$	SYSCKS1:0	System Clock Select Bits Refer to Table 26 for information on divided clock value.					

Reset Value $=0000$ 0000b

Table 34. PLLCLK Register
PLLCLK (0.BCh) - PLL Clock Control Register

7	6	5	4	3	2	1	0
PLLR3	PLLR2	PLLR1	PLLR0	PLLN3	PLLN2	PLLN1	PLLN0
Bit Number	Bit Mnemonic	Description					
7-4	PLLR3:0	PLL R Divider Bits 4-bit R divider, R from 1 (PLLR3:0 = 0000) to $16($ PLLR3:0 = 1111).					
3-0	PLLN3:0	PLL N Divider Bits 4-bit N divider, N from 1 (PLLN3:0 = 0000) to $16($ PLLN3:0 = 1111).					

Reset Value $=0000$ 0000b

Table 35. MMCCLK Register
MMCCLK (0.BDh) - MMC Clock Control Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
MMCCKS2	MMCCKS1	MMCCKS0	MMCDIV4	MMCDIV3	MMCDIV2	MMCDIV1	MMCDIV0

Bit Number	Bit Mnemonic	Description
$7-5$	MMCCKS2:0	MMC Clock Select Bits Refer to Table 28 for information on selected clock value.
$4-0$	MMCDIV4:0	MMC Clock Divider Bits Refer to Table 29 for information on divided clock value.

Reset Value $=0000$ 0000b

Special Function Registers

SFR Pagination

The AT85C51SND3B derivatives implement a SFR pagination mechanism which allows mapping of high number of peripherals in the SFR space. As shown in Figure 24, four pages are accessible through the PPCON (Peripheral Pagination Control) register (see Table 37). The four bits of PPCON: PPS0 to PPS3 are used to select one page as detailed in Table 36. Setting one bit of PPCON using the setb instruction automatically clears the 7 others: e.g. if page 0 is selected, selecting page 3 is done by the instruction setb PPS3 which clears PPS0.
By default, after reset selected page is page 0 .
The PPCON content is automatically saved in a specific stack at each interrupt service routine entry during vectorization and restored at exit during reti execution.

Figure 24. SFR Pagination Block diagram

Table 36. Page Selection Truth Table

PPS3	PPS2	PPS1	PPS0	Selected Page
0	0	0	0	Page 0
X	X	X	1	Page 0
X	X	1	0	Page 1
X	1	0	0	Page 2
1	0	0	0	Page 3

Table 37. PPCON Register PPCON (Y.COh) - Peripheral Page Control Register

SFR Registers

The Special Function Registers (SFRs) of the AT85C51SND3B fall into the categories detailed in Table 39 to Table 58. Address is identified as "P.XXh" where P can take the values detailed in Table 38 and XXh is the hexadecimal address from 80h to FFh

Table 38. Page Address Notation

\mathbf{P}	Comment
Y	Register mapped in all pages
$3-0$	Register mapped in the corresponding page

The SFRs mapping within pages is provided together with SFR reset value in Table 58 to Table 58. In these tables, the bit-addressable registers are identified by Note 1.

Table 39. C51 Core SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ACC	Y.E0h	Accumulator								
B	Y.F0h	B Register								
PSW	Y.D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	F1	P
SP	Y.81h	Stack Pointer								
DPL	Y.82h	Data Pointer Low Byte								
DPH	Y.83h	Data Pointer High Byte								
PPCON	Y.C0h	Peripheral Pagination	-	-	-	-	PPS3:0			

Table 40. Power and System Management

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	0.87h	Power Control	VBCEN	VBPEN	DCPBST	GF0	DCEN*	PMLCK	PD	IDL
PSTA	0.86h	Power Status	UVDET	HVDET	-	-	-	WDTRST	EXTRST	PFDRST
AUXR1	0.A2h	Auxiliary Register 1	-	-	-	-	GF3	0	-	DPS
VBAT	0.85h	Battery Voltage Monitoring	VBEN	VBERR	-	VB4:0				
SVERS	3.97h	Silicon Version	SV7:0							

Note: Available in AT85C51SND3B2 only.

Table 41. Clock Management Unit SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CKCON	0.8Fh	Clock Control	-	WDX2	-	OSCF1:0		T1X2	T0X2	X2
CKEN	0.B9h	Clock Enable	CKGENE	PLLEN	-	PLOCK	MMCKEN	-	SIOCKEN	DFCKEN
CKSEL	0.BAh	Clock Selection	DNFCKS2:0			PLLCKS1:0		SIOCKS	SYSCKS1:0	
PLLCLK	0.BCh	PLL Clock	PLLR3:0				PLLN3:0			
MMCCLK	0.BDh	MMC Clock	MMCCKS2:0			MMCDIV4:0				

Table 42. Interrupt SFRs

Mnemonic	Add	Name	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
IEN0	$0 . A 8 h$	Interrupt Enable Control 0	EA	EAUP	EDFC	ES	ET1	EX1	ET0	EX0
IEN1	0. B1h	Interrupt Enable Control 1	-	-	EMMC	ENFC	ESPI	EPSI	EKB	EUSB
IPH0	$0 . B 7 h$	Interrupt Priority Control High 0	-	IPHAUP	IPHDFC	IPHS	IPHT1	IPHX1	IPHT0	IPHX0
IPL0	$0 . B 8 h$	Interrupt Priority Control Low 0	-	IPLAUP	IPLDFC	IPLS	IPLT1	IPLX1	IPLT0	IPLX0
IPH1	$0 . B 3 h ~$	Interrupt Priority Control High 1	-	-	IPHMMC	IPHNFC	IPHSPI	IPHPSI	IPHKB	IPHUSB
IPL1	$0 . B 2 h ~$	Interrupt Priority Control Low 1	-	-	IPLMMC	IPLNFC	IPLSPI	IPLPSI	IPLKB	IPLUSB

Table 43. I/O Port SFRs

Mnemonic	Add	Name	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
P0	Y.80h	8-bit Port 0								
P1	Y.90h	8-bit Port 1								
P2	Y.AOh	8-bit Port 2								
P3	Y.B0h	8-bit Port 3								
P4	0.98h	8-bit Port 4								
P5	0.C8h	4-bit Port 5								

Table 44. Timer SFRs

Mnemonic	Add	Name	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
TCON	0.88 h	Timer/Counter 0 and 1 Control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
TMOD	0.89 h	Timer/Counter 0 and 1 Modes	GATE1	C/T1\#	M11	M01	GATE0	C/T0\#	M10	M00
TL0	0.8 Ah	Timer/Counter 0 Low Byte								
TH0	0.8 Ch	Timer/Counter 0 High Byte								
TL1	0.8 Bh	Timer/Counter 1 Low Byte								
TH1	$0.8 D h$	Timer/Counter 1 High Byte								
WDTRST	$0 . A 6 h$	Watchdog Timer Reset								
WDTPRG	$0 . A 7 h$	Watchdog Timer Program	-	-	-	-	-		WTO2:0	

Table 45. RAM Interface

Mnemonic	Add	Name	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
RDFCAL	1.FDh	RAM DFC Low Address Byte	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
RDFCAM	1.FEh	RAM DFC Medium Address Byte	RA15	RA14	RA13	RA12	RA11	RA10	RA9	RA8
RDFCAH	1.FFh	RAM DFC Higher Address Byte	-	-	-	-	-	-	-	RA16

Table 46. Memory Management SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
MEMCBAX	0.F2h	Memory CODE Base Address	CBAX16:9							
MEMDBAX	0.F3h	Memory DATA Base Address	DBAX16:9							
MEMXBAX	0.F4h	Memory XDATA Base Address	XBAX16:9							
MEMCSX	0.F5h	Memory CODE Size	CSX7:0							
MEMXSX	0.F6h	Memory XDATA Size	XSX7:0							

Table 47. Scheduler SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SCHCLK	0.FEh	Scheduler Clocks	-		TOETB		-	-	-	-
SCHGPR3	Y.F9h	32-bit General Purpose Register	GPR31:24							
SCHGPR2	Y.FAh	32-bit General Purpose Register	GPR23:16							
SCHGPR1	Y.FBh	32-bit General Purpose Register	GPR15:8							
SCHGPR0	Y.FCh	32-bit General Purpose Register	GPR7:0							

Table 48. Data Flow Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
DFCON	1.89h	DFC Control		DFRES	-	DFCRCEN	DFPRIO1:0		DFABTM	DFEN
DFCSTA	1.88h	DFC Channel Status	DRDY1	SRDY1	EOFI1	DFBSY1	DRDY0	SRDYO	EOFIO	DFBSYO
DFCCON	1.85h	DFC Channel Control	DFABT1	EOFE1	EOFIA1	-	DFABT0	EOFE0	EOFIAO	-
DFDO	1.8Ah	DFC Channel 0 Descriptor	DFD0D7:0							
DFD1	1.8 Bh	DFC Channel 1 Descriptor	DFD1D7:0							
DFCRC	1.8Ch	DFC CRC16 Data	CRCD7:0							

Table 49. USB Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
USB General Registers										
USBCON	1.E1h	USB General Control	USBE	HOST	FRZCLK	OTGPADE	-	-	IDTE	VBUSTE
USBSTA	1.E2h	USB General Status	-	-	-	-	-	SPEED	ID	VBUS
USBINT	1.E3h	USB General Interrupt	-	-	-	-	-	-	IDTI	VBUSTI
UDPADDH	1.E4h	USB DPRAM Direct Access High	DPACC	-	-	-	-	DPADD10:8		
UDPADDL	1.E5h	USB DPRAM Direct Access Low	DPADD7:0							
OTGCON	1.E6h	USB OTG Control	-	-	HNPREQ	SRPREQ	SRPSEL	VBUSHWC	VBUSREQ	VBUSRQC
OTGIEN	1.E7h	USB OTG Interrupt Enable	-	-	Stoe	HNPERRE	ROLEEXE	BCERRE	VBERRE	SRPE
OTGINT	1.D1h	USB OTG Interrupt	-	-	STOI	HNPERRI	ROLEEXI	BCERRI	VBERRI	SRPI

Table 49. USB Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
USB Device Registers (HOST cleared)										
UDCON	1.D9h	Device Global Control	-	-	-	-	-	-	RMWKUP	DETACH
UDINT	1.D8h	Device Global Interrupt (bit addressable)	-	UPRSMI	EORSMI	WAKEUPI	EORSTI	SOFI	MSOFI	SUSPI
UDIEN	1.DAh	Device Global Interrupt Enable	-	UPRSME	EORSME	WAKEUPE	EORSTE	SOFE	MSOFE	SUSPE
UDADDR	1.DBh	Device Address	ADDEN	UADD6:0						
UDFNUMH	1.DCh	Device Frame Number High	-	-	-	-	-	FNUM10:8		
UDFNUML	1.DDh	Device Frame Number Low	FNUM7:0							
UDMFN	1.DEh	Device Micro Frame Number	-	-	-	FNCERR	-	MFNUM2:0		
UDTST	1.DFh	Device Test	-	-	OPMODE2	TSTPCKT	TSTK	TSTJ	SPDCONF	
USB Host Registers (HOST set)										
UHCON	1.D9h	USB Host General Control	-	-	-	-	-	RESUME	RESET	SOFE
UHINT	1.D8h	USB Host General Interrupt (bit addressable)	-	HWUPI	HSOFI	RXRSMI	RSMEDI	RSTI	DDISCI	DCONNI
UHIEN	1.DAh	USB Host General Interrupt En	-	HWUPE	HSOFE	RXRSME	RSMEDE	RSTE	DDISCE	DCONNE
UHADDR	1.DBh	USB Host Address	-	HADDR6:0						
UHFNUMH	1.DCh	USB Host Frame Number High	-	-	-	-	-	FNUM10:8		
UHFNUML	1.DDh	USB Host Frame Number Low	FNUM7:0							
UHFLEN	1.DEh	USB Host Frame Length	FLEN7:0							
USB Device Endpoint Registers (HOST cleared)										
UENUM	1.C9h	Endpoint Number Selection	-	-	-	-	-	EPNUM2:0		
UERST	1.CAh	Endpoint Reset	-	EPRST6:0						
UECONX	1.CBh	Endpoint Control	-	-	STALLRQ	STALLRQC	RSTDT	EPNUMS	DFCRDY	EPEN
UECFG0X	1.CCh	Endpoint Configuration 1	EPTYPE1:0		-	-	ISOSW	AUTOSW	NYETDIS	EPDIR
UECFG1X	1.CDh	Endpoint Configuration 0	-	EPSIZE2:0			EPBK1:0		ALLOC	-
UESTAOX	1.CEh	Endpoint Status 0	CFGOK	OVERFI	UNDERFI	ZLPSEEN	DTSEQ1:0		NBUSYBK1:0	
UESTA1X	1.CFh	Endpoint Status 1	-	-	-	-	-	CTRLDIR	CURRBK1:0	
UEINTX	1.C8h	Endpoint Interrupt (bit addressable)	FIFOCON	NAKINI	RWAL	NAKOUTI	RXSTPI	RXOUTI	STALLI	TXINI
UEIENX	1.D2h	Endpoint Interrupt Enable	FLERRE	NAKINE	-	NAKOUTE	RXSTPE	RXOUTE	STALLE	TXINE
UEDATX	1.D3h	Endpoint Data	DAT7:0							
UEBCHX	1.D4h	Endpoint Byte Counter High	-	-	-	-	-	BYCT10:8		
UEBCLX	1.D5h	Endpoint Byte Counter Low	BYCT7:0							
UEINT	1.D6h	Endpoint Interrupt	-	EPINT6:0						

Table 49. USB Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
USB Pipe Registers (HOST set)										
UPNUM	1.C9h	USB Host Pipe Number	-	-	-	-	-	PNUM2:0		
UPRST	1.CAh	USB Host Pipe Reset	-	PRST6:0						
UPCONX	1.CBh	USB Pipe Control	-	PFREEZE	INMODE	AUTOSW	RSTDT	PNUMS	DFCRDY	PEN
UPCFGOX	1.CCh	USB Pipe Configuration 0	PTYPE1:0		PTOKEN1:0		PEPNUM3:0			
UPCFG1X	1.CDh	USB Pipe Configuration 1	PSIZE2:0				PBK1:0		ALLOC	-
UPCFG2X	1.CFh	USB Pipe Configuration 2	INTFRQ7:0							
UPSTAX	1.CEh	USB Pipe Status	CFGOK	OVERFI	UNDERFI	-	DTSEQ1:0		NBUSYBK1:0	
UPINRQX	1.DFh	USB Pipe IN Request	INRQ7:0							
UPERRX	1.D7h	USB Pipe Error	-	COUNTER1:0		CRC16	TIMEOUT	PID	DATAPID	DATATGL
UPINTX	1.C8h	USB Pipe Interrupt (bit addressable)	FIFOCON	NAKEDI	RWAL	PERRI	TXSTPI	TXOUTI	RXSTALLI	RXINI
UPIENX	1.D2h	USB Pipe Interrupt Enable	FLERRE	NAKEDE	-	PERRE	TXSTPE	TXOUTE	RXSTALLE	RXINE
UPDATX	1.D3h	USB Pipe Data				PDA	T7:0			
UPBCHX	1.D4h	USB Pipe Byte Counter (high)	-	-	-	-	-		PBYCT10:8	
UPBCLX	1.D5h	USB Pipe Byte Counter (low)				PBY	T7:0			
UPINT	1.D6h	USB Pipe General Interrupt				PIN	7:0			

Table 50. NFC SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
NFCFG	1.99h	NF Configuration (FIFO 8 B)	CFG7:0							
NFLOG	1.9Ah	NF Logical Value (2 B)	LOG7:0							
NFCON	1.9Bh	NF Control	-	-	TRS	RESET	WP	SPZEN	ECCEN	EN
NFERR	1.9Ch	NF Error Information (FIFO 4 B)	ERR7:0							
NFADR	1.9Dh	NF Row Address	ADR7:0							
NFADC	1.9Eh	NF Column Address	ADC7:0							
NFCMD	1.9Fh	NF Command	CMD7:0							
NFACT	1.A1h	NF Action	-	-	-	EXT1:0		ACT2:0		
NFDAT	1.A2h	NF Data	DAT7:0							
NFDATF	1.A3h	NF Data and Fetch Next	DATF7:0							
NFSTA	1.98h	NF Controller Status	SMCD	SMLCK	-	EOP	NECC2:0			RUN
NFECC	1.A4h	NF ECC 1 and 2 (FIFO 6 B)	ECC7:0							
NFINT	1.A5h	NF Interrupt	-	-	-	SMCTI	ILGLI	ECCRDYI	ECCERRI	STOPI
NFIEN	1.A6h	NF Interrupt Enable	-	-	-	SMCTE	ILGLE	ECCRDYE	ECCERRE	STOPE
NFUDAT	1.A7h	NF User Data	UDATA7:0							

42
 AT85C51SND3B

Table 50. NFC SFRs

Mnemonic	Add	Name	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
NFBPH	1.94 h	NF Byte Position (MSB)								BP15:8
NFBPL	1.95 h	NF Byte Position (LSB)	BP7:0							

Table 51. MMC Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
MMCONO	1.B1h	MMC Control 0	-	DPTRR	CRPTR	CTPTR	MBLOCK	DFMT	RFMT	CRCDIS
MMCON1	1.B2h	MMC Control 1	BLEN11:8				DATDIR	DATEN	RXCEN	TXCEN
MMCON2	1.B3h	MMC Control 2	FCK	DCR	CCR	DBSIZE1:0		DATD1:0		MMCEN
MMBLP	1.B4h	MMC Block Length	BLEN7:0							
MMSTA	1.B5h	MMC Status	SDWP	CDET	CBUSY	CRC16S	DATFS	CRC7S	WFRS	HFRS
MMDAT	1.B6h	MMC Data	MD7:0							
MMCMD	1.B7h	MMC Command	MC7:0							
MMINT	1.BEh	MMC Interrupt	CDETI	EORI	EOCI	EOFI	WFRI	HFRI	EOBI	-
MMMSK	1.BFh	MMC Interrupt Mask	CDETM	EORM	EOCM	EOFM	WFRM	HFRM	EOBM	-

Table 52. Audio Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
AUCON	1.F1h	Audio Controller Control	BPEN	VSURND	BBOOST	MIXEN	EQUDIS	-	-	ACCKEN
APCONO	1.F2h	Audio Processor Control 0	0	APCMD6:0						
APCON1	1.F3h	Audio Processor Control 1	-	-	ABACC	ABWPR	ABRPR	ABSPLIT	APLOAD	DAPEN
APSTA	1.EAh	Audio Processor Status	APSTAT7:0							
APDAT	1.EBh	Audio Processor Data	APDAT7:0							
APINT	1.F4h	Audio Processor Interrupt	APGPI3	APGPI2	APGPI1	APGPIO	APEVTI	ACLIPI	APRDYI	APREQI
APIEN	1.E9h	Audio Processor Interrupt Enable	APGPE3	APGPE2	APGPE1	APGPE0	APEVTE	ACLIPE	APRDYE	APREQE
APTIMO	2.C6h	Audio Processor Timer 0	APT7:0							
APTIM1	2.C7h	Audio Processor Timer 1	APT15:8							
APTIM2	2.C9h	Audio Processor Timer 2	APT23:16							
APRDVOL	2.F1h	Audio Processor Right Channel Digital Volume	-	-	-	DVR4:0				
APLDVOL	2.F2h	Audio Processor Left Channel Digital Volume	-	-	-	DVL4:0				
APBDVOL	2.F3h	Audio Processor Bass Band Digital Volume	-	-	-	DVB4:0				
APMDVOL	2.F4h	Audio Processor Medium Band Digital Volume	-	-	-	DVM4:0				
APTDVOL	2.F5h	Audio Processor Treble Band Digital Volume	-	-	-	DVT4:0				

[^0]Table 52. Audio Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
APEBS	2.F6h	Audio Processor Equalizer Band Select	-	-	-	-	0	EQBS2:0		
APELEV	2.F7h	Audio Processor Equalizer Level	-	-	-	EQLEV4:0				
ACCON	2.EAh	Audio Codec Control	-	AMBSEL	AMBEN	AISSEL	AIEN	AODRV*	AOSSEL*	AOEN*
ACAUX	2.E4h	Audio Codec Auxiliary	-	-	-	-	-	-	AODIS*	AOPRE*
ACORG*	2.EBh	Audio Codec Right Output Gain	-	-	-	AORG4:0*				
ACOLG*	2.ECh	Audio Codec Left Output Gain	-	-	-	AOLG4:0*				
ACIPG	2.EDh	Audio Codec Input Preamp Gain	-	-	-	-	AILPG	AIPG2:0		
ADICONO	2.EEh	Audio DAC Interface Control 0	-	-	-	CSPOL	DSIZE	OVERS1:0		ADIEN
ADICON1	2.EFh	Audio DAC Interface Control 1	-	-	-	JUST4:0				

Note: Available in AT85C51SND3B1 \& AT85C51SND3B2 only.
Table 53. Audio Stream Codec SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ASCON	2.E1h	Audio Stream Control	Depends on the audio codec firmware							
ASSTAO	2.E2h	Audio Stream Status 0								
ASSTA1	2.E3h	Audio Stream Status 1								
ASSTA2	2.E9h	Audio Stream Status 2								

Table 54. PSI Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PSISTH	1.ACh	PSI Status Host	PSHBSY	PSSTH6:0						
PSICON	1.ADh	PSI Control	PSEN	PSBSYE	PSRUNE	PSWS2:0			-	-
PSISTA	1.AEh	PSI Status	PSEMPTY	PSBSY	PSRUN	PSRDY	-	-	-	-
PSIDAT	1.AFh	PSI Data	PSD7:0							

Table 55. SPI Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON	1.91h	SPI Control	SPR2	SPEN	SSDIS	MSTR	CPOL	CPHA	SPR1	SPR0
SPSCR	1.92h	SPI Status and Control	SPIF	-	OVR	MODF	SPTE	UARTM	SPTEIE	MODFIE
SPDAT	1.93h	SPI Data	SPD7:0							

Table 56. Serial I/O Port SFRs

Mnemonic	Add	Name	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
SCON	0.91 h	SIO Control	SIOEN	PMOD1:0	PBEN	STOP	DLEN	GBIT1:0		
SFCON	0.95 h	SIO Flow Control	OVSF3:0						CTSEN	RTSEN
RTSTH $1: 0$										

Table 56. Serial I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SINT	1.A8h	SIO Interrupt	-	-	EOTI	OEI	PEI	FEI	TI	RI
SIEN	1.A9h	SIO Interrupt Enable	-	-	EOTIE	OEIE	PEIE	FEIE	TIE	RIE
SBUF	1.AAh	SIO Data Buffer	SIOD7:0							
SBRGO	0.92h	SIO Baud Rate Generator 0	CDIV7:0							
SBRG1	0.93h	SIO Baud Rate Generator 1	BDIV7:0							
SBRG2	0.94h	SIO Baud Rate Generator 2	ADIV7:0							

Table 57. LCD Interface SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
LCDCONO	1.96h	LCD Control 0	BUINV	LCIFS	ADSUH1	ADSUHO	ACCW3	ACCW2	ACCW1	ACCW0
LCDCON1	1.8Eh	LCD Control 1	SLW1:0		RSCMD	LCYCW	LCYCT	LCEN	LCRD	LCRS
LCDSTA	1.8Fh	LCD Status	-	-	-	-	-	-	-	LCBUSY
LCDDAT	1.97h	LCD Data	LD7:0							
LCDBUM	1.8Dh	LCD Busy Mask	BUM7:0							

Table 58. Keyboard Interface SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBCON	0.A3h	Keyboard Control	KINL3:0				KINM3:0			
KBSTA	0.A4h	Keyboard Status	KPDE	KDCPE	KDCPL	-				

Table 59. SFR Page 0: Addresses and Reset Values

F8h	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	FFh
		$\begin{aligned} & \text { SCHGPR3 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPR2 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPR1 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPRO } \\ & 00000000 \end{aligned}$		$\begin{aligned} & \text { SCHCLK } \\ & 00000000 \end{aligned}$		
F0h	$\begin{gathered} \mathrm{B}^{(1)} \\ 00000000 \end{gathered}$	MEMCON 00000001	MEMCBAX 00000000	MEMDBAX 01111111	MEMXBAX 01111000	$\begin{aligned} & \text { MEMCSX } \\ & 11101111 \end{aligned}$	$\begin{aligned} & \text { MEMXSX } \\ & 00001110 \end{aligned}$		F7h
E8h									EFh
E0hD8h	$\begin{gathered} \text { ACC }^{(1)} \\ 00000000 \end{gathered}$								E7h
									DFh
DOh	$\begin{gathered} \text { PSW }{ }^{(1)} \\ 00000000 \end{gathered}$								D7h
C8h	$\begin{gathered} \text { P5 }{ }^{(1)} \\ 11111111 \end{gathered}$								CFh
COh	$\begin{aligned} & \mathrm{PPCON}^{(1)} \\ & 00000001 \end{aligned}$								C7h
B8h	$\begin{gathered} \text { IPLO }{ }^{(1)} \\ \times 0000000 \end{gathered}$	$\begin{gathered} \text { CKEN } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DFCCLK } \\ 00000000 \end{gathered}$		$\begin{aligned} & \text { NFCCLK } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { MMCCLK } \\ 00000000 \end{gathered}$			BFh
B0h	$\begin{gathered} \mathrm{P}^{(1)} \\ 11111111 \end{gathered}$	$\begin{gathered} \text { IEN1 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { IPL1 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { IPH1 } \\ 00000000 \end{gathered}$				$\begin{gathered} \text { IPHO } \\ \times 0000000 \end{gathered}$	B7h
A8h	$\begin{gathered} \text { IENO } 0^{(1)} \\ 00000000 \end{gathered}$								AFh
A0h	$\begin{gathered} \mathrm{P}^{(1)} \\ 11111111 \end{gathered}$		$\begin{gathered} \text { AUXR1 } \\ \text { XXXX 00X0 } \end{gathered}$	$\begin{aligned} & \text { KBCON } \\ & 0000111 \end{aligned}$	$\begin{gathered} \text { KBSTA } \\ 00100000 \end{gathered}$		WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h
98h	$\begin{gathered} \mathrm{P} 4^{(1)} \\ 11111111 \end{gathered}$								9Fh
90h	$\begin{gathered} \mathrm{P}_{1}^{(1)} \\ 11111111 \end{gathered}$	$\begin{gathered} \text { SCON } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { SBRGO } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SBRG1 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SBRG2 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SFCON } \\ & 00000000 \end{aligned}$			97h
88h	$\begin{aligned} & \text { TCON }{ }^{(1)} \\ & 00000000 \end{aligned}$	TMOD 00000000	$\begin{gathered} \text { TLO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TL1 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { THO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH1 } \\ 00000000 \end{gathered}$		$\begin{aligned} & \text { CKCON } \\ & 00000000 \end{aligned}$	8Fh
80h	$\begin{gathered} \mathrm{PO}^{(1)} \\ 11111111 \end{gathered}$	$\begin{gathered} \text { SP } \\ 00000111 \end{gathered}$	$\begin{gathered} \text { DPL } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DPH } \\ 00000000 \end{gathered}$		$\begin{gathered} \text { VBAT } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PSTA } \\ \text { XX00 0XXX } \end{gathered}$	$\begin{gathered} \text { PCON } \\ 00110000 \end{gathered}$	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Notes: 1. SFR registers with least significant nibble address equal to 0 or 8 are bit-addressable.

Table 60. SFR Page 1: Addresses and Reset Values

F8h	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	FFh
		$\begin{aligned} & \text { SCHGPR3 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPR2 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPR1 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPRO } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { RDFCAL } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { RDFCAM } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { RDFCAH } \\ & 00000000 \end{aligned}$	
FOh	$\begin{gathered} \mathrm{B}^{(1)} \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { AUCON } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { APCONO } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { APCON1 } \\ & 00000000 \end{aligned}$	APINT 00000000				F7h
E8h		APIEN 00000000	$\begin{aligned} & \text { APSTA } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { APDAT } \\ & 00000000 \end{aligned}$					EFhE7h
EOh	$\begin{gathered} \text { ACC }^{(1)} \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { USBCON } \\ & 00100000 \end{aligned}$	$\begin{aligned} & \text { USBSTA } \\ & 0000 \text { 00XX } \end{aligned}$	$\begin{aligned} & \text { USBINT } \\ & 0000 \text { 000X } \end{aligned}$	$\begin{aligned} & \text { UDPADDH } \\ & 00000000 \end{aligned}$	UDPADDL 00000000	$\begin{aligned} & \text { OTGCON } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { OTGIEN } \\ & 00000000 \end{aligned}$	
D8h	$\begin{gathered} \text { UDINT }^{(1)} \\ 00000000 \\ \text { UHINT }^{(1)} \\ 00000000 \end{gathered}$	$\begin{gathered} \text { UDCON } \\ 00000001 \\ \text { UHCON } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { UDIEN } \\ & 00000000 \\ & \text { UHIEN } \\ & 00000000 \end{aligned}$	UDADDR 00000000 UHADDR 00000000	UDFNUMH 00000000 UHFNUMH 00000000	UDFNUML 00000000 UHFNUML 00000000	UDMFN 00000000 UHFLEN 00000000	$\begin{gathered} \hline \text { UDTST } \\ 00000000 \\ \text { UPINRQX } \\ 00000000 \end{gathered}$	DFh
DOh	$\begin{gathered} \text { PSW }{ }^{(1)} \\ 00000000 \end{gathered}$	OTGINT 00000000	$\begin{aligned} & \text { UEIENX } \\ & \text { OOOO } 0000 \\ & \text { UPIENX } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { UEDATX } \\ 00000000 \\ \text { UPDATX } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { UEBCHX } \\ & \text { OOOO OOOO } \\ & \text { UPBCHX } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { UEBCLX } \\ & 00000000 \\ & \text { UPBCLX } \\ & 00000000 \end{aligned}$	UEINT 00000000 UPINT 00000000	UPERRX 00000000	D7h
C8h	$\begin{aligned} & \text { UEINTX }{ }^{(1)} \\ & 00000000 \\ & \text { UPINTX } \\ & 00000000 \end{aligned}$	UENUM 00000000 UPNUM 00000000	$\begin{aligned} & \text { UERST } \\ & 00000000 \\ & \text { UPRST } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { UECONX } \\ & \text { OOOO OOOO } \\ & \text { UPCONX } \\ & 00000000 \end{aligned}$	UECFGOX 00000000 UPCFGOX 00000000	UECFG1X 00000000 UPCFG1X 00000000	$\begin{gathered} \text { UESTAOX } \\ \text { OOOO } 0000 \\ \text { UPSTAX } \\ 00000100 \end{gathered}$	$\begin{aligned} & \text { UESTA1X } \\ & \text { O000 0000 } \\ & \text { UPCFG2X } \\ & 00000000 \end{aligned}$	CFh
COh	$\begin{aligned} & \operatorname{PPCON}^{(1)} \\ & 00000001 \end{aligned}$								C7h
B8h							$\begin{aligned} & \text { MMINT } \\ & 00000000 \end{aligned}$	MMMSK 11111110	BFh
B0h	$\begin{gathered} \mathrm{P3}^{(1)} \\ 11111111 \end{gathered}$	MMCONO 00000010	MMCON1 00000000	MMCON2 00000000	$\begin{gathered} \text { MMBLP } \\ 00000000 \end{gathered}$	MMSTA XX00 0000	$\begin{gathered} \text { MMDAT } \\ 11111111 \end{gathered}$	MMCMD 11111111	B7h
A8h	$\begin{gathered} \operatorname{SINT}^{(1)} \\ 0 \times 100010 \end{gathered}$	$\begin{gathered} \text { SIEN } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SBUF } \\ \text { XXXX XXXX } \end{gathered}$		$\begin{aligned} & \text { PSITH } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { PSICON } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { PSISTA } \\ & 10000000 \end{aligned}$	$\begin{aligned} & \text { PSIDAT } \\ & 00000000 \end{aligned}$	AFh
AOh	$\begin{gathered} \mathrm{P}^{(1)} \\ 11111111 \end{gathered}$	$\begin{aligned} & \text { NFACT } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { NFDAT } \\ & 00000000 \end{aligned}$	NFDATF 00000000	$\begin{aligned} & \text { NFECC } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { NFINT } \\ 00000000 \end{gathered}$	NFIEN 00000000	NFUDAT XXXXXXXX	A7h
98h	$\begin{aligned} & \text { NFSTA }^{(1)} \\ & 00000000 \end{aligned}$	NFCFG 00000000	$\begin{aligned} & \text { NFLOG } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { NFCON } \\ & 00000000 \end{aligned}$	NFERR 00000000	NFADR 00000000	NFADC 00000000	$\begin{aligned} & \text { NFCMD } \\ & 00000000 \end{aligned}$	9Fh
90h	$\begin{gathered} \hline \mathrm{P}_{1}{ }^{(1)} \\ 11111111 \end{gathered}$	$\begin{gathered} \text { SPCON } \\ 00010100 \end{gathered}$	$\begin{gathered} \text { SPSCR } \\ 00001000 \end{gathered}$	$\begin{gathered} \text { SPDAT } \\ \text { XXXX XXXX } \end{gathered}$	$\begin{aligned} & \text { NFBPH } \\ & 00000000 \end{aligned}$	NFBPL 00000000	$\begin{aligned} & \text { LCDCONO } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { LCDDAT } \\ & 00000000 \end{aligned}$	97h
88h	$\begin{aligned} & \text { DFCSTA }{ }^{(1)} \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { DFCON } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { DFDO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DFD1 } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { DFCRC } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { LCDBUM } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { LCDCON1 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { LCDSTA } \\ & 00000000 \end{aligned}$	8Fh
80h	$\begin{gathered} \mathrm{PO}^{(1)} \\ 11111111 \end{gathered}$	$\begin{gathered} \text { SP } \\ 00000111 \end{gathered}$	$\begin{gathered} \text { DPL } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DPH } \\ 00000000 \end{gathered}$		$\begin{aligned} & \text { DFCCON } \\ & 00000000 \end{aligned}$			87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Note: 1. SFR registers with least significant nibble address equal to 0 or 8 are bit-addressable.

Table 61. SFR Page 2: Addresses and Reset Values

F8h	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	FFh
		$\begin{aligned} & \text { SCHGPR3 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPR2 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPR1 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPRO } \\ & 00000000 \end{aligned}$				
F0h	$\begin{gathered} \mathrm{B}^{(1)} \\ 00000000 \end{gathered}$	APRDVOL 00000011	APLDVOL 00000011	APBDVOL 00011111	APMDVOL 00011111	APTDVOL 00011111			F7h
E8h		$\begin{aligned} & \text { ASSTA2 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ACCON } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ACORG }^{(1)} \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ACOLG }{ }^{(1)} \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ACIPG } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ADICONO } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ADICON1 } \\ & 00000000 \end{aligned}$	EFh
EOh	$\begin{gathered} \text { ACC } C^{(1)} \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { ASCON } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ASSTAO } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ASSTA1 } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { ACAUX } \\ 00000000 \end{gathered}$				E7h
D8h									DFh
DOh	$\begin{gathered} \hline \mathrm{PSW}^{(1)} \\ 00000000 \end{gathered}$								D7h
C8h		$\begin{gathered} \text { APTIM2 } \\ 00000000 \end{gathered}$							CFh
COh	$\begin{aligned} & \operatorname{PPCON}^{(1)} \\ & 00000001 \end{aligned}$						$\begin{aligned} & \text { APTIMO } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { APTIM1 } \\ & 00000000 \end{aligned}$	C7h
B8h									BFh
B0h	$\begin{gathered} \mathrm{P3}^{(1)} \\ 11111111 \end{gathered}$								B7h
A8h									AFh
AOh	$\begin{gathered} \mathrm{P}^{(1)} \\ 11111111 \end{gathered}$								A7h
98h									9Fh
90h	$\begin{gathered} \mathrm{P}^{(1)} \\ 11111111 \end{gathered}$								97h
88h									8Fh
80h	$\begin{gathered} P O^{(1)} \\ 11111111 \end{gathered}$	$\begin{gathered} \text { SP } \\ 00000111 \end{gathered}$	$\begin{gathered} \text { DPL } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DPH } \\ 00000000 \end{gathered}$					87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Notes: 1. SFR registers with least significant nibble address equal to 0 or 8 are bit-addressable.
2. Available in AT85C51SND3B1 \& AT85C51SND3B2 only.

Table 62. SFR Page 3: Addresses and Reset Values

F8h	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	FFh
		$\begin{aligned} & \text { SCHGPR3 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPR2 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPR1 } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SCHGPRO } \\ & 00000000 \end{aligned}$				
F0h	$\begin{gathered} \mathrm{B}^{(1)} \\ 00000000 \end{gathered}$								F7h
E8h									EFh
EOh	$\begin{gathered} \text { ACC }^{(1)} \\ 00000000 \end{gathered}$								E7h
D8h									DFh
DOh	$\begin{gathered} \text { PSW }{ }^{(1)} \\ 00000000 \end{gathered}$								D7h
C8h									CFh
COh	$\begin{aligned} & \operatorname{PPCON}^{(1)} \\ & 00000001 \end{aligned}$								C7h
B8h									BFh
B0h	$\begin{gathered} \mathrm{P3}^{(1)} \\ 11111111 \end{gathered}$								B7h
A8h									AFh
AOh	$\begin{gathered} \mathrm{P2}^{(1)} \\ 11111111 \end{gathered}$								A7h
98h									9Fh
90h	$\begin{gathered} \mathrm{P}^{(1)} \\ 11111111 \end{gathered}$							$\begin{gathered} \text { SVERS }{ }^{(2)} \\ \text { XXXX XXXX } \end{gathered}$	97h
88h									8Fh
80h	$\begin{gathered} \mathrm{PO}^{(1)} \\ 11111111 \end{gathered}$	$\begin{gathered} \text { SP } \\ 00000111 \end{gathered}$	$\begin{gathered} \text { DPL } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DPH } \\ 00000000 \end{gathered}$					87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Notes: 1. SFR registers with least significant nibble address equal to 0 or 8 are bit-addressable.
2. SVERS reset value depends on the silicon version 11111011 for AT85C51SND3B product.

Memory Space

The AT85C51SND3B derivatives implement an "all in one" 64 K bytes of RAM split between the three standard C51 memory segments:

- CODE
- DATA
- XDATA

To satisfy application needs in term of CODE and XDATA sizes, size and base address of XDATA and CODE segments and base address of DATA segment can be dynamically configured.
Figure 25 shows the memory space organization.
Figure 25. Memory Organization

Memory Segments

CODE Segment

DATA Segment

Lower 128 Bytes

The AT85C51SND3B executes up to 64K Bytes of program/code memory.
The AT85C51SND3B implements an additional 4K Bytes of on-chip boot ROM memory. This boot memory is delivered programmed with a boot strap software allowing loading of the application code from the Nand Flash Memory to the internal RAM. It also contains a boot loader software allowing In-System Programming (ISP).

The DATA segment is mapped in two separate segments:

- The lower 128 Bytes RAM segment
- The upper 128 Bytes RAM segment

The lower 128 Bytes of RAM (see Figure 26) are accessible from address 00h to 7Fh using direct or indirect addressing modes. The lowest 32 Bytes are grouped into 4 banks of 8 registers (R0 to R7). 2 bits RS0 and RS1 in PSW register (see Table 64) select which bank is in use according to Table 63. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing, and can be used for context switching in interrupt service routines.

Table 63. Register Bank Selection

RS1	RS0	Description
0	0	Register bank 0 from 00h to 07h
0	1	Register bank 1 from 08h to 0Fh
1	0	Register bank 2 from 10h to 17h
1	1	Register bank 3 from 18h to 1Fh

The next 16 Bytes above the register banks form a block of bit-addressable memory space. The C51 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00h to 7Fh.

Figure 26. Lower 128 Bytes Internal RAM Organization

Upper 128 Bytes

XDATA Segment

Memory Configuration

The upper 128 Bytes of RAM are accessible from address 80h to FFh using only indirect addressing mode. Using direct addressing mode within this address range selects the Special Function Registers, SFRs. For information on this segment, refer to the Section "Special Function Registers", page 37.

The on-chip expanded RAM (XRAM) are accessible using indirect addressing mode through MOVX instructions.

As shown in Figure 25, the 64KB addressing space of the C51 is artificially increased by usage of logical address over a physical one. For example, the boot memory which contains the bootstrap software is implemented at physical address 10000 h but is starting at logical address code 0000h which means that the bootstrap is first executed when a system reset occurs.
To achieve such logical mapping over the physical memory, some registers have been implemented to give the base address of the memory segments and their size:

- MEMCBAX (see Table 65) for the code segment base address.
- MEMDBAX (see Table 66) for the data segment base address.
- MEMXBAX (see Table 67) for the xdata segment base address.
- MEMCSX (see Table 68) for the code segment size.
- MEMXSX (see Table 69) for the code segment size.

The data segment is not programmable in size as it is a fixed 256 -byte segment.

The Figure 27 shows the memory segments configuration after bootstrap execution along with an example of user memory segments configuration done during firmware start-up. In this figure italicized address are the logical address within segments.

Figure 27. Memory Segment Configuration

Registers
Table 64. PSW Register
PSW (S:8Eh) - Program Status Word Register

7	6	5	4	3	2	1	0
CY	AC	F0	RS1	RSO	OV	F1	P
Bit Number	Bit Mnemonic	Description					
7	CY	Carry Flag Carry out from bit 1 of ALU operands.					
6	AC	Auxiliary Carry Flag Carry out from bit 1 of addition operands.					
5	F0	User Definable Flag 0					
4-3	RS1:0	Register Bank Select Bits Refer to Table 63 for bits description.					
2	OV	Overflow Flag Overflow set by arithmetic operations.					
1	F1	User Definable Flag 1					
0	P	Parity Bit Set when ACC contains an odd number of 1's. Cleared when ACC contains an even number of 1 's.					

Reset Value $=0000$ 0000b

Table 65. MEMCBAX Register
MEMCBAX (0.F2h) - Memory Management CODE Base Address Register

7	6	5	4	3	2	1	0
CBAX16	CBAX15	CBAX14	CBAX13	CBAX12	CBAX11	CBAX10	CBAX9
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-0	CBAX16:9	CODE Base Address Most Significant Bits of Context MEMPID 17-bit CODE Base Address: X XXXX XXX0 0000 0000b. 512-byte alignment, no offset.					

Reset Value MEMCBAO $=00000$ 000b

Table 66. MEMDBAX Register
MEMDBAX (0.F3h) - Memory Management DATA Base Address Register

7	6	5	4	3	2	1	0
DBAX16	DBAX15	DBAX14	DBAX13	DBAX12	DBAX11	DBAX10	DBAX9
Bit Number	Bit Mnemonic	Description					
7-0	DBAX16:9	DATA Base Address Most Significant Bits of Context MEMPID 17-bit DATA Base Address: X XXXX XXX1 0000 0000b. 512-byte alignment with 256-byte offset.					

Reset Value MEMDBAX $=01111$ 111b

Table 67. MEMXBAX Register
MEMXBAX (0.F4h) - Memory Management XDATA Base Address Registers

7	6	5	4	3	2	1	0
XBAX16	XBAX15	XBAX14	XBAX13	XBAX12	XBAX11	XBAX10	XBAX9
Bit Number	Bit Mnemonic	Description					
7-0	XBAX16:9	XDATA Base Address Most Significant Bits of Context MEMPID 17-bit CODE Base Address: X XXXX XXX0 0000 0000b. 512-byte alignment, no offset.					

Reset Value MEMXBAX $=01111000 \mathrm{~b}$

Table 68. MEMCSX Register
MEMCSX (0.F5h) - Memory Management CODE Size Register

7	6	5	4	3	2	1	0
CSX7	CSX6	CSX5	CSX4	CSX3	CSX2	CSX1	CSX0

Bit Number	Bit Mnemonic	Description
$7-0$	CSX7:0	CODE Size Bits of Context MEMPID Size is equals to (CSX +1$) \times 256$ bytes. CODE sizes available: from 256 bytes to 64 Kbytes, by 256-byte steps.

Reset Value MEMCSX = 1110 1111b

Table 69. MEMXSX Register
MEMXSX (0.F6h) - Memory Management XDATA Size Register

7	6	5	4	3	2	1	0
XSX7	XSX6	XSX5	XSX4	XSX3	XSX2	XSX1	XSXO
Bit Number	Bit Mnemonic	Description					
7-0	XSX7:0	XDATA Size Bits of Context MEMPID Size is equals to $(X S X+1) \times 256$ bytes. XDATA sizes available: from 256 bytes to 64 Kbytes, by 256 -byte steps.					

Reset Value MEMXSX = 0000 1110b

Interrupt System

Interrupt System Priorities

The AT85C51SND3B derivatives, like other control-oriented computer architectures, employ a program interrupt method. This operation branches to a subroutine and performs some service in response to the interrupt. When the subroutine completes, execution resumes at the point where the interrupt occurred. Interrupts may occur as a result of internal AT85C51SND3B activity (e.g., timer overflow) or at the initiation of electrical signals external to the microcontroller (e.g., keyboard). In all cases, interrupt operation is programmed by the system designer, who determines priority of interrupt service relative to normal code execution and other interrupt service routines. All of the interrupt sources are enabled or disabled by the system designer and may be manipulated dynamically.

A typical interrupt event chain occurs as follows:

- An internal or external device initiates an interrupt-request signal. The AT85C51SND3B latches this event into a flag buffer.
- The priority of the flag is compared to the priority of other interrupts by the interrupt handler. A high priority causes the handler to set an interrupt flag.
- This signals the instruction execution unit to execute a context switch. This context switch breaks the current flow of instruction sequences. The execution unit completes the current instruction prior to a save of the program counter (PC) and reloads the PC with the start address of a software service routine.
- The software service routine executes assigned tasks and as a final activity performs a RETI (return from interrupt) instruction. This instruction signals completion of the interrupt, resets the interrupt-in-progress priority and reloads the program counter. Program operation then continues from the original point of interruption.
Six interrupt registers are used to control the interrupt system:
- Two 8-bit registers are used to enable separately the interrupt sources: IENO and IEN1 registers (see Table 72 and Table 73).
- Four 8 -bit registers are used to establish the priority level of the different sources: IPH0, IPLO, IPH1 and IPL1 registers (see Table 74 to Table 77).

Each interrupt sources of the AT85C51SND3B can be individually programmed to one of four priority levels. This is accomplished by one bit in the Interrupt Priority High registers (IPH0 and IPH1) and one bit in the Interrupt Priority Low registers (IPL0 and IPL1). This provides each interrupt source four possible priority levels according to Table 70.

Table 70. Priority Levels

IPHxx	IPLxx	Priority Level
0	0	0
0	1	1
1	0	2
1	1	3

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another interrupt of lower or equal priority. Higher priority interrupts are serviced before lower priority interrupts. The response to simultaneous occurrence of equal priority interrupts is determined by an internal hardware polling sequence detailed in Table 71. Thus, within each priority level there is a second priority structure determined by the polling sequence. The interrupt control system is shown in Interrupt Control System.

Table 71. Priority Within Same Level

Interrupt Name	Priority Number	Interrupt Address Vectors	Interrupt Request Flag Cleared by Hardware (H) or by Software (S)
INT0	0 (Highest Priority)	C:0003h	H if edge, S if level
Timer 0	1	C:000Bh	H
$\overline{\text { INT1 }}$	2	C:0013h	H if edge, S if level
Timer 1	3	C:001Bh	H
Serial I/O Port	4	C:0023h	S
Data Flow Controller	5	C:002Bh	S
Audio Processor	6	C:0033h	S
USB Controller	7	C:003Bh	S
Keyboard	8	C:004Bh	S
Parallel Slave Interface	10	C:0053h	S
Serial Peripheral Interface	11	C:005Bh	S
Nand Flash Controller	12	C:0063h	S
MMC Controller	13	C:006Bh	-
Reserved	C:0073h	-	
Reserved	14 (Lowest Priority)		

Figure 28. Interrupt Control System

External Interrupts

INT1:0 Inputs

KIN3:0 Inputs

Input Sampling
External interrupts $\overline{\mathrm{INTO}}$ and $\overline{\mathrm{INT} 1}$ ($\overline{\mathrm{INTn}}, \mathrm{n}=0$ or 1) pins may each be programmed to be level-triggered or edge-triggered, dependent upon bits IT0 and IT1 (ITn, $n=0$ or 1) in TCON register as shown in INT1:0 Input Circuitry. If $\operatorname{ITn}=0$, INTn is triggered by a low level at the pin. If $\operatorname{ITn}=1, \overline{\mathrm{INTn}}$ is negative-edge triggered. External interrupts are enabled with bits EX0 and EX1 (EXn, $\mathrm{n}=0$ or 1) in IENO. Events on INTn set the interrupt request flag IEn in TCON register. If the interrupt is edge-triggered, the request flag is cleared by hardware when vectoring to the interrupt service routine. If the interrupt is level-triggered, the interrupt service routine must clear the request flag and the interrupt must be de-asserted before the end of the interrupt service routine.
$\overline{\mathrm{INT0}}$ and $\overline{\mathrm{INT} 1}$ inputs provide both the capability to exit from Power-down mode on low level signals as detailed in Section "Exiting Power-down Mode", page 22.

Figure 29. $\overline{\mathrm{INT} 1: 0}$ Input Circuitry

External interrupts KINO to KIN3 provide the capability to connect a matrix keyboard. For detailed information on these inputs, refer to Section "Keyboard Interface", page 240.

External interrupt pins (INT1:0 and KIN3:0) are sampled once per peripheral cycle (6 peripheral clock periods) (see Minimum Pulse Timings). A level-triggered interrupt pin held low or high for more than 6 peripheral clock periods (12 oscillator in standard mode or 6 oscillator clock periods in X2 mode) guarantees detection. Edge-triggered external interrupts must hold the request pin low for at least 6 peripheral clock periods.

Figure 30. Minimum Pulse Timings

Registers

Table 72. IENO Register
IEN0 (0.A8h) - Interrupt Enable Register 0

7	6	5	4	3	2	1	0
EA	EAUP	EDFC	ES	ET1	EX1	ETO	EXO
Bit Number	Bit Mnemonic	Description					
7	EA	Enable All Interrupt Bit Set to enable all interrupts. Clear to disable all interrupts. If $E A=1$, each interrupt source is individually enabled or disabled by setting or clearing its interrupt enable bit.					
6	EAUP	AUP Interrupt Enable Bit Set to enable audio processor interrupt. Clear to disable audio processor interrupt.					
5	EDFC	DFC Enable Bit Set to enable data flow interrupt. Clear to disable data flow interrupt.					
4	ES	SIO Interrupt Enable Bit Set to enable serial port interrupt. Clear to disable serial port interrupt.					
3	ET1	T1 Overflow Interrupt Enable Bit Set to enable timer 1 overflow interrupt. Clear to disable timer 1 overflow interrupt.					
2	EX1	EX1 Interrupt Enable bit Set to enable external interrupt 1. Clear to disable external interrupt 1.					
1	ETO	TO Overflow Interrupt Enable Bit Set to enable timer 0 overflow interrupt. Clear to disable timer 0 overflow interrupt.					
0	EXO	EXO Interrupt Enable Bit Set to enable external interrupt 0 . Clear to disable external interrupt 0 .					

Reset Value $=0000$ 0000b

Table 73. IEN1 Register
IEN1 (0.B1h) - Interrupt Enable Register 1

7	6	5	4	3	2	1	0
-	-	EMMC	ENFC	ESPI	EPSI	EKB	EUSB
Bit Number	Bit Mnemonic	Description					
7-6	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
5	EMMC	MMC/SD Interrupt Enable Bit Set to enable MMC/SD interrupt. Clear to disable MMC/SD interrupt.					
4	ENFC	NFC Interrupt Enable Bit Set to enable IDE interrupt. Clear to disable IDE interrupt.					
3	ESPI	SPI Interrupt Enable Bit Set to enable SPI interrupt. Clear to disable SPI interrupt.					
2	EPSI	PSI Interrupt Enable Bit Set to enable PSI interrupt. Clear to disable PSI interrupt.					
1	EKB	KBD Interrupt Enable Bit Set to enable Keyboard interrupt. Clear to disable Keyboard interrupt.					
0	EUSB	USB Interrupt Enable Bit Set this bit to enable USB interrupt. Clear this bit to disable USB interrupt.					

Reset Value $=0000$ 0000b

Table 74. IPHO Register
IPH0 (0.B7h) - Interrupt Priority High Register 0

7	6	5	4	3	2	1	0
-	IPHAUP	IPHDFC	IPHS	IPHT1	IPHX1	IPHTO	IPHXO
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	IPHAUP	AUP Interrupt Priority Level Msb Refer to Table 70 for priority level description.					
5	IPHDFC	DFC Interrupt Priority Level Msb Refer to Table 70 for priority level description.					
4	IPHS	SIO Interrupt Priority Level Msb Refer to Table 70 for priority level description.					
3	IPHT1	T1 Interrupt Priority Level Msb Refer to Table 70 for priority level description.					
2	IPHX1	EX1 Interrupt Priority Level Msb Refer to Table 70 for priority level description.					
1	IPHTO	TO Interrupt Priority Level Msb Refer to Table 70 for priority level description.					
0	IPHXO	EXO Interrupt Priority Level Msb Refer to Table 70 for priority level description.					

Reset Value $=$ X000 0000b

Table 75. IPH1 Register
IPH1 (0.B3h) - Interrupt Priority High Register 1

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	\mathbf{c}			
-	-	IPHMMC	IPHNFC	IPHSPI	IPHSPI	IPHKB
IPHUSB						
Bit Number	Bit Mnemonic	Description				

Reset Value $=00000000 \mathrm{~b}$

Table 76. IPLO Register
IPL0 (0.B8h) - Interrupt Priority Low Register 0

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	IPLAUP	IPLDFC	IPLS	IPLT1	IPLX1	IPLT0	IPLX0

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	IPLAUP	AUP Interrupt Priority Level Lsb Refer to Table 70 for priority level description.
5	IPLDFC	DFC Interrupt Priority Level Lsb Refer to Table 70 for priority level description.
4	IPLS	SIO Interrupt Priority Level Lsb Refer to Table 70 for priority level description.
3	IPLT1	T1 Interrupt Priority Level Lsb Refer to Table 70 for priority level description.
2	IPLX1	EX1 Interrupt Priority Level Lsb Refer to Table 70 for priority level description.
1	IPLT0	T0 Interrupt Priority Level Lsb Refer to Table 70 for priority level description.
0	IPLX0	EX0 Interrupt Priority Level Lsb Refer to Table 70 for priority level description.
4		

Reset Value $=$ X000 0000b

Table 77. IPL1 Register
IPL1 (0.B2h) - Interrupt Priority Low Register 1

7	6	5	4	3	2	1	0
-	-	IPLMMC	IPLNFC	IPLSPI	IPLPSI	IPLKB	IPLUSB
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-6	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
5	IPLMMC	MMC/SD Interrupt Priority Level Lsb Refer to Table 70 for priority level description.					
4	IPLNFC	NFC Interrupt Priority Level Lsb Refer to Table 70 for priority level description.					
3	IPLSPI	SPI Interrupt Priority Level Lsb Refer to Table 70 for priority level description.					
2	IPLPSI	PSI Interrupt Priority Level Lsb Refer to Table 70 for priority level description.					
1	IPLKB	KBD Interrupt Priority Level Lsb Refer to Table 70 for priority level description.					
0	IPLUSB	USB Interrupt Priority Level Lsb Refer to Table 70 for priority level description.					

Reset Value $=0000$ 0000b

Timers/Counters

Timer/Counter Operations

The AT85C51SND3B derivatives implement 2 general-purpose, 16-bit Timers/Counters. They are identified as Timer 0 and Timer 1, and can be independently configured to operate in a variety of modes as a Timer or as an event Counter. When operating as a Timer, the Timer/Counter runs for a programmed length of time, then issues an interrupt request. When operating as a Counter, the Timer/Counter counts negative transitions on an external pin. After a preset number of counts, the Counter issues an interrupt request.

The various operating modes of each Timer/Counter are described in the following sections.

For instance, a basic operation is Timer registers THx and TLx (x=0,1) connected in cascade to form a 16-bit Timer. Setting the run control bit (TRx) in TCON register (see Table 81) turns the Timer on by allowing the selected input to increment TLx. When TLx overflows it increments THx; when THx overflows it sets the Timer overflow flag (TFx) in TCON register. Setting the TRx does not clear the THx and TLx Timer registers. Timer registers can be accessed to obtain the current count or to enter preset values. They can be read at any time but TRx bit must be cleared to preset their values, otherwise, the behavior of the Timer/Counter is unpredictable.

The C/Tx\# control bit selects Timer operation or Counter operation by selecting the divided-down peripheral clock or external pin Tx as the source for the counted signal. TRx bit must be cleared when changing the mode of operation, otherwise the behavior of the Timer/Counter is unpredictable.
For Timer operation $(\mathrm{C} / T x \#=0)$, the Timer register counts the divided-down peripheral clock. The Timer register is incremented once every peripheral cycle (6 peripheral clock periods). The Timer clock rate is $\mathrm{F}_{\mathrm{PER}} / 6$, i.e., $\mathrm{F}_{\mathrm{OSC}} / 12$ in standard mode or $\mathrm{F}_{\mathrm{OSC}} / 6$ in X 2 mode.

For Counter operation ($\mathrm{C} / T x \#=1$), the Timer register counts the negative transitions on the Tx external input pin. The external input is sampled every peripheral cycles. When the sample is high in one cycle and low in the next one, the Counter is incremented. Since it takes 2 cycles (12 peripheral clock periods) to recognize a negative transition, the maximum count rate is $\mathrm{F}_{\mathrm{PER}} / 12$, i.e., $\mathrm{F}_{\mathrm{OSC}} / 24$ in standard mode or $\mathrm{F}_{\mathrm{OSC}} / 12$ in X 2 mode. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full peripheral cycle.

As shown in Figure 31, the Timer 0 (FT0) and Timer 1 (FT1) clocks are derived from either the peripheral clock ($F_{\text {PER }}$) or the oscillator clock ($F_{\text {OSC }}$) depending on the TOX2 and T1X2 bits in CKCON register. These clocks are issued from the Clock Controller block as detailed in Section "Oscillator", page 28. When T0X2 or T1X2 bit is set, the Timer 0 or Timer 1 clock frequency is fixed and equal to the oscillator clock frequency divided by 2 . When cleared, the Timer clock frequency is equal to the oscillator clock frequency divided by 2 in standard mode or to the oscillator clock frequency in X2 mode.

Figure 31. Timer 0 and Timer 1 Clock Controller and Symbols

Timer 0 Clock Symbol

Timer 1 Clock Symbol

Timer 0

Timer 0 functions as either a Timer or event Counter in four modes of operation. Figure 32, Figure 34, Figure 36, and Figure 38 show the logical configuration of each mode.

Timer 0 is controlled by the four lower bits of TMOD register (see Table 82) and bits 0,1 , 4 and 5 of TCON register (see Table 81). TMOD register selects the method of Timer gating (GATE0), Timer or Counter operation (C/T0\#) and mode of operation (M10 and MOO) according to Table 78. TCON register provides Timer 0 control functions: overflow flag (TFO), run control bit (TRO), interrupt flag (IEO) and interrupt type control bit (ITO).
For normal Timer operation (GATEO $=0$), setting TR0 allows TLO to be incremented by the selected input. Setting GATEO and TRO allows external pin INTO to control Timer operation.

Timer 0 overflow (count rolls over from all 1 s to all 0 s) sets TF0 flag generating an interrupt request.
It is important to stop Timer/Counter before changing mode.

Table 78. Timer/counter 0 Operating Modes

M10	M00	Mode	Operation
0	0	0	8-bit Timer/Counter (TH0) with 5-bit prescaler (TLO).
0	1	1	16-bit Timer/Counter.
1	0	2	8 -bit auto-reload Timer/Counter (TL0).
1	1	3	TL0 is an 8-bit Timer/Counter. TH0 is an 8-bit Timer using Timer 1's TR0 and TF0 bits.

Mode 0 (13-bit Timer)

Mode 0 configures Timer 0 as a 13-bit Timer which is set up as an 8 -bit Timer (TH0 register) with a modulo 32 prescaler implemented with the lower five bits of TLO register (see Figure 32). The upper three bits of TLO register are indeterminate and should be ignored. Prescaler overflow increments TH0 register. Figure 33 gives the overflow period calculation formula.

Figure 32. Timer/Counter $x(x=0$ or 1$)$ in Mode 0

Figure 33. Mode 0 Overflow Period Formula

$$
T F x_{P E R}=\frac{6 \cdot(16384-(\mathrm{THx}, \mathrm{TLx}))}{\mathrm{F}_{\mathrm{TIMx}}}
$$

Mode 1 (16-bit Timer)

Mode 1 configures Timer 0 as a 16-bit Timer with TH0 and TLO registers connected in cascade (see Figure 34). The selected input increments TLO register. Figure 35 gives the overflow period calculation formula when in timer mode.

Figure 34. Timer/Counter $\mathrm{x}(\mathrm{x}=0$ or 1) in Mode 1

Figure 35. Mode 1 Overflow Period Formula

$$
\mathrm{TFx}_{\mathrm{PER}}=\frac{6 \cdot(65536-(\mathrm{THx}, \mathrm{TLx}))}{\mathrm{F}_{\mathrm{TIMx}}}
$$

Mode 2 (8-bit Timer with AutoReload)

Mode 2 configures Timer 0 as an 8 -bit Timer (TLO register) that automatically reloads from TH0 register (see Figure 36). TLO overflow sets TFO flag in TCON register and reloads TLO with the contents of THO, which is preset by software. When the interrupt request is serviced, hardware clears TF0. The reload leaves TH0 unchanged. The next reload value may be changed at any time by writing it to THO register. Figure 37 gives the auto-reload period calculation formula when in timer mode.

Figure 36. Timer/Counter $x(x=0$ or 1$)$ in Mode 2

Figure 37. Mode 2 Auto-reload Period Formula

$$
T F x_{\text {PER }}=\frac{6 \cdot(256-T H x)}{F_{T I M x}}
$$

Mode 3 (2 x 8-bit Timers)

Mode 3 configures Timer 0 such that registers TLO and TH0 operate as separate 8-bit Timers (see Figure 38). This mode is provided for applications requiring an additional 8bit Timer or Counter. TLO uses the Timer 0 control bits C/T0\# and GATE0 in TMOD register, and TR0 and TF0 in TCON register in the normal manner. TH0 is locked into a Timer function (counting $\mathrm{F}_{\mathrm{TF} 1} / 6$) and takes over use of the Timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of Timer 1 is restricted when Timer 0 is in mode 3. Figure 39 gives the auto-reload period calculation formulas for both TF0 and TF1 flags.

Figure 38. Timer/Counter 0 in Mode 3: 2 8-bit Counters

Figure 39. Mode 3 Overflow Period Formula

$$
\mathrm{TFO}_{\text {PER }}=\frac{6 \cdot(256-\mathrm{TLO})}{\mathrm{F}_{\text {TIM } 0}} \quad \mathrm{TF} 1_{\text {PER }}=\frac{6 \cdot(256-\mathrm{THO})}{\mathrm{F}_{\text {TIM0 }}}
$$

Timer 0 Enhanced Mode

Timer 1

Timer 0 overflow period can be increased in all modes by enabling a divider as detailed in Figure 40. This mode is implemented to allow higher time periods as it can be used for example as a scheduler time base with auto-reload (mode 2).
Timer 0 enhanced mode is enabled by programming TOETB2:0 bits in SCHCLK (see Table 87) to a value other than 000b and according to Table 79.

Figure 40. Timer/Counter 0 Enhanced Mode

Table 79. Timer/counter 0 Enhanced Overflow Period

T0ETB2	T0ETB1	TOETB0	New TF0 Overflow Period
0	0	0	TFO ${ }_{\text {PER }} \div 1$ (divider disable)
0	0	1	TF0 ${ }_{\text {PER }} \div 2$
0	1	0	TF0 ${ }_{\text {PER }} \div 4$
0	1	1	TF0 ${ }_{\text {PER }} \div 8$
1	0	0	TF0 ${ }_{\text {PER }} \div 16$
1	0	1	TF0 ${ }_{\text {PER }} \div 32$
1	1	0	TFO ${ }_{\text {PER }} \div 64$
1	1	1	TF0 ${ }_{\text {PER }} \div 128$

Timer 1 is identical to Timer 0 except for Mode 3 which is a hold-count mode and for the enhanced mode which is not available. The following comments help to understand the differences:

- Timer 1 functions as either a Timer or event Counter in three modes of operation. Figure 32, Figure 34, and Figure 36 show the logical configuration for modes 0,1 , and 2 . Timer 1's mode 3 is a hold-count mode.
- Timer 1 is controlled by the four high-order bits of TMOD register (see Table 82) and bits 2, 3, 6 and 7 of TCON register (see Table 81). TMOD register selects the method of Timer gating (GATE1), Timer or Counter operation (C/T1\#) and mode of operation (M11 and M01) according to Table 80. TCON register provides Timer 1 control functions: overflow flag (TF1), run control bit (TR1), interrupt flag (IE1) and interrupt type control bit (IT1).
- Timer 1 can serve as the Baud Rate Generator for the Serial Port. Mode 2 is best suited for this purpose.
- For normal Timer operation (GATE1 $=0$), setting TR1 allows TL1 to be incremented by the selected input. Setting GATE1 and TR1 allows external pin $\overline{\mathrm{NT} 1}$ to control Timer operation.
- Timer 1 overflow (count rolls over from all 1 s to all 0 s) sets the TF1 flag generating an interrupt request.
- When Timer 0 is in mode 3, it uses Timer 1's overflow flag (TF1) and run control bit (TR1). For this situation, use Timer 1 only for applications that do not require an interrupt (such as a Baud Rate Generator for the Serial Port) and switch Timer 1 in and out of mode 3 to turn it off and on.
- It is important to stop the Timer/Counter before changing modes.

Table 80. Timer/counter 1 Operating Modes

M11	M01	Mode	Operation
0	0	0	8-bit Timer/Counter (TH1) with 5-bit prescaler (TL1).
0	1	1	16-bit Timer/Counter.
1	0	2	8-bit auto-reload Timer/Counter (TL1).
1	1	3	Timer/Counter halted. Retains count.

Mode 0 (13-bit Timer)

Mode 1 (16-bit Timer)

Mode 2 (8-bit Timer with AutoReload)

Mode 3 (Halt)

Interrupt

Mode 0 configures Timer 1 as a 13-bit Timer, which is set up as an 8-bit Timer (TH1 register) with a modulo-32 prescaler implemented with the lower 5 bits of the TL1 register (see Figure 32). The upper 3 bits of TL1 register are ignored. Prescaler overflow increments TH 1 register.

Mode 1 configures Timer 1 as a 16-bit Timer with TH1 and TL1 registers connected in cascade (see Figure 34). The selected input increments TL1 register.

Mode 2 configures Timer 1 as an 8-bit Timer (TL1 register) with automatic reload from TH1 register on overflow (see Figure 36). TL1 overflow sets TF1 flag in TCON register and reloads TL1 with the contents of TH1, which is preset by software. The reload leaves TH1 unchanged.

Placing Timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt Timer 1 when TR1 run control bit is not available i.e. when Timer 0 is in mode 3.

Each Timer handles one interrupt source that is the timer overflow flag TF0 or TF1. This flag is set every time an overflow occurs. Flags are cleared when vectoring to the Timer interrupt routine. Interrupts are enabled by setting ETx bit in IEN0 register. This assumes interrupts are globally enabled by setting EA bit in IEN0 register.

Figure 41. Timer Interrupt System

Registers

Table 81. TCON Register
TCON (0.88h) - Timer/Counter Control Register

7	6	5	4	3	2	1	0
TF1	TR1	TFO	TRO	IE1	IT1	IEO	ITO
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7	TF1	Timer 1 Overflow Flag Cleared by hardware when processor vectors to interrupt routine. Set by hardware on Timer/Counter overflow, when Timer 1 register overflows.					
6	TR1	Timer 1 Run Control Bit Clear to turn off Timer/Counter 1. Set to turn on Timer/Counter 1.					
5	TFO	Timer 0 Overflow Flag Cleared by hardware when processor vectors to interrupt routine. Set by hardware on Timer/Counter overflow, when Timer 0 register overflows.					
4	TRO	Timer 0 Run Control Bit Clear to turn off Timer/Counter 0. Set to turn on Timer/Counter 0.					
3	IE1	Interrupt 1 Edge Flag Cleared by hardware when interrupt is processed if edge-triggered (see IT1). Set by hardware when external interrupt is detected on INT1 pin.					
2	IT1	Interrupt 1 Type Control Bit Clear to select low level active (level triggered) for external interrupt 1 (INT1). Set to select falling edge active (edge triggered) for external interrupt 1.					
1	IEO	Interrupt 0 Edge Flag Cleared by hardware when interrupt is processed if edge-triggered (see ITO). Set by hardware when external interrupt is detected on INTO pin.					
0	IT0	Interrupt 0 Type Control Bit Clear to select low level active (level triggered) for external interrupt 0 (INTO). Set to select falling edge active (edge triggered) for external interrupt 0 .					

Reset Value $=00000000 \mathrm{~b}$

Table 82. TMOD Register
TMOD (0.89h) - Timer/Counter Mode Control Register

Bit Number	Bit Mnemonic	Description
7	GATE1	Timer 1 Gating Control Bit Clear to enable Timer 1 whenever TR1 bit is set. Set to enable Timer 1 only while INT1 pin is high and TR1 bit is set.
6	C/T1\#	Timer 1 Counter/Timer Select Bit Clear for Timer operation: Timer 1 counts the divided-down system clock. Set for Counter operation: Timer 1 counts negative transitions on external pin T1.
5	M11	Timer 1 Mode Select Bits
4	M01	Refer to Table 80 for Timer 1 operation.
3	GATE0	Timer 0 Gating Control Bit Clear to enable Timer 0 whenever TR0 bit is set. Set to enable Timer/Counter 0 only while $\overline{\text { INTO }}$ pin is high and TRO bit is set.
2	C/T0\#	Timer 0 Counter/Timer Select Bit Clear for Timer operation: Timer 0 counts the divided-down system clock. Set for Counter operation: Timer 0 counts negative transitions on external pin TO.
1	M10	Timer 0 Mode Select Bit
0	M00	Refer to Table 78 for Timer 0 operation.

Reset Value $=0000$ 0000b

Table 83. THO Register
TH0 (0.8Ch) - Timer 0 High Byte Register

7	6	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
$7-0$		High Byte of Timer 0					

Reset Value $=00000000 \mathrm{~b}$

Table 84. TLO Register
TLO (0.8Ah) - Timer 0 Low Byte Register

Reset Value $=0000$ 0000b
Table 85. TH1 Register
TH1 (0.8Dh) - Timer 1 High Byte Register

Bit Number	Bit Mnemonic	Description
$7-0$		High Byte of Timer 1

Reset Value $=0000$ 0000b

Table 86. TL1 Register
TL1 (0.8Bh) - Timer 1 Low Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
$7-0$		Low Byte of Timer 1					

Reset Value $=0000$ 0000b

Table 87. SCHCLK Register
SCHCLK (0.FEh) - Scheduler Clocks Register

7	6	5	4	3	2		0
-	T0ETB2	T0ETB1	TOETBO	-	-		-
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
6-4	T0ETB2:0	Timer 0 Enhanced Time Base Bits Refer to Table 79 for dividing values.					
3-0	-	Reserved The value read from these bits is always 0 . Do not set these bits.					

Reset Value $=0000$ 0000b

Watchdog Timer

Description

Clock Controller

The AT85C51SND3B derivatives implement a hardware Watchdog Timer (WDT) that automatically resets the chip if it is allowed to time out. The WDT provides a means of recovering from routines that do not complete successfully due to software or hardware malfunctions.

The WDT consists of a 14-bit prescaler followed by a 7-bit programmable counter. As shown in Figure 42, the 14-bit prescaler is fed by the WDT clock detailed in Section "Clock Controller".
The Watchdog Timer Reset register (WDTRST, see Table 89) provides control access to the WDT, while the Watchdog Timer Program register (WDTPRG, see Figure 90) provides time-out period programming.
Three operations control the WDT:

- Chip reset clears and disables the WDT.
- Programming the time-out value to the WDTPRG register.
- Writing a specific 2-Byte 1Eh-E1h sequence to the WDTRST register clears and enables the WDT.

Figure 42. WDT Block Diagram

As shown in Figure 43 the WDT clock ($\mathrm{F}_{\text {WDT }}$) is derived from either the peripheral clock ($F_{\text {PER }}$) or the oscillator clock ($F_{\text {OSC }}$) depending on the WTX2 bit in CKCON register. These clocks are issued from the Clock Controller block as detailed in Section "Oscillator", page 28. When WTX2 bit is set, the WDT clock frequency is fixed and equal to the oscillator clock frequency divided by 2 . When cleared, the WDT clock frequency is equal to the oscillator clock frequency divided by 2 in standard mode or to the oscillator clock frequency in X2 mode.

Figure 43. WDT Clock Controller and Symbol

Operation

After reset, the WDT is disabled. The WDT is enabled by writing the sequence 1Eh and E1h into the WDTRST register. As soon as it is enabled, there is no way except the chip reset to disable it. If it is not cleared using the previous sequence, the WDT overflows and forces a chip reset. This overflow generates a low level 96 oscillator periods pulse on the RST pin to globally reset the application (refer to Section "Watchdog Timer Reset", page 25).

The WDT time-out period can be adjusted using WTO2:0 bits located in the WDTPRG register accordingly to the formula shown in Figure 44. In this formula, WTOval represents the decimal value of WTO2:0 bits. Table 88 reports the time-out period depending on the WDT frequency.

Figure 44. WDT Time-Out Formula

$$
\mathrm{WDT}_{\mathrm{TO}}=\frac{6 \cdot\left(2^{14} \cdot 2^{\mathrm{WTOval}}\right)}{F_{\mathrm{WDT}}}
$$

Table 88. WDT Time-Out Computation

			$\mathrm{WDT}_{\text {TO }}(\mathrm{ms}) / \mathrm{F}_{\text {WDT }}$						
WTO2	WTO1	WTOO	$6 \mathrm{MHz}^{(1)}$	$8 \mathrm{MHz}^{(1)}$	$10 \mathrm{MHz}^{(1)}$	12 MHz	$16 \mathrm{MHz}^{(2)}$	$20 \mathrm{MHz}{ }^{(2)}$	$24 \mathrm{MHz}^{(2)}$
0	0	0	16.38	12.28	9.83	8.19	6.14	4.92	4.1
0	0	1	32.77	24.57	19.66	16.38	12.28	9.83	8.19
0	1	0	65.54	49.14	39.32	32.77	24.57	19.66	16.36
0	1	1	131.07	98.28	78.64	65.54	49.14	39.32	32.77
1	0	0	262.14	196.56	157.29	131.07	98.28	78.64	65.54
1	0	1	524.29	393.1	314.57	262.14	196.56	157.29	131.07
1	1	0	1049	786.24	629.15	524.29	393.12	314.57	262.14
1	1	1	2097	1572	1258	1049	786.24	629.15	524.29

Notes: 1. These frequencies are achieved in X1 mode or in X2 mode when WTX2 $=1$:
$F_{\text {WDT }}=F_{\text {OSC }} \div 2$.
2. These frequencies are achieved in X 2 mode when $\mathrm{WTX} 2=0: \mathrm{F}_{\mathrm{WDT}}=\mathrm{F}_{\mathrm{OSC}}$.

Operation of the WDT during power reduction modes deserves special attention.

The WDT continues to count while the CPU core is in Idle mode. This means that you must dedicate some internal or external hardware to service the WDT during Idle mode. One approach is to use a peripheral Timer to generate an interrupt request when the Timer overflows. The interrupt service routine then clears the WDT, reloads the peripheral Timer for the next service period and puts the CPU core back into Idle mode.
The Power-down mode stops all phase clocks. This causes the WDT to stop counting and to hold its count. The WDT resumes counting from where it left off if the Powerdown mode is terminated by INT0, INT1 or keyboard interrupt. To ensure that the WDT does not overflow shortly after exiting the Power-down mode, it is recommended to clear the WDT just before entering Power-down mode.

The WDT is cleared and disabled if the Power-down mode is terminated by a reset.

Registers

Table 89. WDTRST Register
WDTRST (0.A6h Write only) - Watchdog Timer Reset Register

7	6	5	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{2}$	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
$7-0$	-	Watchdog Control Value					

Reset Value $=\mathrm{XXXX} \mathrm{XXXXb}$

Table 90. WDTPRG Register
WDTPRG (0.A7h) - Watchdog Timer Program Register

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | \mathbf{l} | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | WTO2 | WTO1 | WTO0 |
| Bit
 Number | Bit
 Mnemonic | Description | | | | |
| $7-3$ | - | Reserved
 The value read from these bits is indeterminate. Do not set these bits. | | | | |
| $2-0$ | WTO2:0 | Watchdog Timer Time-Out Selection Bits
 Refer to Table 88 for time-out periods. | | | | |

Reset Value $=$ XXXX X000b

Data Flow Controller
The Data Flow Controller (DFC) implemented in the AT85C51SND3B derivatives is the multimedia data transfer manager. Up to two data transfers can be established through two physical data channels between a source peripheral and a destination peripheral. Figure 45 shows which peripherals are connected to the internal bus which are: the CPU internal bus, the multimedia data bus and the DFC control bus.

Figure 45. DFC Internal Architecture

CPU Interface

Clock Unit

Data Flow Descriptor

The DFC interfaces to the C51 core through the following special function registers: DFCON the DFC control register, DFCSTA the channel status register, DFCCON the channel control register, DFD0 and DFD1, the physical channel 0 and channel 1 data flow descriptor registers and DFCRC the CRC data register.

The DFC clock is generated based on the clock generator as detailed in Section "DFC/NFC Clock Generator", page 31. Depending on the power mode (USB powered or battery powered) and the throughput desired, different clock values may be selected to control the data transfer. The DFC does not receive its system clock until DFEN bit in DFCON is set, i.e. DFC enabled.

As shown in Table 91 the data flow is characterized by a 5-byte data flow descriptor: the DFD composed of 4 fields. The data flow descriptor is written byte by byte to DFD0 (channel 0) or to DFD1 (channel 1). As soon as a DFD has been fully written, the channel is enabled and data flow transfer starts when both source and destination are ready to send and receive data respectively.

Table 92 shows the different peripherals (source or destination) ID number. These numbers are used to program the SID and the DID in the DFD.

Table 91. Data Flow Descriptor Content

Byte Number	Byte Mnemonic	Description
0	SID	Source Identifier See Table 92 for peripheral ID number.
1	DID	Destination Identifier See Table 92 for peripheral ID number.
2	DPS	Data Packet Size Decimal value giving the packet size as $2^{\text {DPS }}$. DPS takes value from 0 (1-byte packet size) to 13 (8192-byte packet size). Packet size is limited to 8192 bytes in case of DPS value greater than 13
3	DFSH	Data Flow Size 16 -bit wide data leading to data flow size from 1 to $2^{16}-1$ data packets. Writing 0×0000 to this field enables continuous data flow.
4	DFSL	

Table 92. Peripheral ID Number

ID Number	Peripheral
0	C51 RAM
1	USB Controller
2	Audio Controller 1
3	Audio Controller 2
4	PSI Controller
5	SPI Controller
6	SIO Controller
7	Nand Flash Controller
8	MMC/SD Controller
$9 \leq \mathrm{n} \leq 14$	Reserved
15	Null Device

CRC Processor

Null Device

In order to verify integrity of data transferred through the DFC, a CRC calculation can be enabled using DFCRCEN bit in DFCON. It consists in a 16 -bit CRC which is the remainder after transfer data (MSB first) is divided by $G(X)$. Polynomial formula is: $G(X)=X^{16}+$ $X^{15}+X^{2}+1$.
CRC16 operates on channel 0 only.
After an hardware reset, the CRC value is 0×0000 but can be set to any initial value by writing two bytes ${ }^{(1)}$ (MSB first) in the DFCRC register.
At the end of the data flow transfer ${ }^{(2)}$, CRC is available to user by reading two bytes ${ }^{(1)}$ (MSB first) from the DFCRC register.
Notes: 1. This double write or read sequence can be reset by clearing the CRCEN bit.
2. The CRC value is not reset at start-up of a new data transfer.

The null device is used to allow CRC calculation on some data transfer (see Section "CRC Processor"). When selected as destination, the null device is always ready and simply acknowledges and discards data coming from the source. When

Channel Priority

Data Flow Status

Data Flow Abort

Abort Status

selected as source, the null device is always ready and sends the data (2 bytes) of the initialized CRC value MSB first.

The Data Flow Controller bandwidth is shared between Channel 0 and Channel 1. In case both channels are ready to transfer data, bus bandwidth is shared on a byte by byte basis.
In order to allocate maximum bandwidth to a specified channel, priority can be assigned to channel 0 or to channel 1 by setting the DFPRIO1:0 bits in DFCON according to Table 93.
DFPRIO1:0 can be modified at any time while transfer is on-going or not.
Table 93. Channel Priority Assignment

DFPRIO1	DFPRIO0	Assignment Description
0	0	No priority assigned: channel 0 \& channel 1 have same priority.
0	1	Priority assigned to channel 0.
1	0	Priority assigned to channel 1.
1	1	Reserved, do not set both bits.

An on-going data flow transfer is reported to user using the bits DFBSY0 and DFBSY1 in DFCSTA. These bits are set as soon as the DFD has been fully written to the corresponding channel and cleared at the end of transfer or abort.

Source peripheral and destination peripheral status is dynamically reported by SRDY0, DRDY0, SRDY1, DRDY1 ready flags in DFCSTA.

The DFC allows asynchronous abort of any on-going flow. Abort is controlled by the DFABT0, DFABT1, the Channel Data Flow Abort control bits in DFCCON and DFABTM the Data Flow Abort Mode control bit in DFCON.
Setting DFABT0 or DFABT1 while a flow transfer is on-going triggers on the corresponding channel an immediate or delayed abort depending on the DFABTM value. DFABTM cleared triggers an immediate abort where data flow transfer is stopped at the end of the on-going byte transfer while DFABTM set triggers a delayed abort where data flow transfer is stopped at the end of the on-going data packet transfer. Above abort modes set the End of Flow interrupt flag of the corresponding channel.
Setting DFABT0 or DFABT1 while a DFD is under writing will reset the DFD content of the corresponding channel. Such abort does not set the End of Flow interrupt flag of the corresponding channel.

In case a data flow transfer is aborted, the remaining number of data packets to be transmitted can be retrieved by reading two bytes with MSB first from the data flow descriptor register DFD0 (channel 0) or to DFD1 (channel 1). This feature is of interest in case of logical data flow management over a physical channel.
Note: In case of immediate abort, returned value is not significant since part of the DP is already transmitted.

Figure 46. Immediate Data Flow Abort Diagram

Figure 47. Delayed Data Flow Abort Diagram

Data Flow Configuration

Interrupts

Prior to any operation, the DFC must be configured in term of clock source and channel priority, then DFC can be enabled.
Each time a data flow must be established, a data flow descriptor must be written to the DFC.

As shown in Figure 48, the DFC interrupt request is generated by 2 different sources: the EOFIO flag or EOFI1 flag in DFCSTA. Both sources can be enabled separately by using the EOFEO and EOFE1 bits in DFCCON. A global enable of the DFC interrupt is provided by setting the EDFC bit in IENx register.
The interrupt is requested each time one of the 2 sources is asserted.
EOFIO or EOFI1 flags are set:

- at the end of a data flow on respective channel.
- after an immediate abort command at the end of the byte transfer.
- after a delayed abort at the end of the data packet transfer.

Note: An abort command never sets flags while in the process of writing DFD.
EOFIO and EOFI1 flags must be cleared by software by setting EOFIAO and EOFIA1 bits in DFCCON, in order to acknowledge the interrupt. Setting these flags by software has no effect.

Figure 48. DFC Interrupt System

Registers

Table 94. DFCON Register
DFCON (1.89h) - DFC Control Register

7	6	5	4	3	2	1	0
-	DFRES	-	DFCRCEN	DFPRIO1	DFPRIOO	DFABTM	DFEN
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
5	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
6	DFRES	Data Flow Controller Reset Bit Set then clear this bit to reset the Data Flow Controller by software.					
5	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
4	DFCRCEN	CRC Enable Bit Set to enable CRC calculation on channel 0 . Clear to disable CRC calculation.					
3-2	DFPRIO1:0	Data Flow Channel Priority Assignment Bits Refer to Table 93 for channel priority assignment description.					
1	DFABTM	Data Flow Abort Mode Bit Set to trigger a delayed abort. Clear to trigger an immediate abort.					
0	DFEN	Data Flow Controller Enable Bit Set to enable the Data Flow Controller. Clear to disable the Data Flow Controller.					

Reset Value $=0000$ 0000b

Table 95. DFCSTA Register
DFCSTA (1.88h Bit Addressable) - DFC Channel Status Register

$\mathbf{7} \mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	\mathbf{c}				
DRDY1	SRDY1	EOFI1	DFBSY1	DRDY0	SRDY0	EOFI0	DFBSY0
Bit Number	Bit Mnemonic	Description					
7	DRDY1	Channel 1 Destination Ready Flag Set by hardware when the destination peripheral of channel 1 is ready. Cleared by hardware when the destination peripheral of channel 1 is not ready.					
6	SRDY1	Channel 1 Source Ready Flag Set by hardware when the source peripheral of channel 1 is ready. Cleared by hardware when the source peripheral of channel 1 is not ready.					
5	EOFI1	Channel 1 End Of Data Flow Interrupt Flag Set by hardware at the end of a channel 1 data flow transfer. Cleared by software by setting EOFIA1 in DFCCON. Can not be set by software.					
4	DFBSY1	Channel 1 Busy Flag Set by hardware when a transfer is on-going on channel 1. Cleared by hardware when no transfer is on-going on channel 1.					

Bit Number	Bit Mnemonic	Description
3	DRDY0	Channel 0 Destination Ready Flag Set by hardware when the destination peripheral of channel 0 is ready. Cleared by hardware when the destination peripheral of channel 0 is not ready.
2	SRDY0	Channel 0 Source Ready Flag Set by hardware when the source peripheral of channel 0 is ready. Cleared by hardware when the source peripheral of channel 0 is not ready.
1	EOFIO	Channel 0 End Of Data Flow Interrupt Flag Set by hardware at the end of a channel 0 data flow transfer. Cleared by software by setting EOFIA0 in DFCCON. Can not be set by software.
0	DFBSY0	Channel 0 Busy Flag Set by hardware when a transfer is on-going on channel 0. Cleared by hardware when no transfer is on-going on channel 0.

Reset Value $=0000$ 0000b

Table 96. DFCCON Register
DFCCON (1.85h) - DFC Channel Control Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
DFABT1	EOFE1	EOFIA1	-	DFABT0	EOFE0	EOFIA0	-

$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description
7	DFABT1	Channel 1 Abort Control Bit Set to trigger an abort on channel 1. This bit is cleared by hardware.
6	EOFE1	Channel 1 End Of Data Flow Interrupt Enable Bit Set to enable channel 1 EOF interrupt. Clear to disable channel 1 EOF interrupt.
5	EOFIA1	Channel 1 End Of Flow Interrupt Acknowledge Bit Set to acknowledge the channel 1 EOF interrupt (clear EOFI1 flag). Clearing this bit has no effect. The value read from this bit is always 0 .
4	-	Reserved The value read from this bit is always 0 . Do not set this bit.
3	DFABT0	Channel 0 Abort Control Bit Set to trigger an abort on channel 0 . This bit is cleared by hardware.
2	EOFE0	Channel 0 End Of Data Flow Interrupt Enable Bit Set to enable channel 0 EOF interrupt. Clear to disable channel 0 EOF interrupt.
1	EOFIAO	Channel 0 End Of Flow Interrupt Acknowledge Bit Set to acknowledge the channel 0 EOF interrupt (clear EOFIO flag). Clearing this bit has no effect. The value read from this bit is always 0 .
0	-	Reserved The value read from this bit is always 0 . Do not set this bit.

Table 97. DFD0 Register
DFD0 (1.8Ah) - DFC Channel 0 Data Flow Descriptor Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
DFD0D7	DFD0D6	DFD0D5	DFD0D4	DFD0D3	DFD0D2	DFD0D1

Reset Value $=0000$ 0000b

Table 98. DFD1 Register
DFD1 (1.8Bh) - DFC Channel 1 Data Flow Descriptor Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
DFD1D7	DFD1D6	DFD1D5	DFD1D4	DFD1D3	DFD1D2	DFD1D1	DFD1D0
Bit	Bit Mnemonic	Description					
7-0	DFD1D7:0	Channel 1 Data Flow Descriptor Data Write data flow descriptor to this register as detailed in Table 91. Read to get the remaining number of data packet after a delayed abort. MSB is read first.					

Reset Value $=0000$ 0000b

Table 99. DFCRC Register
DFCRC (1.8Ch) - DFC CRC Data Register

7	6	5	4	3	2	1	0
CRCD7	CRCD6	CRCD5	CRCD4	CRCD3	CRCD2	CRCD1	CRCDO
Bit Number	Bit Mnemonic	Description					
7-0	CRCD7:0	CRC 2-byte Data FIFO First reading of DFCRC returns the MSB of the CRC16 data while second reading returns the LSB. First writing to DFCRC writes the MSB of the initial value of the CRC16 data while second writing writes the LSB.					

Reset Value $=00000000 \mathrm{~b}$

USB Controller

Description

The AT85C51SND3B derivatives implement a USB controller allowing the AT85C51SND3B to act as a USB device or a USB host.

The main features of the USB controller:

- Full-speed and high-speed device.
- Full-speed host with OTG compliance.
- Automatic Data Flow Controller (DFC) transfer without CPU support.
- 2368 bytes of DPRAM.
- Up to 7 endpoints/pipes
- 1 endpoint of 64 bytes (default control),
- 2 endpoints of 512 bytes max, (one or two banks),
- 4 endpoints of 64 bytes max, (one or two banks).

The C51 core interfaces with the USB Controller using a set of special function registers detailed in Table 49, page 40.
As shown in Figure 49, the USB controller is based on seven functional blocks:

- the PLL clock (see Section "Clock Generator", page 29) which delivers 480 MHz clock for USB high-speed mode support.
- the USB HS/FS pad supporting speed negotiation, attach/detach and data transfer
- the USB OTG pad supporting OTG negotiation
- the device controller allowing AT85C51SND3B to act as a device
- the host controller allowing AT85C51SND3B to act as a device
- the 2368-byte dual port RAM for endpoints and pipes memory
- the interrupt controller

Figure 49. USB Controller Block Diagram

Figure 50 shows the connection of the AT85C51SND3B to the USB connector and the the connection of the RC filter to the UBIAS pin. DPF and DMF pins are connected through 2 termination resistors.
Value of all discrete components is detailed in the Section "DC Characteristics", page 242.

Figure 50. USB Connection

General Operating Modes

Introduction

Power-On and Reset

After a hardware reset, the USB controller is disabled.
When enabled, the USB controller has to run the Device Controller or the Host Controller. This is performed using the ID detection.

- If the ID pin is not connected to ground, the ID bit is set by hardware (internal pull up on the UID pad) and the USB Device controller is selected.
- The ID bit is cleared by hardware when a low level has been detected on the ID pin. The Device controller is then disabled and the Host controller enabled.

The software anyway has to select the mode (Host, Device) in order to access to the Device controller registers or to the Host controller registers, which are multiplexed. For example, even if the USB controller has detected a Device mode (pin ID high), the software shall select the device mode (bit HOST cleared), otherwise it will access to the host registers. This is also true for the Host mode.

Figure 51 shows the USB controller main states after power-on.
Figure 51. USB Controller Reset State Machine

USB Controller state after an hardware reset is 'Reset'. In this state:

- USBE is not set,
- the macro clock is stopped in order to minimize the power consumption (FRZCLK=1),
- the macro is disabled,
- the pad is in the suspend mode,
- the Host and Device USB controllers internal states are reset.
- The DPACC bit and the DPADD10:0 field can be set by software. The DPRAM is not cleared.
- The SPDCONF bits can be set by software.

After setting USBE, the USB Controller enters in the Host or in the Device state (according to the UID pin level). The selected controller is 'Idle'.

The USB Controller can at any time be 'stopped' by clearing USBE. In fact, clearing USBE acts as an hardware reset.

As shown in Figure 52, the USB controller implements five main global interrupt sources: the USB general and OTG interrupts detailed in Figure 53, the USB device and endpoint interrupts detailed in Section "Interrupts", page 113, and the USB host and pipe interrupts detailed in Section "Interrupt", page 134.

Figure 52. USB Interrupt System

Figure 53. USB General and OTG Interrupt System

There are 2 kinds of interrupts: processing (i.e. their generation are part of the normal processing) and exception (errors).

Processing interrupts are generated when the following events are triggered:

- IDTI: ID Pad detection (insert, remove)
- VBUSTI: VBUS plug-in detection (insert, remove)
- SRPI: SRP detected
- ROLEEXI: Role Exchanged

Exception Interrupts are generated when the following events are triggered:

- VBERRI: Drop on VBUS Detected
- BCERRI: Error during the B-Connection
- HNPERRI: HNP Error
- STOI: Time-out detected during Suspend mode

Power modes

Idle Mode

Power Down

Freeze Clock

In this mode, the CPU core is halted (CPU clock stopped). The Idle mode is taken regardless of the USB controller state (running or not). The CPU wakes up on any USB interrupts.

In this mode, the oscillator and PLL are stopped and the CPU and peripherals are frozen. The CPU "wakes up" when:

- the WAKEUPI interrupt is triggered in the Peripheral mode (HOST cleared),
- the RXRSMI or the SRPI interrupt is triggered in the Host mode (HOST set).
- the IDTI interrupt is triggered
- the VBUSTI interrupt is triggered

The firmware has the ability to reduce the power consumption by setting the FRZCLK bit, which freezes the clock of USB controller. When FRZCLK is set, it is still possible to have an access to the following registers:

- USBCON, USBSTA, USBINT
- DPRAM direct access (DPADD10:0, UxDATX)
- UDCON (detach, ...)
- UDINT
- UDIEN
- UHCON
- UHINT
- UHIEN

Moreover, when FRZCLK is set, only the following interrupts may be triggered:

- WAKEUPI
- IDTI
- VBUSTI

Speed Control

Device Mode

Host Mode

Memory Access Capability

When the USB interface is configured in device mode, the speed selection (Full Speed or High Speed) is performed automatically by the USB controller during the USB Reset. A the end of the USB reset, the USB controller automatically enables or disables highspeed terminations and pull-up.
Note: It is possible to force the speed of the protocol, through the SPDCONF1:0 bits. For normal operations, SPDCONF1:0 must be cleared.
For all other operations (e.g. running in Full-Speed only), SPDCONF1:0 shall be written before enabling the controller (USBE set), in order to avoid any side effects. The following table summarizes all the possible configurations:

Table 100. Speed configuration

Mode	SPDCONF1:0	Description
Peripheral	00	Normal Mode (default) Use High-Speed pad in Full-Speed or High-Speed.
	01	Full-Speed only mode (Full-Speed pad) Shall be done before setting USBE.
	10	High-Speed only mode (High-Speed pad) Shall be used in debug mode.
	11	Full-Speed only mode (High-Speed pad)
Host	XX	Use Full-Speed pad

Clearing USBE resets SPDCONF1:0.

When the USB interface is configured in host mode, internal pull down resistors are activated on both DMF and DPF lines.

The CPU has the capability to directly access to the USB internal memory (DPRAM). The memory access mode is performed using UDPADDH and UDPADDL registers.
To enter in this mode:

- USBE bit must be cleared.
- DPACC bit and the base address DPADD10:0 must be set.

The DPACC bit and DPADD10:0 field can be used by the firmware even if the USBE bit is cleared.
Then, a read or a write in UEDATX (device mode) or in UPDATX (host mode) is performed according to DPADD10:0 and the base address DPADD10:0 field is automatically increased. The endpoint FIFO pointers and the value of the UxNUM registers are discarded in this mode.

The aim of this functionality is to use the DPRAM as extra-memory.

When using this mode, there is no influence over the USB controller.

Memory Management

The controller only supports the following memory allocation management:
The reservation of a Pipe or an Endpoint can only be made in the growing order (Pipe/Endpoint 0 to the last Pipe/Endpoint). The firmware shall thus configure them in the same order.

The reservation of a Pipe or an Endpoint " $\mathrm{k}^{\mathrm{i} \text { " is done when its ALLOC bit is set. Then, }}$ the hardware allocates the memory and insert it between the Pipe/Endpoints " $\mathrm{k}^{\mathrm{i}-1 \text { " and }}$
 and upper Pipe/Endpoint memory does not slide.
Clearing a Pipe enable (PEN) or an Endpoint enable (EPEN) does not clear neither its ALLOC bit, nor its configuration (EPSIZE/PSIZE, EPBK/PBK). To free its memory, the

The following figure illustrates the allocation and reorganization of the USB memory in a typical example:

Figure 54. Allocation and reorganization USB memory flow

- First, Pipe/Endpoint 0 to Pipe/Endpoint 5 are configured, in the growing order. The memory of each is reserved in the DPRAM.
- Then, the Pipe/Endpoint 3 is disabled (EPEN=0), but its memory reservation is internally kept by the controller.
- Its ALLOC bit is cleared: the Pipe/Endpoint 4 "slides" down, but the Pipe/Endpoint 5 does not "slide".
- Finally, if the firmware chooses to reconfigure the Pipe/Endpoint 3, with a bigger size. The controller reserved the memory after the endpoint 2 memory and automatically "slide" the Pipe/Endpoint 4. The Pipe/Endpoint 5 does not move and a memory conflict appear, in that both Pipe/Endpoint 4 and 5 use a common area. The data of those endpoints are potentially lost.
Notes: 1. the data of Pipe/Endpoint 0 are never lost whatever the activation or deactivation of the higher Pipe/Endpoint. Its data is lost if it is deactivated.

2. Deactivate and reactivate the same Pipe/Endpoint with the same parameters does not lead to a "slide" of the higher endpoints. For those endpoints, the data are preserved.
3. CFGOK is set by hardware even in the case that there is a "conflict" in the memory allocation.

PAD suspend

Figure 55 and Figure 56 illustrate the pad behaviour:

- In the "idle" mode, the pad is put in low power consumption mode.
- In the "active" mode, the pad is working.

Figure 55. Pad Behaviour State Machine

The SUSPI flag indicates that a suspend state has been detected on the USB bus. This flag automatically puts the USB pad in Idle state. The detection of a non-idle event sets the WAKEUPI flag and wakes-up the USB pad.

Figure 56. Pad Behavior Waveforms

Moreover, the pad can also be put in the "idle" mode if the DETACH bit is set. It come back in the active mode when the DETACH bit is cleared.

OTG Timers Customizing
It is possible to refine some OTG timers thanks to the OTGTCON register (see Table 108). This register is multiplexed with the OTGCON register. The timers are as defined in the OTG specification:

- AWaitVrise time-out. [OTG] chapter 6.6.5.1
- VbBusPulsing. [OTG] chapter 5.3.4
- PdTmOutCnt. [OTG] chapter 5.3.2
- SRPDetTmOut. [OTG] chapter 5.3.3

Table 101. OTG Timer Configuration

PAGE1:0	VALUE2:0	Timing Parameter
00	00	AWaitVrise time-out $=20 \mathrm{~ms}$.
	01	AWaitVrise time-out $=50 \mathrm{~ms}$.
	10	AWaitVrise time-out $=70 \mathrm{~ms}$.
	11	AWaitVrise time-out $=100 \mathrm{~ms}$.
01	00	VbBusPulsing $=15 \mathrm{~ms}$.
	01	VbBusPulsing $=23 \mathrm{~ms}$.
	10	VbBusPulsing $=31 \mathrm{~ms}$.
	11	VbBusPulsing $=40 \mathrm{~ms}$.
10	00	PdTmOutCnt $=96 \mathrm{~ms}$.
	01	PdTmOutCnt $=105 \mathrm{~ms}$.
	10	PdTmOutCnt $=118 \mathrm{~ms}$.
	11	PdTmOutCnt $=131 \mathrm{~ms}$.
11	00	SRPDetTmOut $=10 \mu \mathrm{~s}$.
	01	SRPDetTmOut $=100 \mu \mathrm{~s}$.
	10	SRPDetTmOut = 1 ms .
	11	SRPDetTmOut $=11 \mathrm{~ms}$.

Plug-in detection

The USB connection is detected by the VBUS pad, thanks to the following architecture:
Figure 57. Plug-in Detection Input Block Diagram

The control logic of the UVCC pad outputs 2 signals:

- The "session_valid" signal is active high when the voltage on the UVCC pin is higher or equal to 1.4 V .
- The "Va_Vbus_valid" signal is active high when the voltage on the UVCC pin is higher or equal to 4.4 V .
In the Host mode, the VBUS flag follows the next hysteresis rule:
- VBUS is set when the voltage on the UVCC pin is higher or equal to 4.4 V .
- VBUS is cleared when the voltage on the UVCC pin is lower than 1.4 V .

In the Peripheral mode, the VBUS flag follows the next rule:

- VBUS is set when the voltage on the UVCC pin is higher or equal to 1.4 V .
- VBUS is cleared when the voltage on the UVCC pin is lower than 1.4 V .

The VBUSTI interrupt is triggered at each transition of the VBUS flag.

ID Detection

The ID pin transition is detected thanks to the following architecture:
Figure 58. ID Detection Input Block Diagram

By default, (no A-plug or B-plug), the macro is in the Peripheral mode (internal pull-up). The IDTI interrupt is triggered when a A-plug (Host) is plugged or unplugged. The interrupt is not triggered when a B-plug (Peripheral) is plugged or unplugged.

The IDTI interrupt may be triggered even if the USB controller is disabled.

Registers

USB general registers

Table 102. USBCON Register
USBCON (1.E1h) - USB General Control Register

7	6	5	4	3	2	1	0
USBE	HOST	FRZCLK	OTGPADE		-	IDTE	VBUSTE
Bit Number	Bit Mnemonic	Description					
7	USBE	USB Controller Enable Bit Set to enable the USB controller. Clear to disable and reset the USB controller, to disable the USB transceiver and to disable the USB controller clock inputs.					
6	HOST	HOST Bit Set to access to the Host registers. Clear to access to the Device registers.					
5	FRZCLK	Freeze USB Clock Bit Set to disable the clock inputs (the "Resume Detection" is still active) and save power consumption. Clear to enable the clock inputs.					
4	OTGPADE	OTG Pad Enable Set to enable the OTG pad. Clear to disable the OTG pad. Note that this bit can be set/cleared even if USBE $=0$ (this allows the VBUS detection even if the USB macro is disable).					
3-2	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
1	IDTE	ID Transition Interrupt Enable Bit Set this bit to enable the ID Transition interrupt generation. Clear this bit to disable the ID Transition interrupt generation.					

Bit Number	Bit Mnemonic	Description
0	VBUSTE	VBUS Transition Interrupt Enable Bit Set this bit to enable the VBUS Transition interrupt generation. Clear this bit to disable the VBUS Transition interrupt generation.

Reset Value $=0010$ 0000b

Table 103. USBSTA Register
USBSTA (1.E2h) - USB General Status Register

7	6	5	4	3	2	1	0
-	-	-		-	SPEED	ID	VBUS
Bit Number	Bit Mnemonic	Description					
7-3	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
2	SPEED	Speed Status Flag Set by hardware when the controller is in HIGH-SPEED mode. Cleared by hardware when the controller is in FULL-SPEED mode.					
1	ID	IUD Pin Flag Set / cleared by hardware and reflects the state of the UID pin.					
0	VBUS	VBus Flag Set / cleared by hardware and reflects the level of the UVCC pin. See Section "Plug-in detection" for more details.					

Reset Value $=0000$ 0000b

Table 104. USBINT Register
USBINT (1.E3h) - USB Global Interrupt Register

7	6	5	4	3	2	1	0
-	-	-				IDTI	VBUSTI
Bit Number	Bit Mnemonic	Description					
7-2	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
1	IDTI	ID Transition Interrupt Flag Set by hardware when a transition (high to low, low to high) has been detected on the UID pin. Shall be cleared by software.					
0	VBUSTI	VBUS Transition Interrupt Flag Set by hardware when a transition (high to low, low to high) has been detected on the UVCC pin. Shall be cleared by software.					

Reset Value $=0000$ 0000b

Table 105. UDPADDH Register
UDPADDH (1.E4h) - USB Dual Port Ram Direct Access High Register

Reset Value $=0000$ 0000b

Table 106. UDPADDL Register
UDPADDL (1.E5h) - USB Dual Port Ram Direct Access High Register

7	6	5	4	3	2	1	0
DPADD7:0							
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-0	DPADD7:0	DPRAM Address Low Bit DAPDD7:0 is the least significant part of DPADD. The most significant part is provided by the UDPADDH register.					

Reset Value $=00000000 \mathrm{~b}$

Table 107. OTGCON Register
OTGCON (1.E6h) - USB OTG Control Register

7	6	5	4	3	2	1	0
0	-	HNPREQ	SRPREQ	SRPSEL	VBUSHWC	VBUSREQ	VBUSRQC
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7	0	OTGCON pagination This bit must be cleared to access the OTGCON register.					
6	-	Reserved The value read from these bits is always 0 . Do not set these bits.					

Bit Number	Bit Mnemonic	Description
5	HNPREQ	HNP Request Bit Set to initiate the HNP when the controller is in the Device mode (B). Set to accept the HNP when the controller is in the Host mode (A). Cleared by hardware after the HNP completion.
4	SRPREQ	SRP Request Bit Set to initiate the SRP when the controller is in Device mode. Cleared by hardware when the controller is initiating a SRP.
3	SRPSEL	SRP Selection Bit Set to choose VBUS pulsing as SRP method. Clear to choose data line pulsing as SRP method.
2	VBUSHWC	VBus Hardware Control Bit Set to disable the hardware control over the UVCON pin. Clear to enable the hardware control over the UVCON pin.
1	VBUSREQ	VBUS Request Bit Set to assert the UVCON pin in order to enable the VBUS power supply generation. This bit shall be used when the controller is in the Host mode. Cleared by hardware when VBUSRQC is set.
0	VBUSRQC	VBUS Request Clear Bit Set to deassert the UVCON pin in order to enable the VBUS power supply generation. This bit shall be used when the controller is in the Host mode. Cleared by hardware immediately after the set.

Reset Value $=0000$ 0000b

Table 108. OTGTCON Register
OTGTCON (1.E6h) - USB OTG Timer Control Register

Reset Value $=00000000 \mathrm{~b}$

Table 109. OTGIEN Register
OTGIEN (1.E7h) - USB OTG Interrupt Enable Register

Bit Number	Bit Mnemonic	Description
$7-6$	-	Reserved The value read from these bits is always 0. Do not set these bits.
5	STOE	Suspend Time-out Error Interrupt Enable Bit Set to enable the STOI interrupt. Clear to disable the STOI interrupt.
4	HNPERRE	HNP Error Interrupt Enable Bit Set to enable the HNPERRI interrupt. Clear to disable the HNPERRI interrupt.
3	ROLEEXE	Role Exchange Interrupt Enable Bit Set to enable the ROLEEXI interrupt. Clear to disable the ROLEEXI interrupt.
2	BCERRE	B-Connection Error Interrupt Enable Bit Set to enable the BCERRI interrupt. Clear to disable the BCERRI interrupt.
1	VBERRE	VBus Error Interrupt Enable Bit Set to enable the VBERRI interrupt. Clear to disable the VBERRI interrupt.
0	SRPE	SRP Interrupt Enable Bit Set to enable the SRPI interrupt. Clear to disable the SRPI interrupt.

Reset Value $=0000$ 0000b

Table 110. OTGINT Register
OTGINT (1.D1h) - USB Global Interrupt Register

7	6	5	4	3	2	1	0
-	-	STOI	HNPERRI	ROLEEXI	BCERRI	VBERRI	SRPI
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-6	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
5	STOI	Suspend Time-out Error Interrupt Flag Set by hardware when a time-out error (more than 150 ms) has been detected after a suspend. Shall be cleared by software. See for more details.					
4	HNPERRI	HNP Error Interrupt Flag Set by hardware when an error has been detected during the protocol. Shall be cleared by software. See for more details.					

Bit Number	Bit Mnemonic	Description
3	ROLEEXI	Role Exchange Interrupt Flag Set by hardware when the USB controller has successfully swapped its mode, due to an HNP negotiation: Host to Device or Device to Host. Shall be cleared by software. See for more details.
2	BCERRI	B-Connection Error Interrupt Flag Set by hardware when an error occur during the B-Connection. Shall be cleared by software.
1	VBERRI	V-Bus Error Interrupt Flag Set by hardware when a drop on VBus has been detected. Shall be cleared by software.
0	SRPI	SRP Interrupt Flag Set by hardware when a SRP has been detected. Shall be used in the Host mode only. Shall be cleared by software.

Reset Value $=0000$ 0000b

USB Software Operating modes

Depending on the USB operating mode, the software should perform some of the following operations:

Power On the USB interface

- Power-On USB pads regulator
- Wait USB pads regulator ready state
- Configure PLL interface
- Enable PLL
- Check PLL lock
- Enable USB interface
- Configure USB interface (USB speed, Endpoints configuration...)
- Wait for USB VBUS information connection
- Attach USB device

Power Off the USB interface

- Detach USB interface
- Disable USB interface
- Disable PLL
- Disable USB pin regulator

Suspending the USB interface

- Clear Suspend Bit
- Set USB suspend clock
- Disable PLL
- Be sure to have interrupts enable to exit sleep mode
- Make the MCU enter sleep mode

Resuming the USB interface

- Enable PLL
- Wait PLL lock
- Clear USB suspend clock
- Clear Resume information

USB Device Operating modes

Introduction

The USB device controller supports high speed and full speed data transfers. In addition to the default control endpoint, it provides six other endpoints, which can be configured in control, bulk, interrupt or isochronous modes:

- Endpoint 0: programmable size FIFO up to 64 bytes, default control endpoint.
- Endpoints 1 and 2: programmable size FIFO up to 512 bytes in ping-pong mode.
- Endpoints 3 to 6:
programmable size FIFO up to 64 bytes in ping-pong mode.
The controller starts in the "idle" mode. In this mode, the pad consumption is reduced to the minimum.

Figure 59 shows the USB device controller main states after power-on.
Figure 59. USB Device Controller Reset State Machine

The reset state of the Device controller is:

- the macro clock is stopped in order to minimize the power consumption (FRZCLK set)
- the USB device controller internal state is reset (all the registers are reset to their default value. Note that DETACH is set.)
- the endpoint banks are reset
- the D+ or D- pull up are not activated (mode Detach)

The D+ or D- pull-up will be activated as soon as the DETACH bit is cleared and VBUS is present.

The macro is in the 'Idle' state after reset with a minimum power consumption and does not need to have the PLL activated to enter in this state.
The USB device controller can at any time be reset by clearing USBE.

Speed Identification

The high-speed reset is managed by the hardware. At the connection, the host makes a reset that can be:

- a classic reset (Full-speed) or
- a High-speed reset (High-speed).

At the end of the reset process (Full or High), the end of reset interrupt (EORSTI) is generated. Then the CPU should read the SPEED bit to know the speed mode of the device.

Note that the USB device controller starts in the Full-speed mode after power on.

Endpoint Reset

USB Reset

Endpoint Selection

An endpoint can be reset at any time by setting in the UERST register the bit corresponding to the endpoint (EPRSTx). This resets:

- the internal state machine on that endpoint,
- the Rx and Tx banks are cleared and their internal pointers are restored,
- the UEINTX, UESTAOX and UESTA1X are restored to their reset value.

The data toggle field remains unchanged.
The other registers remain unchanged.
The endpoint configuration remains active and the endpoint is still enabled.
The endpoint reset may be associated with a clear of the data toggle command (RSTDT bit) as an answer to the CLEAR_FEATURE USB command.

When an USB reset is detected on the USB line, the next operations are performed by the controller:

- all the endpoints are disabled, except the default control endpoint,
- the default control endpoint is reset (see Section "Endpoint Reset" for more details).
- The data toggle of the default control endpoint is cleared.

Prior to any operation performed by the CPU, the endpoint must first be selected. This is done by:

- Clearing EPNUMS.
- Setting EPNUM with the endpoint number which will be managed by the CPU.

The CPU can then access to the various endpoint registers and data.
In the same manner, if the endpoint must be accessed by the DFC, it must first be selected. This is done by:

- Setting EPNUMS.
- Setting EPNUM with the endpoint number which will be managed by the DFC.
- Setting DFCRDY when the data-flow is ready to take place.

The DFC can then access to the banks (read / write).
The controller internally keeps in memory the EPNUM for the CPU and the EPNUM for the DFC. In fact, there are 2 EPNUM registers multiplexed by the EPNUMS bit. Each of them can be read or written by the CPU.

These two registers permits to easily switch from an endpoint under DFC data transfer to the default control endpoint when a SETUP is received, without reprogramming the EPNUM register:

- Set EPNUMS,
- EPNUM = endpoint ${ }_{\mathrm{x}}$
- Set DFCRDY when the DFC transfer is ready to take place,
- ...<DFC transfer>...
- SETUP received on endpoint (EPINTO set, RXSTPI set),
- Clear DFCRDY to freeze the DFC transfer,
- If the CPU EPNUM has to be changed: EPNUMS cleared, EPNUM = endpoint ${ }_{0}$
- Read endpoint ${ }_{0}$ data (UEDATX)
- Set DFCRDY. This resumes the DFC transfer.

Endpoint Activation

Address Setup

The endpoint is maintained under reset as long as the EPEN bit is not set. The following flow must be respected in order to activate an endpoint:

Figure 60. Endpoint activation flow:

As long as the endpoint is not correctly configured (CFGOK cleared), the hardware does not acknowledge the packets sent by the host.

CFGOK is will not be sent if the Endpoint size parameter is bigger than the DPRAM size.
A clear of EPEN acts as an endpoint reset (see Section "Endpoint Reset" for more details). It also performs the next operation:

- The configuration of the endpoint is kept (EPSIZE, EPBK, ALLOC kept)
- It resets the data toggle field.
- The DPRAM memory associated to the endpoint is still reserved.

See Section "Memory Management", page 90 for more details about the memory allocation/reorganization.

The USB device address is set up according to the USB protocol:

- the USB device, after power-up, responds at address 0
- the host sends a SETUP command (SET_ADDRESS(addr)),
- the firmware records that address in UADD, but keep ADDEN cleared,
- the USB device sends an IN command of 0 bytes (IN 0 Zero Length Packet),
- then, the firmware can enable the USB device address by setting ADDEN. The only accepted address by the controller is the one stored in UADD.

ADDEN and UADD shall not be written at the same time.
UADD contains the default address 00h after a power-up or USB reset.
ADDEN is cleared by hardware:

- after a power-up reset,
- when an USB reset is received,
- or when the macro is disabled (USBE cleared)

When this bit is cleared, the default device address 00h is used.

Suspend, Wake-Up and Resume

After a period of 3 ms during which the USB line was inactive, the controller switches to the full-speed mode and triggers (if enabled) the SUSPI (suspend) interrupt. The firmware may then set the FRZCLK bit.

The CPU can also, depending on software architecture, enter in the idle mode to lower again the power consumption.

There are two ways to recover from the "Suspend" mode:

- First one is to clear the FRZCLK bit. This is possible if the CPU is not in the Idle mode.
- Second way, if the CPU is "idle", is to enable the WAKEUPI interrupt (WAKEUPE set). Then, as soon as an non-idle signal is seen by the controller, the WAKEUPI interrupt is triggered. The firmware shall then clear the FRZCLK bit to restart the transfer.

There are no relationship between the SUSPI interrupt and the WAKEUPI interrupt: the WAKEUPI interrupt is triggered as soon as there are non-idle patterns on the data lines. Thus, the WAKEUPI interrupt can occurs even if the controller is not in the "suspend" mode.

When the WAKEUPI interrupt is triggered, if the SUSPI interrupt bit was already set, it is cleared by hardware.

When the SUSPI interrupt is triggered, if the WAKEUPI interrupt bit was already set, it is cleared by hardware.

The reset value of the DETACH bit is 1 .
It is possible to re-enumerate a device, simply by setting and clearing the DETACH bit.

- If the USB device controller is in full-speed mode, setting DETACH will disconnect the pull-up on the $D+$ or D - pad (depending on full or low speed mode selected). Then, clearing DETACH will connect the pull-up on the D+ or D- pad.

Figure 61. Detach a device in Full-speed:

Remote Wake-Up

STALL Request

Special Consideration for Control Endpoints

The "Remote Wake-up" (or "upstream resume") request is the only operation allowed to be sent by the device on its own initiative. Anyway, to do that, the device should first have received a DEVICE_REMOTE_WAKEUP request from the host.

- First, the USB controller must have detected the "suspend" state of the line: the remote wake-up can only be sent after a SUSPI interrupt has been triggered.
- The firmware has then the ability to set RMWKUP to send the "upstream resume" stream. This will automatically be done by the controller after 5 ms of inactivity on the USB line.
- When the controller starts to send the "upstream resume", the UPRSMI interrupt is triggered (if enabled). If SUSPI was set, SUSPI is cleared by hardware.
- RMWKUP is cleared by hardware at the end of the "upstream resume".
- If the controller detects a good "End Of Resume" signal from the host, an EORSMI interrupt is triggered (if enabled).

For each endpoint, the STALL management is performed using 2 bits:

- STALLRQ (enable stall request)
- STALLRQC (disable stall request)
- STALLI (stall sent interrupt)

To send a STALL handshake at the next request, the STALLRQ request bit has to be set. All following requests will be handshak'ed with a STALL until the STALLRQC bit is set.
Setting STALLRQC automatically clears the STALLRQ bit. The STALLRQC bit is also immediately cleared by hardware after being set by software. Thus, the firmware will never read this bit as set.
Each time the STALL handshake is sent, the STALLI flag is set by the USB controller and the EPINTx interrupt will be triggered (if enabled).
The incoming packets will be discarded (RXOUTI and RWAL will not be set).
The host will then send a command to reset the STALL: the firmware just has to set the STALLRQC bit and to reset the endpoint.

A SETUP request is always ACK'ed.
If a STALL request is set for a Control Endpoint and if a SETUP request occurs, the SETUP request has to be ACK'ed and the STALLRQ request and STALLI sent flags are automatically reset (RXSETUPI set, TXINI cleared, STALLI cleared, TXINI cleared...).
This management simplifies the enumeration process management. If a command is not supported or contains an error, the firmware set the STALL request flag and can return to the main task, waiting for the next SETUP request.

This function is compliant with the Chapter 8 test from PMTC that send extra status for a GET_DESCRIPTOR. The firmware sets the STALL request just after receiving the status. All extra status will be automatically STALL'ed until the next SETUP request.

STALL Handshake and Retry Mechanism

CONTROL Endpoint Management

The Retry mechanism has priority over the STALL handshake. A STALL handshake is sent if the STALLRQ request bit is set and if there is no retry required.

A SETUP request is always ACK'ed. When a new setup packet is received, the RXSTPI interrupt is triggered (if enabled). The RXOUTI interrupt is not triggered.

The FIFOCON and RWAL fields are irrelevant with CONTROL endpoints. The firmware shall thus never use them on that endpoints. When read, their value is always 0 .
CONTROL endpoints are managed by the following bits:

- RXSTPI is set when a new SETUP is received. It shall be cleared by firmware to acknowledge the packet and to clear the endpoint bank.
- RXOUTI is set when a new OUT data is received. It shall be cleared by firmware to acknowledge the packet and to clear the endpoint bank.
- TXINI is set when the bank is ready to accept a new IN packet. It shall be cleared by firmware to send the packet and to clear the endpoint bank.
CONTROL endpoints should not be managed by interrupts, but only by polling the status bits.

The next figure shows a control write transaction. During the status stage, the controller will not necessary send a NAK at the first IN token:

Control Write

- If the firmware knows the exact number of descriptor bytes that must be read, it can then anticipate on the status stage and send a ZLP for the next IN token,
- or it can read the bytes and poll NAKINI, which tells that all the bytes have been sent by the host, and the transaction is now in the status stage.

Control Read

The next figure shows a control read transaction. The USB controller has to manage the simultaneous write requests from the CPU and the USB host:

A NAK handshake is always generated at the first status stage command.
When the controller detect the status stage, all the data written by the CPU are erased, and clearing TXINI has no effects.
The firmware checks if the transmission is complete or if the reception is complete.
The OUT retry is always ack'ed. This reception:

- set the RXOUTI flag (received OUT data)
- set the TXINI flag (data sent, ready to accept new data)
software algorithm:

```
set transmit ready
wait (transmit complete OR Receive complete)
if receive complete, clear flag and return
if transmit complete, continue
```


OUT Endpoint

 ManagementOverview
"Manual" Mode

OUT packets are sent by the host. All the data can be read by the CPU, which acknowledges or not the bank when it is empty.

The Endpoint must be configured first.
Each time the current bank is full, the RXOUTI and the FIFOCON bits are set. This trig-
gers an interrupt if the RXOUTE bit is set. The firmware can acknowledge the USB
interrupt by clearing the RXOUTI bit. The Firmware read the data and clear the FIFO-
CON bit in order to free the current bank. If the OUT Endpoint is composed of multiple
Each time the current bank is full, the RXOUTI and the FIFOCON bits are set. This trig-
gers an interrupt if the RXOUTE bit is set. The firmware can acknowledge the USB
interrupt by clearing the RXOUTI bit. The Firmware read the data and clear the FIFO-
CON bit in order to free the current bank. If the OUT Endpoint is composed of multiple
Each time the current bank is full, the RXOUTI and the FIFOCON bits are set. This trig-
gers an interrupt if the RXOUTE bit is set. The firmware can acknowledge the USB
interrupt by clearing the RXOUTI bit. The Firmware read the data and clear the FIFO-
CON bit in order to free the current bank. If the OUT Endpoint is composed of multiple
Each time the current bank is full, the RXOUTI and the FIFOCON bits are set. This trig-
gers an interrupt if the RXOUTE bit is set. The firmware can acknowledge the USB
interrupt by clearing the RXOUTI bit. The Firmware read the data and clear the FIFO-
CON bit in order to free the current bank. If the OUT Endpoint is composed of multiple

Once the OUT status stage has been received, the USB controller waits for a SETUP request. The SETUP request have priority over any other request and has to be ACK'ed. This means that any other flag should be cleared and the fifo reset when a SETUP is received.
WARNING: the byte counter is reset when the OUT Zero Length Packet is received. The firmware has to take care of this.
banks, clearing the FIFOCON bit will switch to the next bank. The RXOUTI and FIFOCON bits are then updated by hardware in accordance with the status of the new bank.

RXOUTI shall always be cleared before clearing FIFOCON.
The RWAL bit always reflects the state of the current bank. This bit is set if the firmware can read data from the bank, and cleared by hardware when the bank is empty.

Example with 1 OUT data bank

Example with 2 OUT data banks

"Autoswitch" Mode

In this mode, the clear of the FIFOCON bit is performed automatically by hardware each time the Endpoint bank is empty. The firmware has to check if the next bank is empty or not before reading the next data. On RXOUTI interrupt, the firmware reads a complete bank. A new interrupt will be generated each time the current bank contains data to read.

The acknowledge of the RXOUTI interrupt is always performed by software.

Detailed Description

standard Mode Without AUTOSW

In this mode (AUTOSW cleared), the data are read by the CPU, following the next flow:

- When the bank is filled by the host, an endpoint interrupt (EPINTx) is triggered, if enabled (RXOUTE set) and RXOUTI is set. The CPU can also poll RXOUTI or FIFOCON, depending on the software architecture,
- The CPU acknowledges the interrupt by clearing RXOUTI,
- The CPU can read the number of byte (N) in the current bank ($\mathrm{N}=\mathrm{BYCT}$),
- The CPU can read the data from the current bank ("N" read of UEDATX),
- The CPU can free the bank by clearing FIFOCON when all the data is read, that is:
- after " N " read of UEDATX,
- as soon as RWAL is cleared by hardware.

If the endpoint uses 2 banks, the second one can be filled by the HOST while the current one is being read by the CPU. Then, when the CPU clear FIFOCON, the next bank may be already ready and RXOUTI is set immediately.

Standard Mode with AUTOSW

In this mode (AUTOSW set), the flow operation is the same as Section "standard Mode Without AUTOSW", page 108, with the exception that the CPU does not have to free the bank (FIFOCON cleared): this will automatically be done when the CPU read the last byte of the bank.

- EPINTx (RXOUTE set, RXOUTI set) or polling on RXOUTI=1 or FIFOCON=1,
- The CPU acknowledges the interrupt by clearing RXOUTI,
- The CPU read the number of byte (N) in the current bank ($\mathrm{N}=\mathrm{BYCT}$) (or already knows the number " N " of bytes at each packet),
- The CPU can read the data from the current bank ("N" read of UEDATX, or can read while RWAL is set).

A clear of FIFOCON does not have any effects in this mode.

Using the DFC with AUTOSW

Using the DFC without AUTOSW

In this mode (AUTOSW set, DFC programmed), the data are handled by the DFC without any intervention from the CPU. The flow is:

- programming of the DFC,
- poll End Of Transfer from the DFC.

The bank switching is automatically done: when a bank is emptied, it is freed and the switch occurs. If the End Of Transfer occurs while the bank is not emptied, the CPU has the responsibility to free it.
The CPU shall not use UEDATX or the byte counter BYCT in this mode. A clear of FIFOCON does not have any effects in this mode.

If a ZLP is received, it will be filtered by the USB device controller, and the flag ZLPSEEN is set.

In this mode (AUTOSW cleared, DFC programmed), the data are handled by the DFC but the CPU have to acknowledge each bank read.

- programming of the DFC,
- EPINTx (RXOUTE set, RXOUTI set) or polling on RXOUTI=1 or FIFOCON=1,
- The CPU acknowledges the interrupt by clearing RXOUTI,
- poll the wait of the transfer: (while RWAL is set: wait),
- Clear FIFOCON which frees the bank and switch to the next one.

IN packets are sent by the USB device controller, upon an IN request from the host. All the data can be written by the CPU, which acknowledge or not the bank when it is full.

The Endpoint must be configured first.
The TXINI bit is set by hardware when the current bank becomes free. This triggers an interrupt if the TXINE bit is set. The FIFOCON bit is set at the same time. The CPU
writes into the FIFO and clears the FIFOCON bit to allow the USB controller to send the data. If the IN Endpoint is composed of multiple banks, this also switches to the next data bank. The TXINI and FIFOCON bits are automatically updated by hardware regarding the status of the next bank.
TXINI shall always be cleared before clearing FIFOCON.
The RWAL bit always reflects the state of the current bank. This bit is set if the firmware can write data to the bank, and cleared by hardware when the bank is full.

Example with 1 IN data bank

Example with 2 IN data banks

"Autoswitch" Mode
In this mode, the clear of the FIFOCON bit is performed automatically by hardware each time the Endpoint bank is full. The firmware has to check if the next bank is empty or not before writing the next data. On TXINI interrupt, the firmware fills a complete bank. A new interrupt will be generated each time the current bank becomes free.

Detailed Description

Standard Mode without AUTOSW

In this mode (AUTOSW cleared), the data are written by the CPU, following the next flow:

- When the bank is empty, an endpoint interrupt (EPINTx) is triggered, if enabled (TXINE set) and TXINI is set. The CPU can also poll TXINI or FIFOCON, depending the software architecture choice,
- The CPU acknowledges the interrupt by clearing TXINI,
- The CPU can write the data into the current bank (write in UEDATX),
- The CPU can free the bank by clearing FIFOCON when all the data are written, that is:
- after " N " write into UEDATX
- as soon as RWAL is cleared by hardware.

If the endpoint uses 2 banks, the second one can be read by the HOST while the current is being written by the CPU. Then, when the CPU clears FIFOCON, the next bank may be already ready (free) and TXINI is set immediately.

Standard Mode with AUTOSW

Using the DFC with AUTOSW

Using the DFC without AUTOSW

In this mode (AUTOSW set), the flow operation is the same as Section "Standard Mode without AUTOSW", page 110, with the exception that the CPU does not have to free the bank (FIFOCON cleared): this will automatically be done when the CPU fills the bank.

- EPINTx (TXINE set, TXINI set) or polling on TXINI=1 or FIFOCON=1,
- The CPU acknowledges the interrupt by clearing TXINI,
- The CPU can write the data to the current bank (write in UEDATX) while RWAL is set.

A clear of FIFOCON does not have any effects in this mode.
In this mode (AUTOSW set, DFC programmed), the data are handled by the DFC without any intervention from the CPU. The flow is:

- programming of the DFC,
- poll End Of Transfer from the DFC.

The bank switching is automatically done: when a bank is filled, it is freed and the switch occurs. If the End Of Transfer occurs while the bank is not filled, the CPU has the responsibility to free it.
The CPU shall not use UEDATX or the byte counter BYCT in this mode. A clear of FIFOCON does not have any effects in this mode.

In this mode (AUTOSW=0, DFC programmed), the data are handled by the DFC but the CPU have to acknowledge each bank written:

- programming of the DFC,
- EPINTx (TXINE set, TXINI set) or polling on $\mathrm{TXINI}=1$ or $\mathrm{FIFOCON}=1$,
- The CPU acknowledges the interrupt by clearing TXINI,
- poll the wait of the transfer: (while RWAL is set: wait),
- Clear FIFOCON which frees the bank and switch to the next one.

An "abort" stage can be produced by the host in some situations:

- In a control transaction: ZLP data OUT received during a IN stage,
- In an isochronous IN transaction: ZLP data OUT received on the OUT endpoint during a IN stage on the IN endpoint

The KILLBK bit is used to kill the last "written" bank. The best way to manage this abort is to perform the following operations:

Table 111. Abort flow

Isochronous Mode

Underflow

Overflow

For Isochronous IN endpoints, it is possible to automatically switch the banks on each start of frame (SOF). This is done by setting ISOSW. The CPU has to fill the bank of the endpoint; the bank switching will be automatic as soon as a SOF is seen by the hardware.

A clear of FIFOCON does not have any effects in this mode.
In the case that a SOF is missing (noise on USB pad, ...), the controller will automatically build internally a "pseudo" start of frame and the bank switching is made. The SOFI interrupt is triggered and the frame number FNUM10:0 is increased.

An underflow can occur during IN stage if the host attempts to read a bank which is empty. In this situation, the UNDERFI interrupt is triggered.

An underflow can also occur during OUT stage if the host send a packet while the banks are already full. Typically, he CPU is not fast enough. The packet is lost.

It is not possible to have underflow error during OUT stage, in the CPU side, since the CPU should read only if the bank is ready to give data (RXOUTI=1 or RWAL=1)

A CRC error can occur during OUT stage if the USB controller detects a bad received packet. In this situation, the STALLI interrupt is triggered. This does not prevent the RXOUTI interrupt from being triggered.

In Control, Isochronous, Bulk or Interrupt Endpoint, an overflow can occur during OUT stage, if the host attempts to write in a bank that is too small for the packet. In this situation, the OVERFI interrupt is triggered (if enabled). The packet is acknowledged and the RXOUTI interrupt is also triggered (if enabled). The bank is filled with the first bytes of the packet.
It is not possible to have overflow error during IN stage, in the CPU side, since the CPU should write only if the bank is ready to access data ($\mathrm{TXINI}=1$ or RWAL=1).

Interrupts

Figure 62 shows all the device interrupts sources while Figure 63 details the endpoint interrupt sources.

Figure 62. USB Device Controller Interrupt System

There are 2 kinds of interrupts: processing (i.e. their generation are part of the normal processing) and exception (errors).

Processing interrupts are generated when the following events are triggered:

- VBUSTI: VBUS plug-in detection (insert, remove)
- UPRSMI: upstream resume
- EORSMI: end of resume
- WAKEUPI: Wake up
- EORSTI: end of reset (Speed Initialization)
- SOFI: start of frame (FNCERR=0)
- MSOFI: micro start of frame (FNCERR=0)
- SUSPI: suspend detected after 3 ms of inactivity

Exception Interrupts are generated when the following events are triggered:

- SOFI: CRC error in frame number of SOF (FNCERR=1)
- MSOFI: CRC error in frame number of micro-SOF (FNCERR=1)

Figure 63. USB Device Controller Endpoint Interrupt System

Processing interrupts are generated when the following events are triggered:

- TXINI: ready to accept IN data
- RXOUTI: OUT data received
- RXSTPI: SETUP received

Exception Interrupts are generated when the following events are triggered:

- STALLI: stalled packet
- STALLI: CRC error on OUT in isochronous mode
- OVERFI: overflow in isochronous mode
- UNDERFI: underflow in isochronous mode
- NAKINI: NAK IN sent
- NAKOUTI: NAK OUT sent

Registers

USB Device General Registers

Table 112. UDCON Register
UDCON (1.D9h) - USB Device General Control Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	RMWKUP	DETACH
Bit Number	Bit Mnemonic	Description					
7-2	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
1	RMWKUP	Remote Wake-up Bit Set to send an "upstream-resume" to the host for a remote wake-up. Cleared by hardware. Clearing by software has no effect. See Section "Remote Wake-Up" for more details.					
0	DETACH	Detach Bit Set to physically detach de device. Clear to reconnect the device. See Section "Detach" for more details.					

Reset Value $=0000$ 0001b

Table 113. UDINT Register
UDINT (1.D8h) - USB Device Global Interrupt Register

Bit Number	Bit Mnemonic	Description
3	EORSTI	End Of Reset Interrupt Flag Set by hardware when an "End Of Reset" has been detected by the USB controller. This triggers an USB interrupt if EORSTE is set. Shall be cleared by software. Setting by software has no effect.
2	SOFI	Start Of Frame Interrupt Flag Set by hardware when an USB "Start Of Frame" PID (SOF) has been detected (every 1 ms). This triggers an USB interrupt if SOFE is set.
1	MSOFI	Micro-Start Of Frame Interrupt Flag Set by hardware when an USB "Micro-Start Of Frame" PID (dSOF) has been detected (every 125 $\mu \mathrm{s}$). This triggers an USB interrupt if MSOFE is set.
0	SUSPI	Suspend Interrupt Flag Set by hardware when an USB "Suspend" 'idle bus for 3 frame periods: a J state for 3 ms) is detected. This triggers an USB interrupt if SUSPE is set. Shall be cleared by software. Setting by software has no effect. See Section "Suspend, Wake-Up and Resume" for more details.

Reset Value $=0000$ 0000b

Table 114. UDIEN Register
UDIEN (1.DAh) - USB Device Global Interrupt Enable Register

7	6	5	4	3	2	1	0
-	UPRSME	EORSME	WAKEUPE	EORSTE	SOFE	MSOFE	SUSPE
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
6	UPRSME	Upstream Resume Interrupt Enable Bit Set to enable the UPRSMI interrupt. Clear to disable the UPRSMI interrupt					
5	EORSME	End Of Resume Interrupt Enable Bit Set to enable the EORSMI interrupt. Clear to disable the EORSMI interrupt.					
4	WAKEUPE	Wake-Up CPU Interrupt Enable Bit Set to enable the WAKEUPI interrupt. Clear to disable the WAKEUPI interrupt.					
3	EORSTE	End Of Reset Interrupt Enable Bit Set to enable the EORSTI interrupt. This bit is set after a reset. Clear to disable the EORSTI interrupt.					
2	SOFE	Start Of Frame Interrupt Enable Bit Set to enable the SOFI interrupt. Clear to disable the SOFI interrupt.					
1	MSOFE	Micro-Start Of Frame Interrupt Enable Bit Set to enable the MSOFI interrupt. Clear to disable the MSOFI interrupt.					

Bit Number	Bit Mnemonic	Description
0	SUSPE	Suspend Interrupt Enable Bit Set to enable the SUSPI interrupt. Clear to disable the SUSPI interrupt.

Reset Value $=0000$ 0000b

Table 115. UDADDR Register
UDADDR (1.DBh) - USB Device Address Register

7	6	5	4	3	2	1	0
ADDEN	UADD6	UADD5	UADD4	UADD3	UADD2	UADD1	UADD0
Bit Number	Bit Mnemonic	Description					
7	ADDEN	Address Enable Bit Set to activate the UADD (USB address). Cleared by hardware. Clearing by software has no effect. See Section "Address Setup" for more details.					
6-0	UADD6:0	USB Address Bits Set to configure the device address. Shall not be cleared.					

Reset Value $=0000$ 0000b

Table 116. UDFNUMH Register
UDFNUMH (1.DCh) - USB Device Frame Number High Register

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | FNUM10 | FNUM9 | FNUM8 |

Bit Number	Bit Mnemonic	Description
$7-3$	-	Reserved The value read from these bits is always 0. Do not set these bits.
$2-0$	FNUM10:8	Frame Number Upper Flag Set by hardware. These bits are the 3 MSB of the 11-bits Frame Number information. They are provided in the last received SOF packet. FNUM is updated if a corrupted SOF is received.

Reset Value $=0000$ 0000b

Table 117. UDFNUML Register UDFNUML (1.DDh) - USB Device Frame Number Low Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$
FNUM7	FNUM6	FNUM5	FNUM4	FNUM3	FNUM2	FNUM1	FNUM0

Bit Number	Bit Mnemonic	Description
$7-0$	FNUM7:0	Frame Number Lower Flag Set by hardware. These bits are the 8 LSB of the 11-bits Frame Number information.

Reset Value $=0000$ 0000b

Table 118. UDMFN Register
UDMFN (1.DEh) - USB Device Frame Number Register

Reset Value $=00000000 \mathrm{~b}$

USB Device Endpoint Registers

Table 119. UENUM Register
UENUM (1.C9h) - USB Endpoint Number Selection Register

7	6	5	4	3	2	1	0
-	-				EPNUM2	EPNUM1	EPNUMO
Bit Number	Bit Mnemonic	Description					
7-3	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
2-0	EPNUM2:0	Endpoint Number Bits Set to select the number of the endpoint which shall be accessed by the CPU or by the DFC depending on UPNUMS bit in UECONX. See Section "Endpoint Selection" for more details. $E P N U M=111 \mathrm{~b}$ is forbidden.					

Reset Value $=0000$ 0000b

Table 120. UERST Register
UERST (1.CAh) - USB Endpoint Reset Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	EPRST6	EPRST5	EPRST4	EPRST3	EPRST2	EPRST1	EPRST0

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from these bits is always 0. Do not set these bits.
$6-0$	EPRST6:0	Endpoint FIFO Reset Bits Set to reset the selected endpoint FIFO prior to any other operation, upon hardware reset or when an USB bus reset has been received. See Section "Endpoint Reset" for more information. Then, cleared by software to complete the reset operation and start using the FIFO.

Reset Value $=00000000 \mathrm{~b}$

Table 121. UECONX Register
UECONX (1.CBh) - USB Endpoint Control Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	-	STALLRQ	STALLRQC	RSTDT	EPNUMS	DFCRDY	EPEN

Bit Number	Bit Mnemonic	Description
$7-6$	-	Reserved The value read from these bits is always 0. Do not set these bits.
5	STALLRQ	STALL Request Handshake Bit Set to request a STALL answer to the host for the next handshake. Cleared by hardware when a new SETUP is received. Clearing by software has no effect. See Section "STALL Request" for more details.
4	STALLRQC	STALL Request Clear Handshake Bit Set to disable the STALL handshake mechanism. Cleared by hardware immediately after the set. Clearing by software has no effect. See Section "STALL Request" for more details.
3	RSTDT	Reset Data Toggle Bit Set to automatically clear the data toggle sequence: For OUT endpoint: the next received packet will have the data toggle 0. For IN endpoint: the next packet to be sent will have the data toggle 0. Cleared by hardware instantaneously. The firmware does not have to wait that the bit is cleared. Clearing by software has no effect.
2	EPNUMS	Endpoint Number Select Bit Set to configure the EPNUM used by the DFC. Clear to select the EPNUM used by the CPU.
1	DFCRDY	DFC Ready Bit Set to resume/enable the DFC interface. Clear to pause the DFC interface.

Bit Number	Bit Mnemonic	Description
0	EPEN	Endpoint Enable Bit Set to enable the endpoint according to the device configuration. Endpoint 0 shall always be enabled after a hardware or USB reset and participate in the device configuration. Clear this bit to disable the endpoint. See Section "Endpoint Activation" for more details.

Reset Value $=0000$ 0000b

Table 122. UECFGOX Register
UECFGOX (1.CCh) - USB Endpoint Configuration 0 Register

7	6	5	4	3	2	1	0
EPTYPE1:0		-		ISOSW	AUTOSW	NYETDIS	EPDIR
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-6	EPTYPE1:0	Endpoint Type Bits Set this bit according to the endpoint configuration: 00b: Control 10b: Bulk 01b: Isochronous 11b: Interrupt					
5-4	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
3	ISOSW	Isochronous Switch Bit Set to automatically switch banks on each SOF. Clear to disable the automatic bank switching on each SOF. See Section "Isochronous Mode" for more details.					
2	AUTOSW	Automatic Switch Bit Set to automatically switch bank when it is ready. Clear to disable the automatic bank switching. See Section "OUT Endpoint Management" and Section "IN Endpoint Management" for more details.					
1	NYETDIS	Not Yet Disable Bit Set to automatically send a "ACK" handshake instead of "Not Yet" handshake. Thus, the host will not have to "ping" for the next packet. Clear to automatically send "Not Yet" handshake. Thus, the host will have to "ping" for the next packet.					
0	EPDIR	Endpoint Direction Bit Set to configure an IN direction for bulk, interrupt or isochronous endpoints. Clear to configure an OUT direction for bulk, interrupt, isochronous or control endpoints.					

Reset Value $=0000$ 0000b

Table 123. UECFG1X Register
UECFG1X (1.CDh) - USB Endpoint Configuration 1 Register

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | EPSIZE2 | EPSIZE1 | EPSIZE0 | EPBK1 | EPBK | ALLOC | - |

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from these bits is always 0 . Do not set these bits.
6-4	EPSIZE2:0	Endpoint Size Bits Set this bit according to the endpoint size:
3-2	EPBK1:0	Endpoint Bank Bits Set this field according to the endpoint size: 00b: Single bank 01b: Double bank 1xb: Reserved. Do not use this configuration.
1	ALLOC	Endpoint Allocation Bit Set this bit to allocate the endpoint memory. Clear to free the endpoint memory. See Section "Endpoint Activation" for more details.
0	-	Reserved The value read from these bits is always 0 . Do not set these bits.

Reset Value $=0000$ 0000b

Table 124. UESTAOX Register
UESTAOX (1.CEh) - USB Endpoint Status 0 Register

7	6	5	4	3	2	1	0
CFGOK	OVERFI	UNDERFI	ZLPSEEN	DTSEQ1	DTSEQ0	NBUSYBK1	NBUSYBKO
Bit Number	Bit Mnemonic	Description					
7	CFGOK	Configuration Status Flag Set by hardware when the endpoint X size parameter (EPSIZE) and the bank parametrization (EPBK) are correct compared to the max FIFO capacity and the max number of allowed bank. This bit is updated when the bit ALLOC is set. If this bit is cleared, the user should reprogram the UECFG1X register with correct EPSIZE and EPBK values.					
6	OVERFI	Overflow Error Interrupt Flag Set by hardware when an overflow error occurs in an isochronous endpoint. An interrupt (EPINTx) is triggered (if enabled). See Section "Isochronous Mode" for more details. Shall be cleared by software. Setting by software has no effect.					
5	UNDERFI	Flow Error Interrupt Flag Set by hardware when an underflow error occurs in an isochronous endpoint. An interrupt (EPINTx) is triggered (if enabled). See Section "Isochronous Mode" for more details. Shall be cleared by software. Setting by software has no effect.					
4	ZLPSEEN	Zero Length Packet Seen (bit / Flag) Set by hardware, as soon as a ZLP has been filtered during a transfer. Shall be cleared by the software. Setting by software has no effect.					

Bit Number	Bit Mnemonic	Description
$3-2$	DTSEQ1:0	Data Toggle Sequencing Flag Set by hardware to indicate the PID data of the current bank: OOb: Data0 01b: Data1 1xb: Reserved. For OUT transfer, this value indicates the last data toggle received on the current bank. For IN transfer, it indicates the Toggle that will be used for the next packet to be sent. This is not relative to the current bank.
$1-0$	NBUSYBK1: 0	Busy Bank Flag Set by hardware to indicate the number of busy bank. For IN endpoint, it indicates the number of busy bank(s), filled by the user, ready for IN transfer. For OUT endpoint, it indicates the number of busy bank(s) filled by OUT transaction from the host. 00b: All banks are free 01b: 1 busy bank $10 \mathrm{~b}: 2$ busy banks $11 \mathrm{~b}:$ Reserved.

Reset Value $=0000$ 0000b

Table 125. UESTA1X Register
UESTA1X (1.CFh) - USB Endpoint Status 1 Register

7	6	5	4	3	2	1	0
-	-				CTRLDIR	CURRBK1	CURRBKO
Bit Number	Bit Mnemonic	Description					
7-3	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
2	CTRLDIR	Control Direction (Flag, and bit for debug purpose) Set by hardware after a SETUP packet, and gives the direction of the following packet: - 1 for IN endpoint - 0 for OUT endpoint. Can not be set or cleared by software.					
1-0	CURRBK1:0	Current Bank (all endpoints except Control endpoint) Flag Set by hardware to indicate the number of the current bank: 00b: Bank0 01b: Bank1 1xb: Reserved. Can not be set or cleared by software.					

Reset Value $=0000$ 0000b

Table 126. UEINTX Register (bit addressable)
UEINTX (1.C8h) - USB Endpoint Interrupt Register
$\mathbf{7}$

FIFOCON	NAKINI	RWAL	NAKOUTI	RXSTPI	RXOUTI	STALLI	TXINI

Bit Number	Bit Mnemonic	Fescription
7	FIFO Control Bit For OUT and SETUP Endpoint: Set by hardware when a new OUT message is stored in the current bank, at the same time than RXOUT or RXSTP. Clear to free the current bank and to switch to the following bank. Setting by software has no effect. For IN Endpoint: Set by hardware when the current bank is free, at the same time than TXIN. Clear to send the FIFO data and to switch the bank. Setting by software has no effect.	
6	NAKINI	NAK IN Received Interrupt Flag Set by hardware when a NAK handshake has been sent in response of a IN request from the host. This triggers an USB interrupt if NAKINE is sent. Shall be cleared by software. Setting by software has no effect.
5	RWAL	Read/Write Allowed Flag Set by hardware to signal: -for an IN endpoint: the current bank is not full i.e. the firmware can push data into the FIFO, -for an OUT endpoint: the current bank is not empty, i.e. the firmware can read data from the FIFO. The bit is never set if STALLRQ is set, or in case of error. Cleared by hardware otherwise. This bit shall not be used for the control endpoint.
2	RXOUTI/	
KILLBK		

Bit Number	Bit Mnemonic	Description
1	STALLI	Stall Interrupt Flag Set by hardware to signal that a STALL handshake has been sent, or that a CRC error has been detected in a OUT isochronous endpoint. Shall be cleared by software. Setting by software has no effect.
0	TXINI	Transmitter Ready Interrupt Flag Set by hardware to signal that the current bank is free and can be filled. An interrupt (EPINTx) is triggered (if enabled). Shall be cleared by software to acknowledge the interrupt. Setting by software has no effect. This bit is inactive (cleared) if the endpoint is an OUT endpoint.

Reset Value $=0000$ 0000b

Table 127. UEIENX Register
UEIENX (1.D2h) - USB Endpoint Interrupt Enable Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
FLERRE	NAKINE	-	NAKOUTE	RXSTPE	RXOUTE	STALLE	TXINE

$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description
7	FLERRE	Flow Error Interrupt Enable Flag Set to enable an endpoint interrupt (EPINTx) when OVERFI or UNDERFI are sent. Clear to disable an endpoint interrupt (EPINTx) when OVERFI or UNDERFI are sent.
6	NAKINE	NAK IN Interrupt Enable Bit Set to enable an endpoint interrupt (EPINTx) when NAKINI is set. Clear to disable an endpoint interrupt (EPINTx) when NAKINI is set.
5	-	Reserved The value read from these bits is always 0 . Do not set these bits.
4	NAKOUTE	NAK OUT Interrupt Enable Bit Set to enable an endpoint interrupt (EPINTx) when NAKOUTI is set. Clear to disable an endpoint interrupt (EPINTx) when NAKOUTI is set.
3	RXSTPE	Received SETUP Interrupt Enable Flag Set to enable an endpoint interrupt (EPINTx) when RXSTPI is sent. Clear to disable an endpoint interrupt (EPINTx) when RXSTPI is sent.
2	RXOUTE	Received OUT Data Interrupt Enable Flag Set to enable an endpoint interrupt (EPINTx) when RXOUTI is sent. Clear to disable an endpoint interrupt (EPINTx) when RXOUTI is sent.
1	STALLE	Stall Interrupt Enable Flag Set to enable an endpoint interrupt (EPINTx) when STALLI is sent. Clear to disable an endpoint interrupt (EPINTx) when STALLI is sent.
0	TXINE	Transmitter Ready Interrupt Enable Flag Set to enable an endpoint interrupt (EPINTx) when TXINI is sent. Clear to disable an endpoint interrupt (EPINTx) when TXINI is sent.

Reset Value $=00000000 \mathrm{~b}$

Table 128. UEDATX Register
UEDATX (1.D3h) - USB Endpoint Data Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
DAT7	DAT6	DAT5	DAT4	DAT3	DAT2	DAT1	DAT0

Bit Number	Bit Mnemonic	Description
$7-0$	DAT7:0	Data Bits Set by the software to read/write a byte from/to the endpoint FIFO selected by EPNUM.

Reset Value $=0000$ 0000b

Table 129. UEBCHX Register
UEBCHX (1.D4h) - USB Endpoint Byte Counter High Register

7	6	5	4	3	2	1	0
-	-	-	-	-	BYCT10	BYCT9	BYCT8
Bit Number	Bit Mnemonic	Description					
7-3	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
2-0	BYCT10:8	Byte count (high) Bits Set by hardware. This field is the MSB of the byte count of the FIFO endpoint. The LSB part is provided by the UEBCLX register.					

Reset Value $=00000000 \mathrm{~b}$

Table 130. UEBCLX Register
UEBCLX (1.D5h) - USB Endpoint Byte Counter Low Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
BYCT7	BYCT6	BYCT5	BYCT4	ВYCT3	BYCT2	BYCT1	BYCT0

Bit Number	Bit Mnemonic	Description
$7-0$	BYCT7:0	Byte Count (low) Bits Set by the hardware. BYCT10:0 is: - (for IN endpoint) increased after each writing into the endpoint and decremented after each byte sent, (for OUT endpoint) increased after each byte sent by the host, and decremented after each byte read by the software.

Reset Value $=0000$ 0000b

Table 131. UEINT Register
UEINT (1.D6h) - USB Endpoint Interrupt Register

-	EPINT6	EPINT5	EPINT4	EPINT3	EPINT2	EPINT1	EPINT0
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
6-0	EPINT6:0	Endpoint Interrupts Bits Set by hardware when an interrupt is triggered by the UEINTX register and if the corresponding endpoint interrupt enable bit is set. Cleared by hardware when the interrupt source is served.					

Reset Value $=00000000 \mathrm{~b}$.

USB Host Operating Modes

Pipe Description

Detach

Power-on and Reset

For the USB Host controller, the term of Pipe is used instead of Endpoint for the USB Device controller (see Figure 64). A Host Pipe corresponds to a Device Endpoint, as described in the USB specification.

Figure 64. Pipes and Endpoints in a USB system

In the USB host controller, a Pipe will be associated to a Device Endpoint, considering the Device Configuration Descriptors.

The reset value of the DETACH bit is 1 . Thus, the firmware has the responsibility of clearing this bit before switching to the Host mode (HOST set).

Figure 65 shows the USB host controller main states after power-on.
Figure 65. USB Host Controller Reset State Machine

USB host controller state after an hardware reset is 'Reset'. When the USB controller is enabled and the USB Host controller is selected, the USB controller is in 'Idle' state. In this state, the USB Host controller waits for the Device connection, with a minimum power consumption. The USB Pad should be in Idle mode. The macro does not need to have the PLL activated to enter in 'Host Ready' state.

The Host controller enters in Suspend state when the USB bus is in Suspend state, i.e. when the Host controller doesn't generate the Start of Frame. In this state, the USB consumption is minimum. The Host controller exits to the Suspend state when starting to generate the SOF over the USB line.

Device Detection

Pipe Selection

A Device is detected by the USB controller when the USB bus if different from D_{+}and D- low. In other words, when the USB Host Controller detects the Device pull-up on the D+ line. To enable this detection, the Host Controller has to provide the Vbus power supply to the Device.

The Device Disconnection is detected by the USB Host controller when the USB Idle correspond to D+ and D- low on the USB line.

Prior to any operation performed by the CPU, the Pipe must first be selected. This is done by:

- Clearing PNUMS.
- Setting PNUM with the Pipe number which will be managed by the CPU.

The CPU can then access to the various Pipe registers and data.
In the same manner, if the Pipe must be accessed by the DFC, it must first be selected. This is done by:

- Setting PNUMS.
- Setting PNUM with the Pipe number which will be managed by the DFC.
- Setting DFCRDY when the data-flow is ready to take place.

The DFC can then access to the banks (read / write).
The controller internally keeps in memory the PNUM for the CPU and the PNUM for the DFC. In fact, there are 2 PNUM registers multiplexed by the PNUMS bit. Each of them can be read or written by the CPU.
These two registers permits to easily switch from a Pipe under DFC data transfer to the default control Pipe when a SETUP has to be sent, without reprogramming the EPNUM register:

- Set PNUMS,
- PNUM = Pipe $_{\mathrm{x}}$
- Set DFCRDY when the DFC transfer is ready to take place,
- ...<DFC transfer>...
- SETUP required on Pipe ${ }_{0}$,
- Clear DFCRDY to freeze the DFC transfer,
- PNUMS cleared,
- $P N U M=P_{i p e}^{0}$
- Manage Pipe ${ }_{0}$ data
- Set DFCRDY. This resumes the DFC transfer.

Pipe Configuration

The following flow must be respected in order to activate a Pipe:
Figure 66. Pipe activation flow:

Once the Pipe is activated (EPEN set) and, the hardware is ready to send requests to the Device.

When configured (CFGOK = 1), only the Pipe Token (PTOKEN) and the polling interval for Interrupt pipe can be modified.
A Control type pipe supports only 1 bank. Any other value will lead to a configuration error (CFGOK = 0).
A clear of PEN will reset the configuration of the Pipe. All the corresponding Pipe registers are reset to there reset values. Please refers to the Memory Management chapter for more details.
Note: The firmware has to configure the Default Control Pipe with the following parameters:

- Type: Control
- Token: SETUP
- Data bank: 1
- Size: 64 Bytes

The firmware asks for 8 bytes of the Device Descriptor sending a GET_DESCRIPTOR request. These bytes contains the MaxPacketSize of the Device default control endpoint and the firmware re-configures the size of the Default Control Pipe with this size parameter.

Pipe Data Access

Control Pipe Management

The USB controller sends a USB Reset when the firmware set the RESET bit. The RSTI bit is set by hardware when the USB Reset has been sent. This triggers an interrupt if the RSTE has been set.

When a USB Reset has been sent, all the Pipe configuration and the memory allocation are reset. The General Host interrupt enable register is left unchanged.
If the bus was previously in suspend mode (SOFE $=0$), the USB controller automatically switches to the resume mode (HWUPI is set) and the SOFE bit is set by hardware in order to generate SOF immediately after the USB Reset.

Once the Device has answer to the first Host requests with the default address (0), the Host assigns a new address to the device. The Host controller has to send a USB reset to the device and perform a SET ADDRESS control request, with the new address to be used by the Device. This control request ended, the firmware write the new address into the UHADDR register. All following requests, on every Pipes, will be performed using this new address.
When the Host controller send a USB reset, the UHADDR register is reset by hardware and the following Host requests will be performed using the default address (0).

The Host Controller enters in Suspend mode when clearing the SOFE bit. No more Start Of Frame is sent on the USB bus and the USB Device enters in Suspend mode 3ms later.
The Device awakes the Host Controller by sending an Upstream Resume (Remote Wake-Up feature). The Host Controller detects a non-idle state on the USB bus and set the HWUPI bit. If the non-Idle correspond to an Upstream Resume (K state), the RXRSMI bit is set by hardware. The firmware has to generate a downstream resume within 1 ms and for at least 20 ms by setting the RESUME bit.
Once the downstream Resume has been generated, the SOFE bit is automatically set by hardware in order to generate SOF immediately after the USB resume.

The firmware can reset a Pipe using the pipe reset register. The configuration of the pipe and the data toggle remains unchanged. Only the bank management and the status bits are reset to their initial values.
To completely reset a Pipe, the firmware has to disable and then enable the pipe.
In order to read or to write into the Pipe Fifo, the CPU selects the Pipe number with the UPNUM register and performs read or write action on the UPDATX register.

A Control transaction is composed of 3 phases:

- SETUP
- Data (IN or OUT)
- Status (OUT or IN)

The firmware has to change the Token for each phase.
The initial data toggle is set for the corresponding token (ONLY for Control Pipe):

- SETUP: Data0
- OUT: Data1
- IN: Data1 (expected data toggle)

OUT Pipe Management

The Pipe must be configured and not frozen first.
Note: if the firmware decides to switch to suspend mode (clear SOFE) even if a bank is ready to be sent, the USB controller will automatically exit from Suspend mode and the bank will be sent.

"Manual" Mode

The TXOUT bit is set by hardware when the current bank becomes free. This triggers an interrupt if the TXOUTE bit is set. The FIFOCON bit is set at the same time. The CPU writes into the FIFO and clears the FIFOCON bit to allow the USB controller to send the data. If the OUT Pipe is composed of multiple banks, this also switches to the next data bank. The TXOUT and FIFOCON bits are automatically updated by hardware regarding the status of the next bank.

Example with 1 OUT data bank

Example with 2 OUT data banks

Example with 2 OUT data banks

"Autoswitch" Mode

IN Pipe management

"Manual" Mode

In this mode, the clear of the FIFOCON bit is performed automatically by hardware each time the Pipe bank is full. The firmware has to check if the next bank is empty or not before writing the next data. On TXOUT interrupt, the firmware fills a complete bank. A new interrupt will be generated each time the current bank becomes free.

The Pipe must be configured first.
When the Host requires data from the device, the firmware has to determine first the IN mode to use using the INMODE bit:

- \quad INMODE $=0$. The INRQX register is taken in account. The Host controller will perform (INRQX+1) IN requests on the selected Pipe before freezing the Pipe. This mode avoids to have extra IN requests on a Pipe.
- $\quad \operatorname{INMODE}=1$. The USB controller will perform infinite IN request until the firmware freezes the Pipe.
The IN request generation will start when the firmware clear the PFREEZE bit.
Each time the current bank is full, the RXIN and the FIFOCON bits are set. This triggers an interrupt if the RXINE bit is set. The firmware can acknowledge the USB interrupt by clearing the RXIN bit. The Firmware read the data and clear the FIFOCON bit in order to free the current bank. If the IN Pipe is composed of multiple banks, clearing the FIFOCON bit will switch to the next bank. The RXIN and FIFOCON bits are then updated by hardware in accordance with the status of the new bank.

Example with 2 IN data banks

"Autoswitch" Mode
In this mode, the clear of the FIFOCON bit is performed automatically by hardware each time the Pipe bank is empty. The firmware has to check if the next bank is empty or not before reading the next data. On RXIN interrupt, the firmware reads a complete bank. A new interrupt will be generated each time the current bank contains data to read.

The acknowledge of the RXIN interrupt is always performed by software.
CRC Error (isochronous only) A CRC error can occur during IN stage if the USB controller detects a bad received packet. In this situation, the STALLEDI/CRCERRI interrupt is triggered. This does not prevent the RXINI interrupt from being triggered.

Figure 67 shows all the host interrupts sources while Figure 68 details the pipe interrupt sources.

Figure 67. USB Host Controller Interrupt System

Figure 68. USB Host Controller Pipe Interrupt System

Registers

General USB Host Registers

Table 132. UHCON Register

JHCON (1.D9h) - USB Host General Control Register							
7	6	5	4	3	2	1	0
					RESUME	RESET	SOFE
Bit Number	Bit Mnemonic	Description					
7-3		Reserved The value read from these bits is always 0 . Do not set these bits.					
2	RESUME	Send USB Resume Set this bit to generate a USB Resume on the USB bus. Cleared by hardware when the USB Resume has been sent. Clearing by software has no effect.					
1	RESET	Send USB Reset Set this bit to generate a USB Reset on the USB bus. Cleared by hardware when the USB Reset has been sent. Clearing by software has no effect. Refer to the USB reset section for more details.					
0	SOFE	Start Of Frame Generation Enable Set this bit to generate SOF on the USB bus. Clear this bit to disable the SOF generation and to leave the USB bus in Idle state.					

Reset Value $=0000$ 0000b

Table 133. UHINT Register
UHINT (1.D8h) - USB Host General Interrupt Register

7	6	5	4	3	2	1	0
-	HWUP	HSOF	RXRSMI	RSMEDI	RSTI	DDISCI	DCONNI
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
6	HWUP	Host Wake-Up Interrupt Set by hardware when a non-idle state is detected on the USB bus. Shall be clear by software to acknowledge the interrupt. Setting by software has no effect.					
5	HSOFI	Host Start Of Frame Interrupt Set by hardware when a SOF is issued by the Host controller. This triggers a USB interrupt when HSOFE is set. Shall be cleared by software to acknowledge the interrupt. Setting by software has no effect.					

Bit Number	Bit Mnemonic	Description
4	RXRSMI	Upstream Resume Received Interrupt Set by hardware when an Upstream Resume has been received from the Device. Shall be cleared by software. Setting by software has no effect.
3	RSMEDI	Downstream Resume Sent Interrupt Set by hardware when a Downstream Resume has been sent to the Device. Shall be cleared by software. Setting by software has no effect.
2	RSTI	USB Reset Sent Interrupt Set by hardware when a USB Reset has been sent to the Device. Shall be cleared by software. Setting by software has no effect.
1	DDISCI	Device Disconnection Interrupt Set by hardware when the device has been removed from the USB bus. Shall be cleared by software. Setting by software has no effect.
0	DCONNI	Device Connection Interrupt Set by hardware when a new device has been connected to the USB bus. Shall be cleared by software. Setting by software has no effect.

Reset Value $=0000$ 0000b

Table 134. UHIEN Register
UHIEN (1.DAh) - USB Host General Interrupt Enable Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	HWUPE	HSOFE	RXRSME	RSMEDE	RSTE	DDISCE	DCONNE

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is always 0. Do not set this bit.
6	HWUPE	Host Wake-Up Interrupt Enable Set this bit to enable HWUP interrupt. Clear this bit to disable HWUP interrupt.
5	HSOFE	Host Start Of frame Interrupt Enable Set this bit to enable HSOF interrupt. Clear this bit to disable HSOF interrupt.
4	RXRSME	Upstream Resume Received Interrupt Enable Set this bit to enable the RXRSMI interrupt. Clear this bit to disable the RXRSMI interrupt.
3	RSMEDE	Downstream Resume Sent Interrupt Enable Set this bit to enable the RSMEDI interrupt. Clear this bit to disable the RSMEDI interrupt.
2	RSTE	USB Reset Sent Interrupt Enable Set this bit to enable the RSTI interrupt. Clear this bit to disable the RSTI interrupt.
1	DDISCE	Device Disconnection Interrupt Enable Set this bit to enable the DDISCI interrupt. Clear this bit to disable the DDISCI interrupt.

Bit Number	Bit Mnemonic	Description
0	DCONNE	Device Connection Interrupt Enable Set this bit to enable the DCONNI interrupt. Clear this bit to disable the DCONNI interrupt.

Reset Value $=0000$ 0000b

Table 135. UHADDR Register
UHADDR (1.DBh) - USB Host Address Register

7	6	5	4	3	2	1	0
-	HADDR6	HADDR5	HADDR4	HADDR3	HADDR2	HADDR1	HADDR0
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
6-0	HADDR6:0	USB Host Address These bits contains the address of the USB Device.					

Reset Value $=0000$ 0000b

Table 136. UHFNUMH Register
UHFNUMH (1.DCh) - USB Host Frame Number High Register

7	6	5	4	3	2	1	0
-	-	-	-	-	FNUM10	FNUM9	FNUM8
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-4	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
3-0	FNUM10:8	Frame Number The value contained in tis register is the current SOF number. This value can be modified by software.					

Reset Value $=0000$ 0000b

Table 137. UHFNUML Register
UHFNUML (1.DDh) - USB Host Frame Number Low Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
FNUM7	FNUM6	FNUM5	FNUM4	FNUM3	FNUM2	FNUM1	FNUM0

Bit Number	Bit Mnemonic	Description
$7-0$	FNUM7:0	Frame Number The value contained in tis register is the current SOF number. This value can be modified by software.

Reset Value $=0000$ 0000b

Table 138. UHFLEN Register
UHFLEN (1.DEh) - USB Host Frame Length Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
FLEN7	FLEN6	FLEN5	FLEN4	FLEN3	FLEN2	FLEN1	FLEN0
Bit Number	Bit Mnemonic	Description					
$7-0$	FLEN7:0	Frame Length The value contained					

Reset Value $=0000$ 0000b

USB Host Pipe Registers

Table 139. UPNUM Register
UPNUM (1.C9h) - USB Host Pipe Number Register

7	6	5	4	3	2	1	0
-	-	-			PNUM2	PNUM1	PNUM0
Bit Number	Bit Mnemonic	Description					
7-3	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
2-0	PNUM2:0	Pipe Number Select the pipe using this register. The USB Host registers ended by a X correspond then to this number. This number is used for the USB controller following the value of the PNUMD bit.					

Reset Value $=0000$ 0000b

Table 140. UPRST Register
UPRST (1.CAh) - USB Host Pipe Reset Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	P6RST	P5RST	P4RST	P3RST	P2RST	P1RST	P0RST

$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is always 0 . Do not set this bit
6	P6RST	Pipe 6 Reset Set this bit to 1 and reset this bit to 0 to reset the Pipe 6.
5	P5RST	Pipe 5 Reset Set this bit to 1 and reset this bit to 0 to reset the Pipe 5 .
4	P4RST	Pipe 4 Reset Set this bit to 1 and reset this bit to 0 to reset the Pipe 4.
3	P3RST	Pipe 3 Reset Set this bit to 1 and reset this bit to 0 to reset the Pipe 3.
2	P2RST	Pipe 2 Reset Set this bit to 1 and reset this bit to 0 to reset the Pipe 2.
1	P1RST	Pipe 1 Reset Set this bit to 1 and reset this bit to 0 to reset the Pipe 1 .
0	PORST	Pipe 0 Reset Set this bit to 1 and reset this bit to 0 to reset the Pipe 0 .

Reset Value $=0000$ 0000b

Table 141. UPCONX Register
UPCONX (1.CBh) - USB Host Pipe Control Register

7	6	5	4	3	2	1	0
-	PFREEZE	INMODE	AUTOSW	RSTDT	PNUM	DFCRDY	PEN
Bit Number	Bit Mnemonic	Description					
7		Reserved The value read from this bit is always 0 . Do not set this bit.					
6	PFREEZE	Pipe Freeze Set this bit to Freeze the Pipe requests generation. Clear this bit to enable the Pipe request generation. This bit is set by hardware when: - the pipe is not configured - a STALL handshake has been received on this Pipe - An error occurs on the Pipe (PERR =1) - (INRQ+1) In requests have been processed This bit is set at 1 by hardware after a Pipe reset or a Pipe enable.					

Bit Number	Bit Mnemonic	Description
5	INMODE	IN Request mode Set this bit to allow the USB controller to perform infinite IN requests when the Pipe is not frozen. Clear this bit to perform a pre-defined number of IN requests. This number is stored in the UINRQX register.
4	AUTOSW	Auto Switch Bank Set this bit to allow the auto switch bank mode for this Pipe. Clear this bit to otherwise.
3	RSTDT	Reset Data Toggle Set this bit to reset the Data Toggle to its initial value for the current Pipe. Cleared by hardware when proceed. Clearing by software has no effect.
2	PNUMS	Pipe Number Select Bit Set to configure the PNUM used by the DFC. Clear to configure the PNUM used by the CPU.
1	DFCRDY	DFC Ready Bit Set to resume/enable the DFC interface. Clear to pause the DFC interface.
0	PEN	Pipe Enable Set to enable the Pipe. Clear to disable and reset the Pipe.

Reset Value $=0000$ 0000b

Table 142. UPCFGOX Register
UPCFGOX (1.CCh) - USB Pipe Configuration 0 Register

7	6	5	4	3	2	1	0
PTYPE1	PTYPE0	PTOKEN1	PTOKEN0	PEPNUM3	PEPNUM2	PEPNUM1	PEPNUM0
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-6	PTYPE1:0	Pipe Type Select the type of the Pipe: - 00: Control - 01: Isochronous - 10: Bulk - 11: Interrupt					
5-4	PTOKEN1:0	Pipe Token Select the Token to associate to the Pipe: - 00: SETUP - 01: IN - 10: OUT - 11: reserved					
3-0	PEPNUM3:0	Pipe Endpoint Number Set this field according to the Pipe configuration. Set the number of the Endpoint targeted by the Pipe. This value is from 0 and 15 .					

Reset Value $=0000$ 0000b

Table 143. UPCFG1X Register
UPCFG1X (1.CDh) - USB Pipe Configuration 1 Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	PSIZE2	PSIZE1	PSIZE0	PBK1	PBK0	ALLOC	-

Bit Number	Bit Mnemonic	-
7		Reserved The value read from this bit is always 0. Do not set this bit.
$6-4$	PSIZE2:0	Pipe Size Select the size of the Pipe: $-000: 8$ $-001: 16$ $-010: 32$ $-011: 64$ $-100: 128$ $-101: 256$ $-110: 512$ $-111: 1024$
$3-2$	PBK1:0	Pipe Bank Select the number of bank to declare for the current Pipe. $-00: 1$ bank $-01: 2$ banks $-10:$ invalid $-11:$ invalid
1	ALLOC	Configure Pipe Memory Set to configure the pipe memory with the characteristics. Clear to update the memory allocation. Refer to the Memory Management chapter for more details.
0	-	Reserved The value read from these bits is always 0. Do not set these bits.

Reset Value $=00000000 \mathrm{~b}$

Table 144. UPCFG2X Register
UPCFG2X (1.CFh) - USB Pipe Configuration 2 Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
INTFRQ7	INTFRQ6	INTFRQ5	INTFRQ4	INTFRQ3	INTFRQ2	INTFRQ1	INTFRQ0

Bit Number	Bit Mnemonic	Description
$7-0$	INTFRQ7:0	Interrupt Pipe Request Frequency These bits are the maximum value in millisecond of the pulling period for an Interrupt Pipe. This value has no effect for a non-Interrupt Pipe.

Reset Value $=0000$ 0000b

Table 145. UPSTAX Register
UPSTAX (1.CEh) - USB Pipe Status Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
CFGOK	OVERFI	UNDERFI	-	DTSEQ1	DTSEQ0	NBUSYBK1	NBUSYBK0

$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description
7	CFGOK	Configure Pipe Memory OK Set by hardware if the required memory configuration has been successfully performed. Cleared by hardware when the pipe is disabled. The USB reset and the reset pipe have no effect on the configuration of the pipe.
6	OVERFI	Overflow Set by hardware when a the current Pipe has received more data than the maximum length of the current Pipe. An interrupt is triggered if the FLERRE bit is set. Shall be cleared by software. Setting by software has no effect.
5	UNDERFI	Underflow Set by hardware when a transaction underflow occurs in the current isochronous or interrupt Pipe. The Pipe can't send the data flow required by the device. A ZLP will be sent instead. An interrupt is triggered if the FLERRE bit is set. Shall be cleared by software. Setting by software has no effect. Note: the Host controller has to send a OUT packet, but the bank is empty. A ZLP will be sent and the UNDERFI bit is set underflow for interrupt Pipe:
4	-	Reserved The value read from this bit is always 0 . Do not set this bit.
3-2	DTSEQ1:0	Toggle Sequencing Flag Set by hardware to indicate the PID data of the current bank: 00bData0 01bData1 1xbReserved. For OUT Pipe, this value indicates the next data toggle that will be sent. This is not relative to the current bank. For IN Pipe, this value indicates the last data toggle received on the current bank.
1-0	$\begin{gathered} \text { NBUSYBK1: } \\ 0 \end{gathered}$	Busy Bank Flag Set by hardware to indicate the number of busy bank. For OUT Pipe, it indicates the number of busy bank(s), filled by the user, ready for OUT transfer. For IN Pipe, it indicates the number of busy bank(s) filled by IN transaction from the Device. 00bAll banks are free 01b1 busy bank 10b2 busy banks 11bReserved.

Reset Value $=0000$ 0000b

Table 146. UPINRQX Register
UPINRQX (1.DFh) - USB Pipe IN Number Of Request Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
INRQ7	INRQ6	INRQ5	INRQ4	INRQ3	INRQ2	INRQ1	INRQ0

Bit Number	Bit Mnemonic	Description
$7-0$	INRQ7:0	IN Request Number Before Freeze Enter the number of IN transactions before the USB controller freezes the pipe. The USB controller will perform (INRQ+1) IN requests before to freeze the Pipe. This counter is automatically decreased by 1 each time a IN request has been successfully performed.

Reset Value $=0000$ 0000b

Table 147. UPERRX Register
UPERRX (1.D7h) - USB Pipe Error Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	COUNTER1	COUNTER0	CRC16	TIMEOUT	PID	DATAPID	DATATGL

Bit Number	Bit Mnemonic	Description
$7-6$	-	Reserved The value read from these bits is always 0. Do not set these bits.
5	COUNTER1: 0	Error counter This counter is increased by the USB controller each time an error occurs on the Pipe. When this value reaches 3, the Pipe is automatically frozen. Clear these bits by software.
4	CRC16	CRC16 Error Set by hardware when a CRC16 error has been detected. Shall be cleared by software. Setting by software has no effect.
3	PID	Time-out Error Set by hardware when a time-out error has been detected. Shall be cleared by software. Setting by software has no effect.
2	PID Error Set by hardware when a PID error has been detected. Shall be cleared by software. Setting by software has no effect.	
1	DATAPID	Data PID Error Set by hardware when a data PID error has been detected. Shall be cleared by software. Setting by software has no effect.
0	DATATGL	Bad Data Toggle Set by hardware when a data toggle error has been detected. Shall be cleared by software. Setting by software has no effect.

Reset Value $=00000000 \mathrm{~b}$

Table 148. UPINTX Register
UPINTX (1.C8h) - USB Pipe Interrupt Register
$\mathbf{7}$

FIFOCON	NAKEDI	RWAL	PERRI	TXSTPI	TXOUTI	RXSTALLI	RXINI

$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description
7	FIFOCON	FIFO Control For OUT and SETUP Pipe: Set by hardware when the current bank is free, at the same time than TXOUT or TXSTP. Clear to send the FIFO data and to switch the bank. Setting by software has no effect. For IN Pipe: Set by hardware when a new IN message is stored in the current bank, at the same time than RXIN. Clear to free the current bank and to switch to the following bank. Setting by software has no effect.
6	NAKEDI	NAK Handshake received Set by hardware when a NAK has been received on the current bank of the Pipe. This triggers an interrupt if the NAKEDE bit is set in the UPIENX register. Shall be clear to handshake the interrupt. Setting by software has no effect.
5	RWAL	Read/Write Allowed OUT Pipe: Set by hardware when the firmware can write a new data into the Pipe FIFO. Cleared by hardware when the current Pipe FIFO is full. IN Pipe: Set by hardware when the firmware can read a new data into the Pipe FIFO. Cleared by hardware when the current Pipe FIFO is empty. This bit is also cleared by hardware when the RXSTALL or the PERR bit is set
4	PERRI	PIPE Error Set by hardware when an error occurs on the current bank of the Pipe. This triggers an interrupt if the PERRE bit is set in the UPIENX register. Refers to the UPERRX register to determine the source of the error. Automatically cleared by hardware when the error source bit is cleared.
3	TXSTPI	SETUP Bank ready Set by hardware when the current SETUP bank is free and can be filled. This triggers an interrupt if the TXSTPE bit is set in the UPIENX register. Shall be cleared to handshake the interrupt. Setting by software has no effect.
2	TXOUTI	OUT Bank ready Set by hardware when the current OUT bank is free and can be filled. This triggers an interrupt if the TXOUTE bit is set in the UPIENX register. Shall be cleared to handshake the interrupt. Setting by software has no effect.
1	RXSTALLI / CRCERR	STALL Received / Isochronous CRC Error Set by hardware when a STALL handshake has been received on the current bank of the Pipe. The Pipe is automatically frozen. This triggers an interrupt if the RXSTALLE bit is set in the UPIENX register. Shall be cleared to handshake the interrupt. Setting by software has no effect. For Isochronous Pipe: Set by hardware when a CRC error occurs on the current bank of the Pipe. This triggers an interrupt if the TXSTPE bit is set in the UPIENX register. Shall be cleared to handshake the interrupt. Setting by software has no effect.

Bit Number	Bit Mnemonic	Description
0	RXINI	IN Data received Set by hardware when a new USB message is stored in the current bank of the Pipe. This triggers an interrupt if the RXINE bit is set in the UPIENX register. Shall be cleared to handshake the interrupt. Setting by software has no effect.

Reset Value $=00000000 \mathrm{~b}$

Table 149. UPIENX Register
UPIENX (1.D2h) - USB Pipe Interrupt Enable Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
FLERRE	NAKEDE	-	PERRE	TXSTPE	TXOUTE	RXSTALLE	RXINE

Bit Number	Bit Mnemonic	FLERRE
7	Flow Error Interrupt enable Set to enable the OVERFI and UNDERFI interrupts. Clear to disable the OVERFI and UNDERFI interrupts.	
6	NAKEDE	NAK Handshake Received Interrupt Enable Set to enable the NAKEDI interrupt. Clear to disable the NAKEDI interrupt.
5	PERRE	Reserved The value read from this bit is always 0. Do not set this bit.
4	PIPE Error Interrupt Enable Set to enable the PERRI interrupt. Clear to disable the PERRI interrupt.	
3	TXSTPE	SETUP Bank ready Interrupt Enable Set to enable the TXSTPI interrupt. Clear to disable the TXSTPI interrupt.
2	OUT Bank ready Interrupt Enable Set to enable the TXOUTI interrupt. Clear to disable the TXOUTI interrupt.	
1	RXSTALLE	STALL Received Interrupt Enable Set to enable the RXSTALLI interrupt. Clear to disable the RXSTALLI interrupt.
0	IN Data received Interrupt Enable Set to enable the RXINI interrupt. Clear to disable the RXINI interrupt.	

Reset Value $=0000$ 0000b

Table 150. UPDATX Register
UPDATX (1.D3h) - USB Pipe Data Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$
PDAT7	PDAT6	PDAT5	PDAT4	PDAT3	PDAT2	PDAT1	PDAT0

Bit Number	Bit Mnemonic	Description
$7-0$	PDAT7:0	Pipe Data Bits Set by the software to read/write a byte from/to the Pipe FIFO selected by PNUM.

Reset Value $=0000$ 0000b

Table 151. UPBCHX Register
UPBCHX (1.D4h) - USB Pipe Data Counter High Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	
-	-	-	-	-	PBYCT10	PBYCT9	PBYCT8
Bit Number	Bit Mnemonic	Description					
$7-3$	-	Reserved The value read from these bits is always 0. Do not set these bits.					
$2-0$	PBYCT10:8	Byte count (high) Bits Set by hardware. This field is the MSB of the byte count of the FIFO endpoint. The LSB part is provided by the UPBCLX register.					

Reset Value $=0000$ 0000b

Table 152. UPBCLX Register
UPBCLX (1.D5h) - USB Pipe Data Counter Low Register

7	6	5	4	3	2	1	0
PBYCT7	PBYCT6	PBYCT5	PBYCT4	PBYCT3	PBYCT2	PBYCT1	PBYCTO
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-0	PBYCT7:0	Byte Count (low) Bits Set by the hardware. PBYCT10:0 is: - (for OUT Pipe) increased after each writing into the Pipe and decremented after each byte sent, - (for IN Pipe) increased after each byte received by the host, and decremented after each byte read by the software.					

[^1]Table 153. UPINT Register
UPINT (1.D6h) - USB Pipe IN Number Of Request Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	PINT6	PINT5	PINT4	PINT3	PINT2	PINT1	PINT0

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is always 0. Do not set this bit.
$6-0$	PINT6:0	Pipe Interrupts Bits Set by hardware when an interrupt is triggered by the UPINTX register and if the corresponding endpoint interrupt enable bit is set. Cleared by hardware when the interrupt source is served.

Reset Value $=0000$ 0000b

Audio Controller

Clock Generator

Audio Processor

The Audio Controller implemented in AT85C51SND3B derivatives is based on four functional blocks detailed in the following sections:

- The Clock Generator
- The Audio Processor
- The Audio Codec
- The Audio DAC Interface

Figure 69. Audio Controller Block Diagram

The clock generator generates the audio controller clocks based on the audio clock issued by the clock controller as detailed in Section "System Clock Generator", page 30. As shown in Figure 70, it contains an Audio Frequencies Generator able to generate the audio sampling and over-sampling frequencies fed by a normalized clock. This generator is based on a PLL and is entirely controlled by the audio processor depending on the encoded or decoded audio stream characteristics.

Figure 70. Audio Controller Clock Generator

The audio processor is based on three functional blocks as shown in Figure 71.

- The Audio Buffer
- The Digital Audio Processor
- The Baseband Processor

Figure 71. Audio Processor Block Diagram

Audio Buffer

Buffer Description

Buffer Management

The audio buffer receives the audio data flow coming from DFC or the C51. It is based on 1 Kbyte of dual-port RAM.

The audio buffer can be accessed in read or write mode by both C51 and DFC. Access selection is done by the ABACC bit in APCON1. Considering the DFC, two channels can be established at the same time one in which the audio processor is the source and one in which the audio processor is the destination. To achieve such scheme, the audio buffer can be configured using ABSPLIT in APCON1 as one (see Figure 72a) or two (see Figure 72b) buffers, each containing two data packets of 512 or 256 bytes size.

Figure 72. Audio Buffer Configuration

Internal read or write pointers can be reset at any time by setting respectively ABRPR and ABWPR bits in APCON1. These bits are automatically reset by hardware.

The C51 reads from or writes to the buffer through the APDAT register. Management is controlled by a couple of flags informing the user that data can be written to the buffer or read from the buffer depending on the current operation.
In case of write (audio stream decoding or codec firmware update) APREQI flag in APINT is set every time a data packet (256 or 512 bytes) can be written to the buffer i.e. buffer empty or half full. APREQI is cleared when the buffer becomes full.
In case of read (audio stream encoding) APRDYI flag in APINT is set every time a data packet (256 or 512 bytes) can be retrieved from the buffer i.e. buffer full or half full. APRDYI is cleared when the buffer becomes empty.
These flags can generate an interrupt when APREQE bit and APRDYE bit in APIEN are respectively set (see Section "Interrupts").

Digital Audio Processor

Processor Initialization

Processor Interface

Play Time

Audio Stream Interface

Baseband Processor

In order to avoid any spurious interrupts on the CPU side when a data transfer with the data flow controller is established, APREQE and APRDYE must be left cleared.

The digital audio processor is based on a proprietary digital signal processor. It provides capability to decode many digital audio formats like MP3, WMA, G726, RAW PCM... and to encode some digital audio formats like G726, RAW PCM...

Prior to enable the digital audio processor by setting the DAPEN bit in APCON $1{ }^{(1)}$, the C51 must load the processor codec firmware which is the stream decoder or encoder. This can be achieved by setting APLOAD ${ }^{(2)}$ bit in APCON1 and loading data using the C51 (through APDAT) or the DFC as detailed in the Section "Audio Buffer". As soon as the codec firmware is fully loaded, the digital audio processor can be enabled with the effect to start the codec execution. Then the audio stream type that can be decoded or encoded depends on the codec firmware loaded.
Note: 1. Clearing DAPEN bit resets the code writing pointer address to 0000 h .
2. Toggling APLOAD bit leaves the code writing pointer address unchanged.

The C51 interfacing the processor through 3 registers: APCON0 by using APCMD6:0 bits, APSTA and APINT by using APEVTI bit. APCMD field is used to send commands to the processor while APSTA and APEVTI are used by the processor to trigger an event or give a status to the C51. Command and status relies on the processor codec firmware and are beyond the scope of this document.

In order to allow time stamping in case of synchronized lyrics (karaoke mode), a 24-bit time stamp is provided by APTIM2:0 registers with APTIM2 being the MSB and APTIM0 being the LSB. Time unit is millisecond.
Getting the time value is done by reading first APTIM0, then APTIM1 and APTIM2. The counter value is latched during read sequence, avoiding bad reading if increment occurs.
Initializing the time value is done by writing first APTIM0, then APTIM1 and APTIM2. The counter is updated after writing last time stamp byte APTIM2.
Time value is automatically updated by the audio processor in case of fast forward/rewind operating mode. Time value is reset when operating mode switches from Stop to Play mode and frozen when in Pause mode.

Every codec firmwares (decoder or encoder) share a set of registers allowing to perform configuration and control and to get status from the decoding or encoding process. This set of registers is composed of ASCON, the audio stream control register and ASSTAO ASSTA1 and ASSTA2, the audio stream status registers. The content of these registers depends on the codec firmware loaded and are beyond the scope of this document.

Several digital baseband treatments can be applied to the digital audio signal immediately before internal or external D/A conversion:

- Digital volume control
- 3-bands equalizer
- Bass boost effect
- Virtual surround effect
- Mixing mode

The baseband processor is enabled by setting BPEN bit in AUCON. When disabled (BPEN bit cleared) all of the above treatments are disabled.

Digital Volume Control

Equalizer Volume Control

Bass Boost Effect

Virtual surround Effect

Equalizer Bar-Graph

The digital volume is controlled separately on right and left channel by setting the DVR4:0 and DVL4:0 bits respectively in APRDVOL and APLDVOL according to Table 154.

Table 154. Digital Volume Control Gain

DVx4:0	Gain Value	DVx4:0	Gain Value	DVx4:0	Gain Value
00000	+6 dB	01011	-16 dB	10110	-38 dB
00001	+4 dB	01100	-18 dB	10111	-40 dB
00010	+2 dB	01101	-20 dB	11000	-42 dB
00011	+0 dB	01110	-22 dB	11001	-44 dB
00100	-2 dB	01111	-24 dB	11010	-46 dB
00101	-4 dB	10000	-26 dB	11011	-48 dB
00110	-6 dB	10001	-28 dB	11100	-50 dB
00111	-8 dB	10010	-30 dB	11101	-52 dB
01000	-10 dB	10011	-32 dB	11110	-54 dB
01001	-12 dB	10100	-34 dB	11111	Mute ${ }^{(1)}$
01010	-14 dB	10101	-36 dB		

Note: 1. When DVR4:0 and DVL4:0 are set to mute, audio processor is still sending data to the audio codec or the audio interface with data set to the corresponding 0 value.

A 3-band equalizer control is provided for tone adjustment or predefined tone shapes like classic, jazz, rock...
The equalizer gain is controlled in each band by programing DVB4:0 in APBDVOL for the bass band, DVM4:0 in APMDVOL for the medium band and DVT4:0 in APTDVOL for the treble band according to Table 154. Cut frequencies are defined in Table 155.
In order to optimize the power consumption, the 3-band equalizer can be disabled by setting EQUDIS in AUCON. In this case the band gain control is saved but no filtering is applied.

Table 155. Equalizer Band Frequency

Band	Frequencies
Bass	$\mathrm{F}<750 \mathrm{~Hz}$
Medium	$750 \mathrm{~Hz}<\mathrm{F}<3300 \mathrm{~Hz}$
Treble	$\mathrm{F}>3300 \mathrm{~Hz}$

A bass boost effect can be established by setting BBOOST bit in AUCON. It consists in a gain increase of +6 dB in the frequency range under 200 Hz .

A virtual surround effect can be established by setting VSURND bit in AUCON. It consists in applying a spatial effect to sound on both right and left channels.

An 8-band bar-graph equalizer allows dynamic audio volume report inside 8 frequency bands. To read the level of each band, first select the band by setting the EQBS2:0 bits in APEBS from 000b (lowest frequency band) to 111b (highest frequency band) then get the 5 -bit band level by reading EQLEV4:0 bits in APELEV.

Mixing Mode

Signal Clipping

Interrupts

A mixing mode can be established by setting MIXEN bit in AUCON. It consists in mixing the ADC output coming from microphone or line-in inputs with the output coming from the audio processor before feeding the internal or external audio DAC.

When volume controls (global + equalizer + bass boost) leads to signal saturation, output signal is clipped and ACLIPI flag is set in APINT. In such case, strategy to reduce volume is under user's firmware responsibility. ACLIPI flag can generate an interrupt by setting ACLIPE bit in APIEN.

As shown in Figure 73, the audio processor interrupt request is generated by 8 different sources: the APREQI, APRDYI, ACLIPI and APGPI4:0 flags in APINT. Both sources can be enabled separately by using the APREQE, APRDYE, ACLIPE and APGPE4:0 bits in APIEN. A global enable of the audio processor interrupt is provided by setting the EAUP bit in IENO register.
The interrupt is requested each time one of the sources is asserted.
Figure 73. Audio Processor Interrupt System

Audio Codec

Audio Outputs
AT85C51SND3B1 \& AT85C51SND3B2

Anti-Pop Circuitry

Output Sources

Output Gain Control

The audio codec is controlled by four registers as detailed in Figure 74:
Figure 74. Audio Codec Block Diagram

The audio output system of AT85C51SND3B1 \& AT85C51SND3B2 is based on a pair of sigma-delta D/A converter used to convert the audio data with high linearity and high S / N. It is enabled by setting the AOEN bit in ACCON (see Table 178).
Audio input system features are detailed in the following sections.
In order to avoid any noise when enabling the audio output system an anti-pop circuitry has been implemented on the audio outputs (OUTR and OUTL). It consists in a discharge circuit controlled by AODIS bit in ACAUX (see Table 179) and a preload circuit controlled by AOPRE bit in ACAUX. Prior to enable the audio output system, user must take care to discharge then charge the audio outputs.

The audio output source can come from either the audio processor or the stereo lines Inputs sources. The selection of the source is done by setting or clearing the AOSSEL bit in ACCON according to Table 156.

Table 156. Audio Codec Output Source Selection

AOSSEL	Selection
0	Line Input (stereo)
1	Audio Processor (mono or stereo) ${ }^{(1)}$

Note: 1. Stereo or mono choice is done by the audio processor depending on the audio flow under decoding.

Analog volume is controlled separately on both channel by setting the AORG4:0 bits in ACORG for the right channel and the AOLG4:0 bits in ACOLG for the left channel. Table 157 shows the gain value versus the programmed AORG or AOLG value.

Table 157. Audio Codec Output Gain

AORG4:0 AOLG4:0	Gain Value	AORG4:0 AOLG4:0	Gain Value	AORG4:0 AOLG4:0	Gain Value	
00000	6 dB	00111	-8 dB	01110	-22 dB	
00001	4 dB	01000	-10 dB	01111	-24 dB	
00010	2 dB	01001	-12 dB	10000	-26 dB	
00011	0 dB	01010	-14 dB	10001	-28 dB	
00100	-2 dB	01011	-16 dB	10010	-30 dB	
00101	-4 dB	01100	-18 dB	≥ 10011	Mute	
00110	-6 dB	01101	-20 dB			

Output Drive Control

Audio Inputs

Inputs Sources

Audio Input Preamplifier Gain

Output buffers can operate in two modes depending on the power supply voltage. These are low impedance or high impedance modes. The low impedance mode is only available in high power supply configuration and allows to drive a typical 32Ω stereo headphone, while the high impedance mode is available in low or high voltage power supply configurations and allows to drive a typical $50 \mathrm{~K} \Omega$ stereo amplifier. Control is done by setting or clearing AODRV bit in ACCON according to Table 158.

Table 158. Audio Codec Output Drive Selection

AODRV	Drive Selection
0	Low/high voltage $50 \mathrm{~K} \Omega$ drive
1	High voltage 32Ω drive

The audio input system is based on a single sigma-delta A/D converter provided for mono recording. It is enabled by setting the AIEN bit in ACCON.
Audio input system features are detailed in the following sections.
The audio input source can come from either an electret type microphone input or the stereo lines inputs sources. The selection of the source is done by setting or clearing the AISSEL bit in ACCON according to Table 159. When line inputs are selected as audio input source, stereo channels are combined together in a mono signal prior to feed the preamplifier.

Table 159. Audio Codec Input Source Selection

AISSEL	Selection
0	Line Inputs
1	Microphone Input

The signals coming from audio inputs goes through a preamplifier to adapt levels prior to feed the A/D converter. The preamplifier gain is controlled by AIPG2:0 bits in ACIPG according to Table 160.

Table 160. Audio Codec Input Preamplifier Gain

AIPG2:0	Gain Value	AIPG2:0	Gain Value	AIPG2:0	Gain Value
000	0 dB	010	+12 dB	100	+24 dB

Line Inputs Preamplifier Gain

Microphone Bias

Audio DAC Interface

AIPG2:0	Gain Value	AIPG2:0	Gain Value	AIPG2:0	Gain Value
001	+6 dB	011	+18 dB	≥ 101	Reserved

In AT85C51SND3B1 \& AT85C51SND3B2, when Line Inputs are selected as output source (e.g. FM decoder playback) two preamplifier gain values can be applied by setting or clearing AILPG bit in ACIPG according to Table 161.

Table 161. Audio Codec Line Inputs Preamplifier Gain

AILPG	Gain Value
0	+6 dB
1	+12 dB

In addition, voltage supply function for an electret type microphone is integrated delivering High bias (1.5V) or low bias (2v) voltage. The high bias voltage output is only available in high power supply configuration, while the low bias voltage output is available in low or high voltage power supply configurations. Bias voltage output is selected by AMBSEL bit in ACCON according to Table 163 and is enabled by AMBEN bit in ACCON according to Table 162.

Table 162. Audio Codec Microphone Bias Control

AMBEN	Control
0	Microphone bias output disabled
1	Microphone bias output enabled

Table 163. Audio Codec Microphone Bias Voltage Selection

AMBSEL	Voltage Selection
0	high bias voltage 2 V output
1	Low bias voltage 1.5 V output

The C51 core interfaces to the audio DAC interface through two special function registers: ADICON0 and ADICON1, the Audio DAC Interface Control registers (see Table 183 and Table 184).
Figure 75 shows the audio interface block diagram where blocks are detailed in the following sections.

Figure 75. Audio DAC Interface Block Diagram

Clock Controller

Data Converter

As soon as audio DAC interface is enabled by setting ADIEN bit in ADICONO, the master clock generated by the clock generator (see Section "Clock Generator") is output on the OCLK pin which is the DAC over-sampling clock. The over-sampling ratio is defined by OVERS1:0 bits in ADICON0 according to Table 164 and is selected depending on the DAC capabilities.

Table 164. Audio DAC Interface Over-sampling Ratio

OVERS1:0	Over-sampling Ratio
00	Reserved
01	$128 \cdot \mathrm{~F}_{\mathrm{S}}$
10	$256 \cdot \mathrm{~F}_{\mathrm{S}}$
11	$384 \cdot \mathrm{~F}_{\mathrm{S}}$

For DAC compatibility, the bit clock frequency is programmable for outputting 16 bits or 32 bits per channel using the DSIZE bit in ADICONO (see Section "Data Converter", page 157), and the word selection signal (DSEL) is programmable for outputting left channel on low or high level according to CSPOL bit in ADICONO as shown in Figure 76.

Figure 76. DSEL Output Polarity

The data converter block converts the audio stream coming from the audio processor to a serial format. For accepting all PCM formats and I ${ }^{2}$ S format, JUST4:0 bits in ADICON1 register are used to shift the data output point. As shown in Figure 77, these bits allow MSB justification by setting JUST4:0 $=00000$, LSB justification by setting JUST4:0 $=$ $10000, I^{2}$ S Justification by setting JUST4:0 $=00001$, and more than 16 -bit LSB justification by filling the low significant bits with logic 0 .

Figure 77. Audio Output Format

 18-bit LSB Justified Format with DSIZE $=1$ and JUST4:0 $=01110$.

Registers

Table 165. AUCON Register
AUCON (1.F1h) - Audio Controller Control Register

| $\mathbf{7}$ | \mathbf{c} | | | | |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| BPEN | VSURND | BBOOST | MIXEN | EQUDIS | \mathbf{c} |
| Bit
 Number | Bit
 Mnemonic | - | Description | | |
| 7 | BPEN | Baseband Processor Enable Bit
 Set to enable the baseband processing.
 Clear to bypass the baseband processing and disable the baseband features. | | | |
| 6 | VSURND | Virtual Surround Enable Bit
 Set to enable the virtual surround effect.
 Clear to disable the virtual surround effect. | | | |
| 5 | BBOOST | Bass Boost Enable Bit
 Set to enable the bass boost effect.
 Clear to disable the bass boost effect. | | | |
| 4 | MIXEN | Mixing Enable Bit
 Set to enable mixing of ADC output with DAC output.
 Clear to disable mixing of ADC output with DAC output. | | | |
| 3 | EQUDIS | Equalizer Disable Bit
 Set to disable the 3-band equalizer.
 Clear to enable the 3-band equalizer. | | | |

Bit Number	Bit Mnemonic	Description
$2-1$	-	Reserved The value read from these bits is always 0. Do not set these bits.
0	ACCKEN	Audio Controller Clock Enable Bit Set to enable the Audio Controller Clock. Clear to disable the Audio Controller Clock.

Reset Value $=0000$ 0000b

Table 166. APCONO Register
APCON0 (1.F2h) - Audio Processor Control Register 0

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	\mathbf{c}	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
0	APCMD6	APCMD5	APCMD4	APCMD3	APCMD2	APCMD1	APCMD0
Bit Number	Bit Mnemonic	Description					
7	0	Always 0 The value read from this bit is always 0. Can not be set by software.					
$6-0$	APCMD6:0	Audio Processor Operating Command Bits Codec firmware dependant.					

Reset Value $=00000000 \mathrm{~b}$

Table 167. APCON1 Register
APCON1 (1.F3h) - Audio Processor Control Register 1

7	6	5	4	3	2	1	0
-	-	ABACC	ABWPR	ABRPR	ABSPLIT	APLOAD	DAPEN
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-5	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
5	ABACC	Audio Buffer Access Bit Set to enable buffer access by C51 core. Clear to enable buffer access by DFC.					
4	ABWPR	Audio Buffer Write Pointer Reset Bit Set to reset the audio buffer write pointer. Cleared by hardware when write pointer is reset. Can not be cleared by software.					
3	ABRPR	Audio Buffer Read Pointer Reset Bit Set to reset the audio buffer read pointer. Cleared by hardware when read pointer is reset. Can not be cleared by software.					
2	ABSPLIT	Audio Buffer Split Bit Set to configure the audio buffer as a double buffer. Clear to configure the audio buffer as a single buffer.					

Bit Number	Bit Mnemonic	Description
1	APLOAD	Audio Processor Load Enable Bit Set to enable audio processor codec code update. Clear to disable audio processor codec code update.
0	DAPEN	Digital Audio Processor Enable Bit Set to enable the digital audio processor. Clear to disable the digital audio processor.

Reset Value $=0000$ 0000b

Table 168. APSTA Register
APSTA (1.EAh) - Audio Processor Status Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
APSTAT7	APSTAT6	APSTAT5	APSTAT4	APSTAT3	APSTAT2	APSTAT1	APSTAT0

Bit Number	Bit Mnemonic	Description
$7-0$	APSTAT7:0	Audio Processor Status Byte Codec firmware dependant.

Reset Value $=0000$ 0000b

Table 169. APINT Register
APINT (1.F4h) - Audio Processor Interrupt Register

7	6	5	4	3	2	1	0
APGPI3	APGPI2	APGPI1	APGPIO	APEVTI	ACLIPI	APRDYI	APREQI
Bit Number	Bit Mnemonic	Description					
7-4	APGPI3:0	Audio Processor General Purpose Interrupt Flag Set by hardware to trigger a general purpose interrupt. Cleared by hardware after writing APCONO.					
3	APEVTI	Audio Processor Event Interrupt Flag Set by hardware to signal an event from the audio processor. Cleared by hardware after writing APCONO.					
2	ACLIPI	Audio Clipping Interrupt Flag Set by hardware when audio gain (digital volume or bass boost) leads to saturation. Cleared by hardware after writing APCONO.					
1	APRDYI	Audio Packet Ready Interrupt Flag Set by hardware when audio buffer has at least one data packet ready to be read (512 or 256 bytes depending on buffer configuration). Cleared by hardware when audio buffer is empty.					
0	APREQI	Audio Packet Request Interrupt Flag Set by hardware when audio buffer is able to receive one data packet (512 or 256 bytes depending on buffer configuration). Cleared by hardware when audio buffer is full.					

Reset Value $=00000000 \mathrm{~b}$

Table 170. APIEN Register
APIEN (1.E9h) - Audio Processor Interrupt Enable Register

7	6	5	4	3	2	1	0
APGPE3	APGPE2	APGPE1	APGPE0	APEVTE	ACLIPE	APRDYE	APREQE
$\begin{gathered} \hline \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-4	APGPE3:0	Audio Processor General Purpose Interrupt Enable Bits Set to enable the audio processor general purpose interrupt. Clear to disable the audio processor general purpose interrupt.					
3	APEVTE	Audio Processor Event Interrupt Enable Bit Set to enable the audio processor event interrupt. Clear to disable the audio processor event interrupt.					
2	ACLIPE	Audio Clipping Interrupt Enable Bit Set to enable the audio clipping interrupt. Clear to disable the audio clipping interrupt.					
1	APRDYE	Audio Packet Ready Interrupt Enable Bit Set to enable the audio packet ready interrupt. Clear to disable the audio packet ready interrupt.					
0	APREQE	Audio Packet Request Interrupt Enable Bit Set to enable the audio packet request interrupt. Clear to disable the audio packet request interrupt.					

Reset Value $=0000$ 0000b

Table 171. APTIMO Register
APTIM0 (2.C6h) - Audio Processor Timer Register 0

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
APT7	APT6	APT5	APT4	APT3	APT2	APT1	APT0
Bit Number	Bit Mnemonic	Description					
$7-0$	APT7:0	Audio Processor Timer Least Significant Byte.					

Reset Value $=0000$ 0000b
Table 172. APTIM1 Register
APTIM1 (2.C7h) - Audio Processor Timer Register 1

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
APT15	APT14	APT13	APT12	APT11	APT10	APT9	APT8

Bit Number	Bit Mnemonic	Description
$7-0$	APT15:8	Audio Processor Timer Intermediate Significant Byte.

Reset Value $=00000000 \mathrm{~b}$

Table 173. APTIM2 Register
APTIM2 (2.C9h) - Audio Processor Timer Register 2

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
APT23	APT22	APT21	APT20	APT19	APT18	APT17	APT16
Bit Number	Bit Mnemonic	Description					
$7-0$	APT23:16	Audio Processor Timer Most Significant Byte.					

Reset Value $=0000$ 0000b
Table 174. APRDVOL, APLDVOL Registers
APRDVOL, APLDVOL (2.F1h, 2.F2h) - Audio Processor Right, Left Digital Volume Registers

7	6	5	4	3	2	1	0
-	-	-	ADVOL4	ADVOL3	ADVOL2	ADVOL1	ADVOLO
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-5	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
4-0	ADVOL4:0	Digital Volume Refer to Table 154 for information on gain control values.					

Reset Value $=0000$ 0011b

Table 175. APBDVOL, APMDVOL, APTDVOL Registers
APBDVOL, APMDVOL, APTDVOL (2.F3h, 2.F4h, 2.F5h) - Audio Processor Bass, Medium, Treble Digital Volume Registers

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	\mathbf{c}	\mathbf{y}	\mathbf{c}	
-	-	-	ADVOL4	ADVOL3	ADVOL2	ADVOL1	ADVOLO
Bit Number	Bit Mnemonic	Description					
$7-5$	-	Reserved The value read from these bits is always 0. Do not set these bits.					
$4-0$	ADVOL4:0	Digital Volume Refer to Table 154 for information on gain control values.					

Reset Value $=0001$ 1111b
Table 176. APEBS Register APEBS (2.F6h) - Audio Processor Equalizer Band Select Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	-	-	-	0	EQBS2	EQBS1	EQBS0

Bit Number	Bit Mnemonic	Description
$7-4$	-	Reserved The value read from these bits is always 0. Do not set these bits.
3	0	Always Cleared This bit is permanently cleared by hardware to allow INC APEBS without affecting bits 7-4.
$2-0$	EQBS2:0	Equalizer Band Selection 000b: lowest frequency band to 111b highest frequency band.

Table 177. APELEV Register
APELEV (2.F7h) - Audio Processor Equalizer Level Status Register

7	6	5	4	3	2	1	0
-	-	-	EQLEV4	EQLEV3	EQLEV2	EQLEV1	EQLEV0
Bit Number	Bit Mnemonic	Description					
7-5	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
4-0	EQLEV4:0	Equalizer Audio Level 00000b: min. level to 11111b: max. level.					

Reset Value $=0000$ 0000b

Table 178. ACCON Register
ACCON (2.EAh) - Audio Codec Control Register

7	6	5	4	3	2	1	0
	AMBSEL	AMBEN	AISSEL	AIEN	AODRV -	AOSSEL -	AOEN -
Bit Number	Bit Mnemonic	Description					
7		Reserved The value read from this bit is always 0 . Do not set this bit.					
5	AMBSEL	Microphone Bias Select Bit Set to select 1.5 V bias output voltage in high or low voltage configuration. Clear to select 2 V bias output voltage in high voltage configuration.					
5	AMBEN	Microphone Bias Enable Bit Set to enable the microphone bias output. Clear to disable the microphone bias output.					
4	AISSEL	Audio Input Source Select Bit Set to select the microphone as input source. Clear to select the line inputs as input source.					
3	AIEN	Audio Input Enable Bit Set to enable the audio input system. Clear to disable the audio input system.					
2	AODRV	AT85C51SND3B1 and AT85C51SND3B2: Audio Output Drive Select Bit Set to select the 32Ω drive in high voltage configuration. Clear to select the $50 \mathrm{~K} \Omega$ drive in high or low voltage configuration. AT85C51SND3B0: Reserved The value read from this bit is always 0 . Do not set this bit.					
1	AOSSEL	AT85C51SND3B1 and AT85C51SND3B2: Audio Output Source Select Bit Set to select the audio processor as output source. Clear to select the line inputs as output source. AT85C51SND3B0: Reserved The value read from this bit is always 0 . Do not set this bit.					

Bit Number	Bit Mnemonic	Description
0	AOEN	AT85C51SND3B1 and AT85C51SND3B2: Audio Output Enable Bit Set to enable the audio output system. Clear to disable the audio output system. AT85C51SND3B0: Reserved The value read from this bit is always 0. Do not set this bit.

Reset Value $=0000$ 0000b

Table 179. ACAUX Register (AT85C51SND3B1 and AT85C51SND3B2 only)
ACAUX (2.E4h) - Audio Codec Auxiliary Register

7	6	5	4	3	2	1	0
-	-	-			-	AODIS	AOPRE
Bit Number	Bit Mnemonic	Description					
7-2	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
1	AODIS	Audio Output Discharge Bit Set to enable the audio output discharge mechanism. Clear to disable the audio output discharge mechanism.					
0	AOPRE	Audio Output Preload Bit Set to enable the audio output preload mechanism. Clear to disable the audio output preload mechanism.					

Reset Value $=0000$ 0000b

Table 180. ACORG Register (AT85C51SND3B1 and AT85C51SND3B2 only)
ACORG (2.EBh) - Audio Codec Right Output Gain Register

Reset Value $=00000000 \mathrm{~b}$

Table 181. ACOLG Register (AT85C51SND3B1 and AT85C51SND3B2 only) ACOLG (2.ECh) - Audio Codec Left Output Gain Register

$\mathbf{6}$	$\mathbf{6}$	$\mathbf{4}$	\mathbf{c}				
-	-	-	AOLG4	AOLG3	AOLG2	AOLG1	AOLG0
Bit Number	Bit Mnemonic	Description					
$7-5$	-	Reserved The value read from these bits is always 0. Do not set these bits.					
$4-0$	AOLG4:0	Audio Output Left Gain Refer to Table 157 for gain value.					

Reset Value $=0000$ 0000b

Table 182. ACIPG Register
ACIPG (2.EDh) - Audio Codec Input Preamplifier Gain Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	\mathbf{c}		
-	-	-	-	AILPG -	AIPG2	AIPG1
AIPG0						
Bit Number	Bit Mnemonic	Description				
$7-4$	-	Reserved The value read from these bits is always 0. Do not set these bits.				
3	AILPG	AT85C51SND3B1 and AT85C51SND3B2: Audio Input Line Preamplifier Gain Refer to Table 161 for gain value. AT85C51SND3B0: Reserved The value read from this bit is always 0. Do not set this bit.				
$2-0$	AIPG4:0	Audio Input Preamplifier Gain Refer to Table 160 for gain value.				

Reset Value $=0000$ 0000b
Table 183. ADICONO Register
ADICONO (2.EEh) - Audio DAC Interface Control Register 0

7	6	5	4	3	2	1	0
-	-	-	CSPOL	DSIZE	OVERS1	OVERSO	ADIEN
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-5	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
4	CSPOL	Channel Select DSEL Signal Output Polarity Bit Set to output the left channel on high level of DSEL output (PCM mode). Clear to output the left channel on the low level of DSEL output (1^{2} S mode).					
3	DSIZE	Audio Data Size Bit Set to select 32-bit data output format. Clear to select 16-bit data output format.					

Bit Number	Bit Mnemonic	Description
$1-2$	OVERS1:0	Audio Oversampling Ratio Bits Refer to Table 164 for bits description.
0	ADIEN	Audio DAC Interface Enable Bit Set to enable the audio DAC interface. Clear to disable the audio DAC interface.

Reset Value $=0000$ 0000b

Table 184. ADICON1 Register
ADICON1 (2.EFh) - Audio DAC Interface Control Register 1

Reset Value $=0000$ 1000b

Table 185. ASCON Register
ASCON (2.E1h) - Audio Stream Control Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
ASC7	ASC6	ASC5	ASC4	ASC3	ASC2	ASC1	ASC0
Bit Number	Bit Mnemonic	Description					
$7-0$	ASC7:0	Audio Stream Control Byte Bits content depends on the audio codec firmware.					

Reset Value $=0000$ 0000b

Table 186. ASSTAO Register
ASSTA0 (2.E2h) - Audio Stream Status Register 0

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
AS0S7	ASOS6	AS0S5	ASOS4	AS0S3	AS0S2	AS0S1	ASOS0

Bit Number	Bit Mnemonic	Description
$7-0$	ASOS7:0	Audio Stream Status Byte 0 Bits content depends on the audio codec firmware.

Reset Value $=0000$ 0000b

Table 187. ASSTA1 Register
ASSTA1 (2.E3h) - Audio Stream Status Register 1

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
AS1S7	AS1S6	AS1S5	AS1S4	AS1S3	AS1S2	AS1S1	AS1S0
Bit Number	Bit Mnemonic	Description					
$7-0$	AS1S7:0	Audio Stream Status Byte 1 Bits content depends on the audio codec firmware.					

Reset Value $=0000$ 0000b

Table 188. ASSTA2 Register
ASSTA2 (2.E9h) - Audio Stream Status Register 2

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
AS2S7	AS2S6	AS2S5	AS2S4	AS2S3	AS2S2	AS2S1	AS2S0
Bit Number	Bit Mnemonic	Description					
$7-0$	AS2S7:0	Audio Stream Status Byte 2 Bits content depends on the audio codec firmware.					

Reset Value $=0000$ 0000b

Nand Flash Controller

The AT85C51SND3B derivatives implement a hardware Nand Flash Controller (NFC) embedding the following features:

- Up to 4 Nand Flash (NF) memories
- SMC/XD support with up to 3 NF memories
- 512-byte, 1024-byte, 2048-byte page size support (provision for up to 8192-byte page size)
- Hardware ECC support
- High speed: up to 35 ns cycle time NF support
- Two separated secured memory segments:
- application segment for user codes, audio codec codes, fonts, screens...
- mass storage segment for FAT formatting
- Hardware write protection management for application code segment
- Very high data transfer rate in read and write using DFC interface
- Proprietary wear-levelling support with extremely reduced CPU load

As shown in Figure 78 the NFC architecture is based on six hardware units:

- The Clock unit
- The Control unit
- The Data unit
- The Security unit
- The Card Unit
- The Interrupt unit

These units are detailed in the following sections.
Figure 78. NFC Controller Block Diagram

Figure 79. Nand Flash Connection

Clock Unit

Control Unit

Configuration Descriptor

The NFC clock is generated based on the clock generator as detailed in Section "DFC/NFC Clock Generator", page 31. As soon as NFEN bit in NFCON is set, the NFC controller receives its system clock and can then be configured.

The Control unit configures the NFC and gives the user all the flexibility to interface the NF devices. All the flash commands must be produced by the software, and the NFC just sends to the Flash basic operations such as "read Id", "write a byte", "erase a block", ...

Prior to any operation, the NFC must be configured with static information concerning the NF devices connected to the product as well as other important information relevant to the desired behavior. The configuration is done by writing a descriptor byte by byte in the NFCFG register. The NF descriptor is composed of eight bytes (detailed in Table 189). The first byte written is byte 0 .
After writing a descriptor, a new one can be written to the NFC.
Table 189. Configuration Descriptor Content

Byte Offset	Byte Mnemonic	Description
0	NFPGCFG	NF Device Page Configuration Register Refer to Table 190 for register content organization.
1	SMPGCFG	SMC Device Page Configuration Register Refer to Table 190 for register content organization.
2	SCFG1	Sub Configuration Register 1 Refer to Table 191 for register content organization.
3	SCFG2	Sub Configuration Register 2 Refer to Table 192 for register content organization.
4	FPBH	NF Device First Protected Block Address Registers First address block of protected area. Refer to Section "Write Protection" for detailed information. Reset Value is 0000 0000b, 0000 0000b.
5	FPBL	NF Device Last Protected Block Address Registers First address block of protected area. Refer to Section "Write Protection" for detailed information. Reset Value is 0000 0000b, 0000 0000b.
6	LPBL	
7		

Table 190. NFPGCFG / SMPGCFG Registers
NFPGCFG / SMPGCFG - NF / SMC Device Page Configuration Registers

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$		
NDB3	NDB2	NDB1	NDB0	NDB4	-	-	-
Bit Number	Bit Mnemonic	Description					
$7-3$	NDB4:0	Page Data Number Number of data bytes in a page (unit is 512 bytes).					
$2-0$	-	Reserved The value read from these bits is always 0. Do not set these bits.					

Reset Value $=0000$ 0000b

Table 191. SCFG1 Register
SCFG1 - Sub Configuration Register 1

7	6	5	4	3	2	1	0
-	NUMDEV1	NUMDEVO	PDEV3	PDEV2	PDEV1	PDEVO	SMCEN
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
6-5	NUMDEV1:0	Nand Flash Device Number Write the number of devices connected (SMC/XD included) minus 1.					
4-1	PDEV3:0	Protected Device Configuration Bits Refer to Table 199 for more details.					
0	SMCEN	SmartMedia/XD Card Enable Bit Set to enable SMC support. Clear to disable SMC support.					

Reset Value $=0001$ 1110b

Table 192. SCFG2 Register
SCFG2 - Sub Configuration Register 2

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	-	-	-	-	-	BSIZE1	BSIZE0
Bit Number	Bit Mnemonic	Description					
$7-2$	-	Reserved The value read from these bits is always 0. Do not set these bits.					

Bit Number	Bit Mnemonic	Description
		Block Size Bits Write following value to specify the number of pages per block. This information is needed by the controller for the block protection management. $1-0$
	BSIZE1:0	$0: 32$ pages per block
0	$1: 64$ pages per block	
1	$0: 128$ pages per block	
1	$1: 256$ pages per block	

Reset Value $=0000$ 0000b

Specific Action

Device Selection

As soon as the NFC is configured, the NFC is 'idle', i.e. ready for operation and its running status flag NFRUN in NFSTA is cleared. The controller is ready to accept events, typically to prepare a page for read or write.

As long as the NFC remains in the running state (NFRUN flag set), any attempt to new event will lead to an ILLEGAL interrupt.

Here is the list of the possible events:
Writing in the NFACT register as detailed in Table 193 launches a specific action:

- select a device,
- begin a read data transfer (thus the spare zone will be checked),
- begin a write data transfer (thus the spare zone will be set),
- stop a data transfer before the end of a page,
- force CE low.

Table 193. Action Decoding

EXT1:0		ACT2:0			Launched Action
x	x	0	0	0	No action
DEV		0	0	1	Device selection. The device number is selected by EXT.
x	x	0	1	0	Read session.
x	x	0	1	1	Write session.
x	CELOW	1	0	0	Selected $\overline{\text { NFCE }}$ signal assertion.
x	x	1	0	1	Data transfer stop.
A9	A8	1	1	0	Column address extension.
x	x	1	1	1	Reserved for future use.

This command selects the device which will receive the next incoming events. The device number is memorized until a new device selection action is performed.

DEV is the device number. SMC shall always be connected on device 3. Table 194 summarizes the possible configurations: if DEV is a device that does not comply with the configuration allowed, an illegal interrupt is triggered.

Table 194. Device Selection Allowed Configuration

SMCEN	NUMDEV	Allowed DEV	Comment
0	0	0	
	1	0, 1	
	2	0, 1, 2	
	3	0, 1, 2, 3	
1	0	3 (SMC)	No NF memory is selected
	1	3 (SMC), 0	
	2	3 (SMC), 0, 1	The $\overline{\text { SMLCK }}$ signal can not be used in this configuration, the SMLCK bit is irrelevant.
	3	3 (SMC), 0, 1, 2	Neither $\overline{\text { SMLCK }}$ nor $\overline{\text { SMINS }}$ signals can be used in this configuration. SMCD and SMLCK bits have an irrelevant value. SMCTE shall be cleared.

"Read" Session
"Write" Session

$\overline{N F C E}$ Signal Force Low

Data Transfer Stop

Column Address Extension

A "read" session is launched and the DFC flow control is enabled. When processing the spare zone, its information will be checked.

A "write" session is launched and the DFC flow control is enabled. When processing the spare zone, its information will be set.

The 512B-pages memories need to keep asserted the $\overline{\text { NFCE }}$ line during the access time of a data. This can be done by setting the CELOW bit. In this case, the NFCEx signal selected by the last 'device select' action is asserted (NFCE[DEV]= L).
If a new 'device select' action occurs while the CELOW bit is set, the $\overline{\text { NFCEx }}$ signal of the old selected device is de-asserted ($\overline{\mathrm{NFCE}}[\mathrm{OLD}$ _DEV] $=\mathrm{H}$), and the $\overline{\mathrm{NFCEx}}$ signal of the new one is asserted ($\overline{\text { FFCE }}[\mathrm{NEW}$ _DEV] $=\mathrm{L}$).
Clearing the CELOW bit does not force the $\overline{\text { NFCE }}$ signal high:

- The $\overline{\text { NFCE }}$ signal is automatically asserted at the beginning of the execution of any new commands.
- The $\overline{\text { NFCE }}$ signal is automatically de-asserted at the completion of the commands.

This action stops the NFC when the data transfer is finished. In this case, the controller state becomes "not running" (NFRUN bit cleared). This can also be used as an abort signal in streaming mode.

The 512B-pages memories have different kind of read commands (00h, 01h, 50h) depending the data zone that need to be processed (1st half, 2nd half or spare). The column address given is relative to the zone chosen by the read command. The NFC needs to have the absolute column address to stop automatically at the end of the page. The column address extension is given thanks to that command. A9:8 holds the address extension.

- 00 h selects the 1 st half zone, i.e. the $0-255$ range in the data zone. This is the default value. A read or a write in NFADC resets A9:8 to 00h.
- 01 h selects the 2 nd half zone, i.e. the 256-511 range in the data zone.
- 10 h selects the spare zone, i.e. the 512-527 range in the data zone.

Note that it is not possible to reset A9:8 after each command (write in NFCMD): the device status read command is used after opening a page (for read) to poll the busy status.

Command Sending

Address Sending

Writing a command in NFCMD generates the following cycles:
Assembly code: mov direct, \#

A write in that register re-initializes the ECC engine and the ECC FIFO. A read in that register returns an unexpected value.

Writing an address in NFADC (column address) or NFADR (row address) generates the following cycles:

Assembly code: mov direct, \#

Address

The NFADC register is used to select the column address. The NFC uses that information to build an internal byte counter in the page, thus allowing it to stop at the end of the page. 512B NF memories (NDB=1) have 1 column cycle. Other NF memories have 2 column cycles.

The NFADR register is used to select the raw address, i.e. the page address. The NFC uses that information to verify if the block is protected or not.

Both kind of information are reset after a read of a write of the NFCMD register. A read in NFADC or NFADR returns an unexpected value.

Data Reading/Writing

The NFDAT and NFDATF registers allow reading or writing of a byte without the use of the DFC as detailed in the Section "Data Unit". It launches an immediate read or write NF cycle, depending if the software reads or writes in those registers.
Note: The ECC is also computed when byte are read or written via NFDAT or NFDATF.

- A write in NFDAT or NFDATF will produce an immediate "write cycle" (the NF signals will be asserted accordingly) to store the byte given by the CPU.
Assembly code: mov direct, \#

Write data

- A read of NFDATF or NFADC returns to the CPU the byte contained in that register and launches in background a new "read cycle" (the NF signals will be asserted accordingly). Once the "read cycle" is completed, the byte is held in the NFDAT and NFDATF or NFADC registers. (The NFC stays in the running state (NFRUN set) as long as the "read cycle" is not performed).
Note: The NFADC register is particularly suitable to read and poll the nand flash(es) status register.
Depending on the Nand Flash manufacturer, read cycle waveform may differ on the $\overline{\text { NFRE }}$ pulse width parameter. In order to be compliant with all memories, $\overline{\text { NFRE }}$ read pulse width can be programmed using TRS bit in NFCON according to Table 195.

Table 195. Read Cycle Configuration

TRS	Description
0	$\left[\begin{array}{l}{[1.5 ; 0.5] \text { Cycle }} \\ \text { NFRE asserted during } 1.5 \text { clock period and deasserted during } 0.5 \text { clock period. }\end{array}\right.$
	$[1.0 ; 1.0]$ Cycle NFRE asserted during 1 clock period and deasserted during 1 clock period.

Assembly code: mov \#, direct

Read data, TRS cleared CPU: 40 ns setup, timing [1.5; 0.5]
[15;30] ns hold

Read data, TRS set
CPU: 40 ns setup Timing [1; 1] [15;30] ns hold

- A read of NFDAT returns to the CPU the byte contained in that register, but does not launch an extra background "read cycle".

Assembly code: mov \#, direct
In all the previous examples, the NFCE line is asserted low and de-asserted at the end of the cycle. This allows minimizing the power consumption.

Figure 80 shows a read access in a 512B page. Note that the $\overline{\text { NFCE }}$ must be held low during the access time for that kind of memory:

Figure 80. Nand Flash Read Example

Legend:

- "ifc CPU" illustrates the commands given by the CPU to the NFC.
- "auto" illustrates the actions automatically launched by the NFC.
- "ready" is the flow control line between the DFC macro and the NFC interface.
- "BUSYD" is the busy state of the device D.
- " P " is the Polling action.

Data Unit

Data and Spare Zone

Spare Zone Content
The Data Unit works closely to the DFC and is responsible of all the data transfer between the NF memories and on-chip memories (USB, SRAM, ...).

For management convenience, the controller is mapping a memory page as some data and spare zones.
A 'data zone' is a data area composed of NDB contiguous bytes.
The 'spare zone' is located after the 'data zone' until the end of the page.
NDB is part of the configuration descriptor (see Table 190) and its use is described in the following examples:

- SMC page, "512B" NF page, "512B" XD card

A page is composed of 512 contiguous data bytes ($\mathrm{NDB}=1$), followed by a spare zone of 16 bytes.

- "2kB" NF page

A page is composed of 1024 contiguous data bytes (NDB=4), followed by a spare zone of 64 bytes.

The "16-byte" spare zone contains information as specified in Table 196.

Table 196. Spare Zone Content

Offset	Description
$0-1$	User Data Area. Shall be managed by software.
2	ECC Valid. Managed by NFC.
3	User Data Byte. Managed by NFC through NFUDAT register.
4	Data Status Flag. Shall be managed by software.
5	Block Status Flag. Shall be managed by software.
$6-7$	Logical Block Address. Managed by NFC through NFLOG register (see Section "Logical Block Address").
$8-10$	ECC Area-2. Managed by NFC.
$11-12$	Logical Block Address. Managed by NFC through NFLOG register (see Section "Logical Block Address").
$13-15$	ECC Area-1. Managed by NFC.

The bytes which are not managed by the NFC are written to FFh.
The spare zone is processed after the 'data zone'.
The NFC will initialize the byte at offset 3 with the byte contained in the NFUDAT register, and the 'Logical Block Address' (offsets 6-7, also duplicated at offsets 11-12) with the 2-bytes-descriptor stored in NFLOG (see Table 198, page 180 for more details).
Then the ECC is written at position 13,14 and 15 for the ECC group 1 (from data byte 0 to data byte 255), and at position 8, 9 and 10 for ECC group 2 (from data byte 256 to data byte 511).

The ECC used can detects 2 wrong bits or more, and correct one bit.
The NFC does only check (depending configuration explained in the next chapter) the ECC (ECC-1 and ECC-2).

The way the spare zone is handled depends on 3 bits: the SPZEN bit in NFCON which is the automatic management enable bit, the ECCEN which is the ECC management enable bit and the ECCRDYE bit which is the ECC ready interrupt enable bit. Table 197 summarizes the spare zone behavior according to those control bits. Following section give detail on the management modes.

Table 197. Spare Zone Management Modes

SPZEN	ECCEN	ECCRDYE	Description
0	0	X	Spare Zone Management Mode 1 The spare zone is not managed by the NFC.
1	1	0	Spare Zone Management Mode 2 The spare zone is entirely managed by the NFC.
X	1	1	Spare Zone Management Mode 3 The spare zone is not automatically managed by the NFC. However, an interrupt is triggered when the ECC FIFO is full, so after each 512 bytes processed. The user must program/verify the spare zone.

SPZEN	ECCEN	ECCRDYE	Description
0	1	0	Not Supported This configuration is reserved and must not be programmed.
1	0	X	Not Supported This configuration is reserved and must not be programmed.

Spare Zone Mode 1

Spare Zone Mode 2

Spare Zone Mode 3

The spare zone is not managed by the NFC. The data zone is contiguous.
The user sends the commands to prepare the page for read or write. The data flow starts when the READ or WRITE bits are set by the user (write in NFACT). The NFC did not manage the spare zone, and did not stop when the ECC FIFO is full. Thus, NFC stops when it reaches the end of the data zone, or when it receives a STOP action.

The spare zone is entirely managed by the NFC. The ECC is computed when the data flow starts. Each 256 bytes met, a 3-bytes ECC is built and stored in an ECC FIFO. When the ECC FIFO is full, the NFC stops the flow control to the DFC, and process the spare zone (ECC, logical value, parity... described later).
If the data flow stops before the end of the data zone, the user has the responsibility to stop the NFC and to program the spare zone.
The NFC will stop (idle mode) when it meet the end of the page. In this case, according to NECC, the controller will program/verify the appropriate spare zone(s). Let's take an example with 2 kB memories:

- if the flow starts from the beginning of the page, NECC is 4 and the 4 spare zones will be verified or checked
- if the flow starts at offset 512 , NECC is 3 and the 3 last spare zones of the page be verified or checked.
- etc.

Note that;

- For WRITE session, the byte at offset 2 is written to 0 (ECC valid) when the spare zone is written.
- For READ session, the ECC is verified only if the ECC is valid (byte at offset 2 is 0).

This mechanism ensures that the ECC is verified when it is valid.
This mode is particularly well suited for 512B and 2 kB memories. For other kind of memories, mode 3 is preferable.

The spare zone is not automatically managed by the NFC. The ECC is computed and stored in the ECC FIFO. When the ECC FIFO is full, the flow control is stopped and an interrupt is sent. The NFC returns to the idle state.
For 512B memories, the ECCRDYI interrupt is always triggered after 512 data bytes seen.
For 2kB memories and higher memories, the ECCRDYI interrupt is always triggered after 2048 data bytes seen.
The ECC engine is reset after a write in the NFCMD register. NECC gives the number of ECC in the FIFO.
Depending on the mapping of the page, the user have the possibility to:

- send the right events to program/verify the spare zone (reading the ECC FIFO). The READ or WRITE bits must be set (write in NFACT) to resume the data transfer, until the end of the page or an STOP action. The firmware shall also re-initialize the ECC FIFO by writing to NFECC.

Logical Block Address

End of Data Transfer

End of Transfer Closing

- read the ECC FIFO, (keeping the ECCs in memory), re-initialize it, resume the data transfer, and to write all the ECC bytes at the end of the page.

In order to automatically and properly fill the spare zone, the logical block address must be provided to the NFC. This is done by writing a 2-bytes descriptor byte by byte to the NFLOG register according to Table 198. The first byte written is byte 0 . The logical block addresses must be updated each time the data flow reaches the beginning of new logical blocks.

Table 198. Logical Block Address descriptor Content

Byte Offset	Byte Mnemonic	Description
0	LBAH	Logical Block Address (MSB).
1	LBAL	Logical Block Address (LSB).

Reset Value $=00000000 \mathrm{~b}$ for each byte.
In order to keep SMC compatibility, LBA will be organized as follow:
$\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & A & A & A \\ A & A & A & A & A & A & A & P\end{array}$
Header 00010b and parity "P" are handled by software. "A" represents the logical block address.

When the data transfer stops, an interrupt is sent by the DFC macro to the CPU. The CPU has then to stop the NFC macro by sending a STOP action. This action can also be considered as an abort signal in a streaming mode. A STOP action makes the NFC return cleanly to the idle state (NFRUN cleared): it does not stop a spare area processing.

When the NFC stops following a STOP action, in the case of a write session, the user must properly stop the page programming by copying old sectors to the new page. Moreover, the spare zone shall also be managed by the software.
To do this, the user needs to know where the NFC stopped: the NFBPH and NFBPL registers contain the byte position of the next data to be read or written. For example, it contains 0 after a reset, and 528 if the controller stops in a 512B page after the spare zone processing.
This register is incremented each time a byte is read through NFDATF or written through NFDAT or NFDATF, spare zone included.
A read of NFDAT or NFADC does not increment the NFBP counter.
The NFBP counter can be updated by software. Anyway, this shall be done in debug mode, and only when the NFC is not running.
Moreover, the NECC counter is updated when the controller reaches the end of the page. It gives the number of ECC that is ready to be written/updated. This feature shall be used when the flow does not start from the beginning of a page. For example, it contains 3 if the flow starts at offset 512 till the end of the page. In this situation, the three last ECC can be written/checked.

The Security Unit provides hardware mechanisms to protect NF content from any firmware crash and prevent data loss and provides data recovery capability through ECC management.

Write Protection

User Whole Memory Protection

Hardware Protected Area

The NFC provides a hardware mechanism to protect full or part of the memory against any spurious writing. This is achieved by using the NFWP signal and connecting it to the WP pins of the memories.
The $\overline{\text { NFWP }}$ signal is automatically asserted in the following conditions:

- The internal voltage is out of specified value (brown-out detection)
- An external reset has been applied to the device
- A watchdog reset has been triggered (bad code execution)
- A write or erase to the protected area has been triggered (bad code execution)

The user has the possibility to protect all the flash devices (NF and SMC) by asserting the external NFWP signal. This is achieved by clearing the NFWP bit in NFCON. All the memories are protected at the same time, i.e. NF and SMC if a SMC is present.

A user defined area in the memories (a certain amount of blocks) can be locked against writing or erasing. This is done by giving to the controller the first protected block (FPB) address, the last protected block address (LPB) and the device number to be locked (PDEV). All this information is part of the Configuration Descriptor. Table 199 summarizes which device is locked or not.

The protected area is practically used for user firmwares, codec firmwares, fonts and other configuration data.

Table 199. Protected Device versus PDEV Value

PDEV3	PDEV2	PDEV1	PDEV0	Description
0	0	0	0	No locked devices
x	x	x	1	The blocks [FPB; LPB] of NF device 0 are locked
x	x	1	x	The blocks [FPB; LPB] of NF device 1 are locked
x	1	x	x	The blocks [FPB; LPB] of NF device 2 are locked
1	x	x	x	The blocks [FPB; LPB] of NF device 3 (SMCEN=0) or of SMC (SMCEN=1) are locked

Then, if a device is protected, the following policy is applied:

- If FPB is lower than LPB, the protected area is a contiguous area starting from FPB to LPB.
- If FPB is higher than LPB, there are two protected areas: any block address that is below LPB and any block address that is above FPB.
- If FPB is equal to LPB, all the flash is protected. This is the default behavior.

Figure 81. Nand Flash Write Protection Scheme

Since the $\overline{\mathrm{NFWP}}$ signal state is part of the device status, the user can detect a fault be reading it.

ECC Error Management

When an ECC error is detected, the ECCERRI flag is set in NFINT and the 4-byte ECC error FIFO is updated. The FIFO content is read byte by byte using the NFERR register as detailed in Table 200.
First byte of the FIFO returns a status if the error can or can not be corrected. If it can no be corrected other 3-byte FIFO are cleared, If it can be corrected, the following 3 bytes return the address of the byte in error within the page (2 bytes) and the address of the bit in error within the byte (1 byte).
For example, if the byte read at offset 1921 (starting from 0) in a 2 K page is E3 (wrong) instead of A3:

- byte offset MSB will be 07h
- byte offset LSB will be 81 h
- bit offset will be 06h

Table 200. ECC Error Descriptor

Offset	Description
0	Error Identification Byte Refer to Table 201 for information on byte content.
1	First 256-byte group of the sector Byte offset
2	Second 256-byte group of the sector Byte offset
3	Bit offset in the byte Refer to Table 201 for information on byte content.

Table 201. ECC Error Identification Byte

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | SHERRID1 | SHERRID0 | FHERRID1 | FHERRID0 |

Bit Number	Bit Mnemonic	Description
$7-0$	0	Reserved The value read from these bits is always 0.
$3-2$	SHERRID1-0	Second Half Error Id Flag Id of the error in the second "256-byte" group of the sector. 1: Correctable error. 2: Not correctable error. 3: Not correctable error in the ECC. Anyway, the data is good.
$1-0$	FHERRID1-0	First Half Error Id Flag Id of the error in the first "256-byte" group of the sector. 1: Correctable error. 2: Not correctable error. 3: Not correctable error in the ECC. Anyway, the data is good.

Table 202. ECC ERror Identification Byte

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	\mathbf{c}	\mathbf{c}		
0	0	SHFB2	SHFB1	SHFB0	FHFB2	FHFB1	FHFB0
Bit Number	Bit Mnemonic	Description					
$7-6$	-	Reserved The value read from these bits is always 0.					
$5-3$	SHFB2:0	Second Half Fail Bit Flag					
$2-0$	FHFB2:0	First Half Fail Bit Flag					

Card Unit

Enable

Card Detect Input

Smartmedia or XD card management is enabled by setting SMCEN bit in SCFG1 register as detailed in Section "Configuration Descriptor" where specific configuration must also be set.

As shown in Figure 82 the SMINS (SMC/XD Card Detect) input implements an internal pull-up, in order to provide static high level when card is not present in the socket.
SMINS level is reported by SMCD bit ${ }^{(1)}$ in NFSTA.
As soon as SMC is enabled, all level modifications on SMINS input from H to L or from L to H (card insertion or removal) set SMCTI, the SM Card Toggle Interrupt flag in NFINT.
Note: 1. SMCD bit is not relevant until SMC management is enabled.
Figure 82. Card Detection Input Block Diagram

Card Lock Input

Interrupt Unit

As shown in Figure 83 the $\overline{\text { SMLCK (SMC/XD Lock) input implements an internal pull-up, }}$ in order to provide static high level when card is not present in the socket.

SMLCK level is reported by SMLCK bit ${ }^{(1)}$ in NFSTA register.
Note: 1. SDWP bit is not relevant until SMC management is enabled and a card is present in the socket $(S M C D=0)$.

Figure 83. Card Write Protection Input Block Diagram

As shown in Figure 84, the NF controller implements five interrupt sources reported in SMCTI, ILGLI, ECCRDYI, ECCERRI, STOPI flags in NFINT register. These flags must be cleared by software when processing the interrupt service routine.

All these sources are enabled separately using SMCTE, ILGLE, ECCRDYE, ECCERRE, STOPE enable bits respectively in NFIEN register.

The interrupt request is generated each time an enabled flag is set, and the global NFC controller interrupt enable bit is set (ENFC in IEN1 register).

Figure 84. NFC Controller Interrupt System

There are 2 kinds of interrupts: processing (i.e. their generation is part of the normal processing) and exception (i.e. their generation correspond to error cases).

Processing interrupts are generated when:

- running to not running state transition (STOPI)
- ECC ready for operation (ECCRDYI)
- SMC insertion or removal (SMCTI)

Exception Interrupts are generated when the following events are met:

- ECC error (ECCERRI)
- or illegal operation (ILGLI)
- Attempt to access a NF device which is not declared (e.g. DEV= 4 while NUMDEV=2)
- Write of events (NFDATF, NFDAT, NFCMD, NFADC, NFADR) while NFC is running ($\mathrm{NFRUN}=1$).
Note that writing in NFACT while NFC is running $(R U N=1)$ does not lead to an ILGLI interrupt.
As soon as an enabled interrupt is triggered, the NFC becomes not running (NFRUN=0).

Registers

Table 203. NFCFG Register

NFCFG (1.99h) - Nand Flash Controller Configuration Register							
7	6	5	4	3	2	1	0
NFGD7	NFGD6	NFGD5	NFGD4	NFGD3	NFGD2	NFGD1	NFGDO
$\begin{gathered} \hline \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-0	NFGD7:0	Nand Flash Configuration 8-byte Data FIFO Read Mode Reading from this register resets the FIFO manager. Write Mode Write 8 bytes of data to update the NFC configuration registers according to Table 189.					

Reset Value $=0000$ 0000b
Table 204. NFLOG Register
NFLOG (1.9Ah) - Nand Flash Controller Logical Block Address Register

7	6	5	4	3	2	1	0
NFLAD7	NFLAD6	NFLAD5	NFLAD4	NFLAD3	NFLAD2	NFLAD1	NFLAD0
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-0	NFLAD7:0	Nand Flash Logical Address 2-byte Data FIFO Read Mode Reading from this register resets the FIFO manager logical block address. Write Mode Write 2 bytes of data (MSB first) to update the NFC logical block address according to Table 198.					

Reset Value $=0000$ 0000b

Table 205. NFCON Register
NFCON (1.9Bh) - Nand Flash Controller Control Register

7	6	5	4	3	2	1	0
-	-		TRS	NFWP	SPZEN	ECCEN	NFEN
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-5	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
4	TRS	Timing Read Select Bit Set to use timing [1;1] for read cycle. Clear to use timing [1.5; 0.5] for read cycle.					
3	NFWP	Write Protect Bit Set to unprotect the flash devices ($\overline{\text { NFWP }}$ signal de-asserted). Clear to protect the flash devices ($\overline{\text { NFWP }}$ signal asserted).					
2	SPZEN	Spare Zone management enable Bit Set to enable the spare zone management Clear to disable the spare zone management.					
1	ECCEN	ECC management enable Bit Set to enable the ECC calculation. Clear to disable the ECC calculation.					
0	NFEN	General NFC Enable Bit Set to enable the NF controller. Clear to put the NFC is in the 'suspend' state.					

Table 206. NFERR Register
NFERR (1.9Ch) - Nand Flash Controller ECC Error Information Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
ERR7	ERR6	ERR5	ERR4	ERR3	ERR2	ERR1	ERR0
Bit	Bit Number	Mnemonic	Description				
$7-0$	ERR7:0	Error Descriptor 4-byte Data FIFO Sequential reading returns the 4-byte ECC error descriptor (see Table 200). This register is updated following an ECC error (ECCERRI set).					

Reset Value $=0000$ 0000b
Table 207. NFADR Register
NFADR (1.9Dh) - Nand Flash Controller Row Address Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	\mathbf{c}	$\mathbf{1}$
NFRAD7	NFRAD6	NFRAD5	NFRAD4	NFRAD3	NFRAD2	NFRAD1	NFRAD0
Bit Number	Bit Mnemonic	Description					
$7-0$	NFRAD7:0	Row Address Byte					

Reset Value $=0000$ 0000b

Table 208. NFADC Register
NFADC (1.9Eh) - Nand-Flash Controller Column Address Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
NFCAD7	NFCAD6	NFCAD5	NFCAD4	NFCAD3	NFCAD2	NFCAD1	NFCAD0
Bit Number	Bit Mnemonic	Description					
$7-0$	NFCAD7:0	Column Address Byte					

Reset Value $=0000$ 0000b
A read of that register returns an unexpected value.
Table 209. NFCMD Register
NFCMD (1.9Fh) - Nand-Flash Controller Command Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
CMD7	CMD6	CMD5	CMD4	CMD3	CMD2	CMD1	CMD0
Bit Number	Bit Mnemonic	Description					
$7-0$	CMD7:0	Command Data Byte					

Reset Value $=00000000 \mathrm{~b}$

Table 210. NFACT Register
NFACT (1.A1h) - Nand-Flash Controller Action Register

Reset Value $=0000$ 0000b

Table 211. NFDAT Register
NFDAT (1.A2h) - Nand-Flash Controller Data Access Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
DATD7	DATD6	DATD5	DATD4	DATD3	DATD2	DATD1	DATD0
Bit Number	Bit Mnemonic	Description					
$7-0$	DATD7:0	Data Byte Writing data sends a data to the currently selected NF. Reading data gets the data returned by the last read cycle.					

Reset Value $=0000$ 0000b

Table 212. NFDATF Register
NFDATF (1.A3h) - Nand-Flash Controller Data Access and Fetch Next Data Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
DATFD7	DATFD6	DATFD5	DATFD4	DATFD3	DATFD2	DATFD1
DATFD0						
Bit Number	Bit Mnemonic	Description				
$7-0$	DATFD7:0	Data Byte Writing data sends a data to the currently selected NF. Reading data gets the data returned by the last read cycle and relaunch a read cycle on the currently selected NF.				

Reset Value $=0000$ 0000b
Table 213. NFSTA Register
NFSTA (1.98h) - Nand Flash Controller Status Register

$\mathbf{7} \mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	\mathbf{c}				
SMCD	SMLCK	-	NFEOP	NECC2	NECC1	NECCO	NFRUN
Bit Number	Bit Mnemonic	Description					
7	SMCD	SmartMediaCard Detection Flag Set by hardware when the SMINS input is High. Cleared by hardware when the SMINS input is Low.					
6	SMLCK	SmartMedia Card Lock Flag Set by hardware when the SMC is write-protected. Cleared by hardware when the SMC is not write-protected.					
5	-	Reserved The value read from this bit is always 0. Do not set this bit.					
4	NFEOP	End Of Page Flag Set by hardware when the controller stops at the end of the page. Clear by hardware if the controller did not reach the end of the page.					
$3-1$	NECC2:0	Number of ECC Bits Set/clear by hardware. See Section "ECC Error Management" for more details.					

Bit Number	Bit Mnemonic	Description
0	NFRUN	Running Flag Set by hardware to signal that it is currently running. Cleared by hardware to signal it is not running.

Reset Value $=0000$ 0000b

Table 214. NFECC Register
NFECC (1.A4h) - Nand Flash Controller ECC 1 and ECC 2 Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
NFED7	NFED6	NFED5	NFED4	NFED3	NFED2	NFED1	NFED0
Bit Number	Bit Mnemonic	Description					
$7-0$	NFED7:0	Nand Flash ECC 6-byte Data FIFO Read Mode Sequential reading returns 2 ECC values of 3 bytes. Write Mode Writing any data resets the ECC engine and the FIFO manager.					

Reset Value $=0000$ 0000b
Table 215. NFINT Register
NFINT (1.A5h) - Nand Flash Controller Interrupt Register

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | SMCTI | ILGLI | ECCRDYI | ECCERRI | STOPI |

Bit Number	Bit Mnemonic	Description
$7-5$	-	Reserved The value read from these bits is always 0. . Do not set these bits.
4	SMCTI	SmartMedia Card Transition Interrupt Flag Set by hardware every time SMCD bit in NFSTA is toggling. Shall be cleared by software.
3	ILGLI	ILLEGAL operation Interrupt Flag Set by hardware when an illegal operation is performed. Shall be cleared by software.
2	ECCRDYI	ECC Ready Interrupt Flag Set by hardware when the ECCs (6 bytes) are ready for operation. This bit is set/clear even if the spare zone is automatically managed (ECCEN). Shall be cleared by software.
1	ECCERRI	ECC Error Interrupt Flag Set by hardware when a bad ECC is seen. Shall be cleared by software.
0	STOPI	Stop Interrupt Flag Set by hardware when a running (NFRUN= 1) to not running (NFRUN= 0) transition is met (end of page, end of data transfer, ...) Shall be cleared by software.

Table 216. NFIEN Register
NFIEN (1.A6h) - Nand Flash Controller Interrupt Enable Register

7	6	5	4	3	2	1	0
-	-	-	SMCTE	ILGLE	ECCRDYE	ECCERRE	STOPE
Bit Number	Bit Mnemonic	Description					
7-5	-	Reserved The value read from these bits is always 0 . Do not set these bits.					
4	SMCTE	SMC Transition Interrupt Enable Bit Set to enable the SMCTI interrupt. Clear to disable the SMCTI interrupt.					
3	ILGLE	Illegal Operation Interrupt Enable Bit Set to enable the ILGLI interrupt. Clear to disable the ILGLI interrupt.					
2	ECCRDYE	ECC Ready Interrupt Enable Bit Set to enable the ECCRDYI interrupt. Clear to disable the ECCRDYI interrupt					
1	ECCERRE	ECC Error Interrupt Enable Bit Set to enable the ECCERRI interrupt. Clear to disable the ECCERRI interrupt.					
0	STOPE	Stop Interrupt Enable Bit Set to enable the STOPI interrupt. Clear to disable the STOPI interruption.					

Reset Value $=0000$ 0000b
Table 217. NFUDAT Register
NFUDAT (1.A7h) - Nand Flash Controller User Data Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
NFUD7	NFUD6	NFUD5	NFUD4	NFUD3	NFUD2	NFUD1	NFUD0
Bit Number	Bit Mnemonic	Description					
$7-0$	NFUD7:0	Nand Flash User Data Byte User defined byte stored in byte position 3 of each spare zone.					

Reset Value $=0000$ 0000b

Table 218. NFBPH Register
NFUDAT (1.94h) - Nand Flash Controller Byte Position (MSB) Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
BP15	BP14	BP13	BP12	BP11	BP10	BP9	BP8
Bit Number	Bit Mnemonic	Description					
$7-0$	BP15:8	Nand Flash Position High Byte Most significant byte of the Byte Position counter.					

Reset Value $=0000$ 0000b

Table 219. NFBPL Register
NFUDAT (1.95h) - Nand Flash Controller Byte Position (LSB) Register

Reset Value $=0000$ 0000b

Clock Generator

Command Line Controller

The AT85C51SND3B derivatives implement a MMC/SD controller allowing connecting of MMC and SD cards in 1-bit or 4-bit modes. For MMC, 4-bit mode rely on the MMC Specification V4.0.
The MMC/SD controller interfaces to the C51 core through the following special function registers:
MMCONO, MMCON1, MMCON2, the three MMC control registers (see Table 222 to Table 224); MMBLP, the MMC Block Length register (see Table 225); MMSTA, the MMC status register (see Table 226); MMINT, the MMC interrupt register (see Table 227); MMMSK, the MMC interrupt mask register (see Table 228); MMCMD, the MMC command register (see Table 229); and MMDAT, the MMC data register (see Table 230).

As shown in Figure 85, the MMC controller is based on four functional blocks: the clock generator that handles the SDCLK (formally the MMC/SD CLK) output to the card, the command line controller that handles the SDCMD (formally the MMC/SD CMD) line traffic to or from the card, the data line controller that handles the SDDAT (formally the MMC/SD DAT) line traffic to or from the card, and the interrupt controller that handles the MMC controller interrupt sources. These blocks are detailed in the following sections.

Figure 86 shows the external components to add for connecting a MMC or a SD card to the AT85C51SND3B. SDDAT0 and SDCMD signals are connected to pull-up resistors. Value of these resistors is detailed in the Section "DC Characteristics", page 242.

Figure 85. MMC Controller Block Diagram

Figure 86. MMC Connection

The MMC clock is generated based on the clock generator as detailed in Section "MMC Clock Generator", page 32. As soon as MMCEN bit in MMCON2 is set, the MMC controller receives its system clock. The MMC command and data clock is generated on SDCLK output and sent to the command line and data line controllers.

As shown in Figure 87, the command line controller is divided in 2 channels: the command transmitter channel that handles the command transmission to the card through the SDCMD line and the command receiver channel that handles the response recep-
tion from the card through the SDCMD line. These channels are detailed in the following sections.

Figure 87. Command Line Controller Block Diagram

Command Transmitter
For sending a command to the card, the command index (1 Byte) and argument (4 Bytes) must be loaded in the command transmit FIFO using the MMCMD register. Before starting transmission by setting the TXCEN bit in MMCON1 register, software must first configure:

- RXCEN bit in MMCON1 register to indicate whether a response is expected or not.
- RFMT bit in MMCONO register to indicate the response size expected.
- CRCDIS bit in MMCONO register to indicate whether the CRC7 included in the response will be computed or not. In order to avoid CRC error, CRCDIS may be set for response that do not include CRC7.
Figure 88 summarizes the command transmission flow.
The TXCEN flag is set until the end of transmission. The end of the command transmission is signalled by the EOCI flag in MMINT register becoming set. This flag may generate an interrupt request as detailed in Section "Interrupt". The end of the command transmission also clears the TXCEN flag.

Command loading may be aborted by setting and clearing the CTPTR bit in MMCONO register which resets the write pointer to the transmit FIFO.

Figure 88. Command Transmission Flow

Command Receiver

The end of the response reception is signalled by the EORI flag in MMINT register. This flag may generate an interrupt request as detailed in Section "Interrupt". When this flag is set, 2 other flags (RXCEN in MMCON1 register and CRC7S in MMSTA register) give a status on the response received. RXCEN is cleared when the response format is correct or not: the size is the one expected (48 bits or 136 bits) and a valid End bit has been received, and CRC7S indicates if the CRC7 computation is correct or not. The Flag CRC7S is cleared when a command is sent to the card and updated when the response has been received.

Response reading may be aborted by setting and clearing the CRPTR bit in MMCONO register which resets the read pointer to the receive FIFO.

According to the MMC specification delay between a command and a response (formally N_{CR} parameter) can not exceed 64 MMC clock periods. To avoid any locking of the MMC controller when card does not send its response (e.g. physically removed from the bus), a time-out timer must be launched to recover from such situation. In case of time-out the command controller and its internal state machine may be reset by setting and clearing the CCR bit in MMCON2 register.

This time-out may be disarmed when receiving the response.

Data Line Controller

As shown in Figure 89, the data line controller is based on a 16-Byte FIFO used both by the data transmitter channel and by the data receiver channel.
Data transfer can be handled in transmission or received by the Data Flow Controller (see Section "Data Flow Controller", page 78) or by the C51 using MMDAT register.

Figure 89. Data Line Controller Block Diagram

Bus Width Control

FIFO Implementation

The data line controller supports the SD card and the new MMC 4.0 4-bit bus mode allowing higher transfer rate. The 4-bit bus width is controlled by software by setting the DBSIZE1:0 bits in MMCON2 register according to Table 220. In case of 1-bit bus width (card default), SDDAT0 is used as SDDAT line and SDDAT3:1 lines are released as I/O port.

Table 220. Data Bus Size

DBSIZE1:0	Bus Size
0	1-bit SDDAT0 data bus.
1	4-bit SDDAT3:0 data bus.
$2-3$	Reserved for future use, do not program these values.

The 16 -Byte FIFO is managed using 1 pointer and four flags indicating the status ready of whole or half FIFO.
Pointer value is not accessible by software but can be reset at any time by setting and clearing DPTRR bit in MMCON0 register. Resetting the pointer is equivalent to abort the writing or reading of data.
FIFO flags indicate when FIFO is ready to be read in receive mode or to be written in transmit mode. WFRI is set when 16 bytes are available in writing or reading. HFRI is set when 8 bytes are available. These flags are cleared when read. These flags may generate an interrupt request as detailed in Section "Interrupt". WFRS and HFRS give the status of the FIFO. They are set when respectively 16 bytes or 8 bytes are ready to be read or written depending on the receive or transmit mode.

Data Configuration

Data Transmitter

Configuration

DFC Data Loading

C51 Data Loading

Before sending or receiving any data, the data line controller must be configured according to the type of the data transfer considered. This is achieved using the Data Format bit: DFMT in MMCONO register. Clearing DFMT bit enables the data stream format while setting DFMT bit enables the data block format. In data block format, the single or multi-block mode must also be configured by clearing or setting the MBLOCK bit in MMCONO register and the block length in bytes using BLEN11:0 $0^{(1)}$ bits in MMCON1 and MMBLP according to Table 221. Figure 90 summarizes the data modes configuration flows. BLEN can have any value between 1 to 2048.

Table 221. Block Length Programming

Register	Description
MMBLP7:0	Block Size LSB: BLEN11:8
MMCON1.7:4	Block Size MSB (LSN): BLEN7:0

Note: 1. BLEN $=1$ to 2048
Figure 90. Data Controller Configuration Flows

For transmitting data to the card the data controller must be configured in transmission mode by setting the DATDIR bit in MMCON1 register.

Figure 91 summarizes the data stream transmission flows in both polling and interrupt modes while Figure 92 summarizes the data block transmission flows in both polling and interrupt modes, these flows assume that block length is greater than 16 Bytes.

In case the data transfer is handled by the DFC, a DFC channel must be configured with the MMC controller as destination peripheral. The programmed number of data is autonomously transferred from the source peripheral to the FIFO without any intervention from the firmware.
In case both FIFO are empty (e.g. source peripheral busy), card clock is automatically frozen stopping card data transfer thanks to the controller automatic flow control.

In case the data transfer is handled by the C51 ${ }^{(1)}$, data is loaded byte by byte in the FIFO by writing to MMDAT register. Number of data loaded may vary from 1 to 16 Bytes. Then if necessary (more than 16 Bytes to send) software must ensure that all FIFO or half FIFO becomes empty (WFRS or HFRS set) before loading 16 or 8 new data.
In case both FIFO are empty, card clock is automatically frozen stopping card data transfer thanks to the controller automatic flow control.
Note: 1. An enabled DFC transfer always takes precedence on a C51 transfer, it is under software responsibility not to write to MMDAT register while a DFC transfer is enabled.

Data Transmission

End of Transmission

Busy Status

Transmission is enabled by setting DATEN bit in MMCON1 register. FIFO must be filled after this flag is set.
If at least the FIFO is half full, data is transmitted immediately when the response to the write command has already been received, or is delayed after the reception of the response if its status is correct. In both cases transmission is delayed if a card sends a busy state on the data line until the end of this busy condition.
According to the MMC specification, the data transfer from the host to the card may not start sooner than 2 MMC clock periods after the card response was received (formally $\mathrm{N}_{\text {WR }}$ parameter). To address all card types, this delay can be programmed using DATD1:0 bits in MMCON2 register from 3 MMC clock periods when DATD1:0 bits are cleared to 9 MMC clock periods when DATD1:0 bits are set, by step of 2 MMC clock periods.

In data stream mode, the end of a data frame transmission is signalled by the EOFI flag in MMINT register. This flag may generate an interrupt request as detailed in Section "Interrupt". It is set, after reception of the End bit. This assumes that the STOP command has previously been sent to the card, which is the only way to stop stream transfer.

In data single block mode, the end of a data frame transmission is signalled by the EOFI flag in MMINT register. This flag may generate an interrupt request as detailed in Section "Interrupt". It is set after the end of busy signal on SDDATO line.
After reception of the CRC status token, two other flags in MMSTA register: DATFS and CRC16S report a status on the frame sent. DATFS indicates if the CRC status token format is correct or not, and CRC16S indicates if the card has found the CRC16 of the block correct or not. CRC16S must by reset by software by setting DCR bit in MMCON2 register.
EOBI flag in MMINT register is also set at the same time as EOFI, and may generate an interrupt request as detailed in Section "Interrupt"
In data multi block mode, the end of a data frame transmission is signalled by the EOFI flag in MMINT register. This flag may generate an interrupt request as detailed in Section "Interrupt". It is set after the end of busy signal on SDDATO line.This assumes that the STOP command has previously been sent to the card, which is the only way to stop stream transfer.
The end of a block transmission is signalled by the EOBI flag in MMINT register. This flag may generate an interrupt request as detailed in Section "Interrupt". It is set after the end of busy signal on SDDAT0 line.
After reception of the CRC status token of a block, two other flags in MMSTA register: DATFS and CRC16S report a status on the frame sent. DATFS indicates if the CRC status token format is correct or not, and CRC16S indicates if the card has found the CRC16 of the block correct or not. CRC16S must by reset by software by setting DCR bit in MMCON2 register.

The card uses a busy token during a block write operation. This busy status is reported by the CBUSY flag in MMSTA register.
The busy signal is set to 0 by the card after the CRC token. At the end of busy signal, the flag DATEN is cleared and EOFI flag is set.

Note: some cards do not respect MMC specification, and the busy status is reported too late on the dat0 line, considering the $\mathrm{N}_{\text {st }}$ parameter. So CBUSY flag is not set. In this case, status of the card must be asked with a card command.

Figure 91. Data Stream Transmission Flows

b. Interrupt mode

Figure 92. Data Block Transmission Flows

b. Interrupt mode

Data Receiver

Configuration

Data Reception

To receive data from the card the data controller must be configured in reception mode by clearing the DATDIR bit in MMCON1 register.
Figure 93 summarizes the data stream reception flows in both polling and interrupt modes while Figure 94 summarizes the data block reception flows in both polling and interrupt modes, these flows assume that block length is greater than 16 Bytes.

Reception is enabled by setting DATEN bit in MMCON1 register. The end of a data frame (block(s) or stream) reception is signalled by the EOFI flag in MMINT register. In multiblock mode, OEBI flag signals the reception of one block. These flags may generate an interrupt request as detailed in Section "Interrupt". When EOFI flag is set, 2 other flags in MMSTA register: DATFS and CRC16S give a status on the frame received. DATFS indicates if the frame format is correct or not: a valid End bit has been received, and CRC16S indicates if the CRC16 computation is correct or not. CRC16S must by reset by software by setting DCR bit in MMCON2 register. In case of data stream CRC16S has no meaning and stays cleared. DATEN flag is cleared when EOFI is set.

According to the MMC specification data transmission from the card starts after the access time delay (formally N_{AC} parameter) beginning from the End bit of the read command. To avoid any locking of the MMC controller when card does not send its data (e.g. physically removed from the bus), a time-out timer must be launched to recover

DFC Data Reading

C51 Data Reading
from such situation. In case of time-out, the data controller and its internal state machine may be reset by setting and clearing the DCR bit in MMCON2 register.

This time-out may be disarmed after receiving 8 data (HFRS flag set) or after receiving end of frame (EOFI flag set) in case of block length less than 8 data (1, 2 or 4).

In case the data transfer is handled by the DFC, a DFC channel must be configured with the MMC controller as source peripheral. The programmed number of data is autonomously transferred from the FIFO to the destination peripheral without any intervention from the firmware.
In case both FIFO are full (e.g. destination peripheral busy), card clock is automatically frozen stopping card data transfer thanks to the controller automatic flow control.

In case the data transfer is handled by the $\mathrm{C} 51^{(1)}$, data is read byte by byte from the FIFO by reading MMDAT register. Each time FIFO becomes full or half full (WFRI or HFRI set), software is requested to flush this FIFO by reading 16 or 8data.
In case FIFO is full, card clock is automatically frozen stopping card data transfer thanks to the controller automatic flow control.
Note: 1. An enabled DFC transfer always takes precedence on a C51 transfer, it is under software responsibility not to read from MMDAT register while a DFC transfer is enabled.

Figure 93. Data Stream Reception Flows

a. Polling mode

b. Interrupt mode

Figure 94. Data Block Reception Flows

Card Management

Card Detect Input

Card Lock Input

As shown in Figure 95 the $\overline{\text { SDINS }}$ (MMC/SD Card Detect) input implements an internal pull-up, in order to provide static high level when card is not present in the socket.

SDINS level is reported by CDET bit ${ }^{(1)}$ in MMSTA.
As soon as MMC controller is enabled, all level modifications on $\overline{\text { SDINS }}$ input from H to L or from L to H (card insertion or removal) set CDETI, the Card Detect Interrupt flag in MMINT (see Table 227).
Note: 1. CDET bit is not relevant until MMC controller is enabled ($\mathrm{MMCEN}=1$).
Figure 95. Card Detection Input Block Diagram

As shown in Figure 96 the $\overline{\text { SDLCK }}$ (SD Lock) input implements an internal pull-up, in order to provide static high level when card is not present in the socket.
$\overline{\text { SDLCK }}$ level is reported by SDWP bit ${ }^{(1)}$ in MMSTA register.
Note: 1. SDWP bit is not relevant until MMC controller is enabled ($M M C E N=1$) and a card is present in the socket (CDET $=0$).

Figure 96. SD Card Write Protection Input Block Diagram

Interrupt

As shown in Figure 97, the MMC controller implements eight interrupt sources reported in CDETI, EORI, EOCI, EOFI, WFRI, HFRI and EOBI flags in MMCINT register. These flags are detailed in the previous sections.

All these sources are maskable separately using CDETM, EORM, EOCM, EOFM, WFRM, HFRM and EOBM mask bits respectively in MMMSK register.

The interrupt request is generated each time an unmasked flag is set, and the global MMC controller interrupt enable bit is set (EMMC in IEN1 register).

Reading the MMINT register automatically clears the interrupt flags (acknowledgment). This implies that register content must be saved, and tested flag by flag to be sure not to forget any interrupts.

Figure 97. MMC Controller Interrupt System

Table 222. MMCONO Register
MMCON0 (1.B1h) - MMC Control Register 0

7	6	5	4	3	2	1	0
-	DPTRR	CRPTR	CTPTR	MBLOCK	DFMT	RFMT	CRCDIS
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is always 0 . do not set this bit					
6	DPTRR	Data Pointer Reset Bit Set to reset the read and write pointer of the data FIFO. Cleared by hardware after pointer reset is achieved.					
5	CRPTR	Command Receive Pointer Reset Bit Set to reset the read pointer of the receive command FIFO. Cleared by hardware after pointer reset is achieved.					
4	CTPTR	Command Transmit Pointer Reset Bit Set to reset the write pointer of the transmit command FIFO. Cleared by hardware after pointer reset is achieved.					
3	MBLOCK	Multi-block Enable Bit Set to select multi-block data format. Clear to select single block data format.					
2	DFMT	Data Format Bit Set to select the block-oriented data format. Clear to select the stream data format.					
1	RFMT	Response Format Bit Set to select the 48 -bit response format. Clear to select the 136 -bit response format.					
0	CRCDIS	CRC7 Disable Bit Set to disable the CRC7 computation when receiving a response. Clear to enable the CRC7 computation when receiving a response.					

Reset Value $=0000$ 0010b
Table 223. MMCON1 Register
MMCON1 (1.B2h) - MMC Control Register 1

7	6	5	4	3	2	1	0
BLEN3	BLEN2	BLEN1	BLENO	DATDIR	DATEN	RESPEN	CMDEN
Bit Number	Bit Mnemonic	Description					
7-4	BLEN11:8	Block Length Bits Refer to Table 221 for bits description.					
3	DATDIR	Data Direction Bit Set to select data transfer from host to card (write mode). Clear to select data transfer from card to host (read mode).					

Bit Number	Bit Mnemonic	Description
2	DATEN	Data Transfer Enable Bit Set to enable data transmission or reception immediately or after response has been received. Cleared by hardware after the CRC reception in reception mode or after the busy status if any in transmission mode.
1	RXCEN	Response Command Enable Bit Set to enable the reception of a response following a command transmission. Cleared by hardware when response is received.
0	TXCEN	Command Transmission Enable Bit Set to enable transmission of the command FIFO to the card. Cleared by hardware when command is transmitted.

Reset Value $=0000$ 0000b

Table 224. MMCON2 Register
MMCON2 (1.B3h) - MMC Control Register 2

7	6	5	4	3	2	1	0
FCK	DCR	CCR	DBSIZE1	DBSIZE0	DATD1	DATDO	MMCEN
Bit Number	Bit Mnemonic	Description					
7	FCK	MMC Force Clock Bit Set to enable the MCLK clock out permanently. Clear to disable the MCLK clock and enable flow control.					
6	DCR	Data Controller Reset Bit Set to reset the data line controller in case of transfer abort, or to reset CRC16S bit after an error occurs. Cleared by hardware after the data line controller reset is achieved.					
5	CCR	Command Controller Reset Bit Set to reset the command line controller in case of transfer abort. Cleared by hardware after the command line controller reset is achieved.					
4-3	DBSIZE1:0	Data Bus Size Refer to Table 220 for bits description.					
2-1	DATD1:0	Data Transmission Delay Bits Used to delay the data transmission after a response from 3 MMC clock periods (all bits cleared) to 9 MMC clock periods (all bits set) by step of 2 MMC clock periods.					
0	MMCEN	MMC Clock Enable Bit Set to enable the MMC clocks and activate the MMC controller. Clear to disable the MMC clocks and freeze the MMC controller.					

Reset Value $=0000$ 0000b

Table 225. MMBLP Register
MMCON2 (1.B4h) - MMC Block Length LSB Register

7	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
BLEN7	BLEN6	BLEN5	BLEN4	BLEN3	BLEN2	BLEN1	BLEN0

Bit Number	Bit Mnemonic	Description
$7-0$	BLEN7:0	Block Length LSB Refer to Table 221 for byte description

Reset Value $=0000$ 0000b
Table 226. MMSTA Register
MMSTA (1.B5h Read Only) - MMC Status Register

7	6	5	4	3	2	1	0
SDWP	CDET	CBusy	CRC16S	DATFS	CRC7S	WFRS	HFRS
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7	SDWP	SD Card Write Protect Bit Set by hardware when the SD card socket WP switch is opened. Cleared by hardware when the SD card socket WP switch is closed.					
6	CDET	Card Detection Bit Set by hardware when the SD card socket presence switch is opened. Cleared by hardware when the SD card socket presence switch is closed.					
5	CBUSY	Card Busy Flag Set by hardware when the card sends a busy state on the data line. Cleared by hardware when the card no more sends a busy state on the data line.					
4	CRC16S	CRC16 Status Bit Transmission mode Set by hardware when the token response reports a bad CRC. Cleared by software by setting DCR bit in MMCON2. Reception mode Set by hardware when the CRC16 received in the data block is not correct. Cleared by software by setting DCR bit in MMCON2.					
3	DATFS	Data Format Status Bit Transmission mode Set by hardware when the format of the token response is correct. Cleared by hardware when the format of the token response is not correct. Reception mode Set by hardware when the format of the frame is correct. Cleared by hardware when the format of the frame is not correct.					
2	CRC7S	CRC7 Status Bit Set by hardware when the CRC7 computed in the response is correct. Cleared by hardware when the CRC7 computed in the response is not correct. This bit is not relevant when CRCDIS is set.					
1	WFRS	Whole FIFO Ready Status Bit Set by hardware when 16 bytes can be read in receive mode or written in transmit mode. Cleared by hardware when FIFO is not ready.					
0	HFRS	Half FIFO Ready Status Bit Set by hardware when 8 bytes can be read in receive mode or written in transmit mode. Cleared by hardware when FIFO is not ready.					

Reset Value $=$ XX00 0000b, depends wether a card is present in the socket or not and if it is locked or not.

Table 227. MMINT Register
MMINT (1.BEh Read Only) - MMC Interrupt Register

7	6	5	4	3	2	1	0
CDETI	EORI	EOCI	EOFI	WFRI	HFRI	EOBI	-
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7	CDETI	Card Detection Interrupt Flag Set by hardware every time CDET bit in MMSTA is toggling. Cleared when reading MMINT.					
6	EORI	End of Response Interrupt Flag Set by hardware at the end of response reception. Cleared when reading MMINT.					
5	EOCI	End of Command Interrupt Flag Set by hardware at the end of command transmission. Cleared when reading MMINT.					
4	EOFI	End of Frame Interrupt Flag Set by hardware at the end of frame (stream, single block or multi block) transfer. Clear when reading MMINT.					
3	WFRI	Whole FIFO Ready Interrupt Flag Set by hardware when 16 bytes can be read in receive mode or written in transmit mode. Cleared when reading MMINT.					
2	HFRI	Half FIFO Ready Interrupt Flag Set by hardware when 8 bytes can be read in receive mode or written in transmit mode. Cleared when reading MMINT.					
1	EOBI	End of Block Interrupt Flag Set by hardware at the end of block (single block or multi block) transfer. Cleared when reading MMINT.					
0	-	Reserved The value read from this bit is always 0 . Do not set this bit.					

Reset Value $=0000$ 0000b

Table 228. MMMSK Register
MMMSK (1.BFh) - MMC Interrupt Mask Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	\mathbf{c}	
MCBM	EORM	EOCM	EOFM	WFRM	HFRM	EOBM	$\mathbf{-}$
Bit Number	Bit Mnemonic	Description					
7	CDETM	Card Detection Interrupt Mask Bit Set to prevent CDETI flag from generating an interrupt. Clear to allow CDETI flag to generate an interrupt.					

Bit Number	Bit Mnemonic	Description
6	EORM	End Of Response Interrupt Mask Bit Set to prevent EORI flag from generating an interrupt. Clear to allow EORI flag to generate an interrupt.
5	EOCM	End Of Command Interrupt Mask Bit Set to prevent EOCI flag from generating an interrupt. Clear to allow EOCI flag to generate an interrupt.
4	EOFM	End Of Frame Interrupt Mask Bit Set to prevent EOFI flag from generating an interrupt. Clear to allow EOFI flag to generate an interrupt.
3	HFRM	Whole FIFO Ready Interrupt Mask Bit Set to prevent WFRI flag from generating an interrupt. Clear to allow WFRI flag to generate an interrupt.
2	Half FIFO Ready Full Interrupt Mask Bit Set to prevent HFRI flag from generating an interrupt. Clear to allow HFRI flag to generate an interrupt.	
1	EOBM	End Of Block Interrupt Mask Bit Set to prevent EOBI flag from generating an interrupt. Clear to allow EOBI flag to generate an interrupt.
0	-	Reserved The value read from this bit is always 0. Do not set this bit.

Reset Value = 1111 1110b

Table 229. MMCMD Register
MMCMD (1.B7h) - MMC Command Register

7	6	5	4	3	2	1	0
MC7	MC6	MC5	MC4	MC3	MC2	MC1	MC0
Bit Number	Bit Mnemonic	Description					
7-0	MC7:0	MMC Command Receive Byte Output (read) register of the response FIFO. MMC Command Transmit Byte Input (write) register of the command FIFO.					

Reset Value = 1111 1111b

Table 230. MMDAT Register
MMDAT (1.B6h) - MMC Data Register

7	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0

Bit Number	Bit Mnemonic	Description
$7-0$	MD7:0	MMC Data Byte Input (write) or output (read) register of the data FIFO.

Reset Value $=1111$ 1111b

Parallel Slave Interface

The AT85C51SND3B derivatives implement a Parallel Slave Interface (PSI) allowing parallel connection with a host for remote control and data transfer. By using this interface, the AT85C51SND3B can be seen as a multimedia co-processor and be remotely controlled by the host.

The main features of the PSI Interface are:

- ARM / I80 glueless interface capability
- 8-bit parallel data bus
- 1-bit address bus
- 16-byte FIFO with MCU interrupt capability
- Bi-directional multimedia bus connection through one DFC Channel

Figure 98 shows a typical PSI host connection. Interface consists in a 8-bit data bus, a 1-bit address bus and read and write signals along with a chip select.

Figure 98. Typical PSI Host Connection

Note: 1. Optional signal for slave to host signaling.

The C51 core interfaces with the PSI using the following Special Function Registers: PSICON (see Table 232) the control register, PSISTA (see Table 233) the status register, PSIDAT (see Table 234) the data register and PSISTH (see Table 235) the host status register.
The PSI is enabled by setting the PSEN bit in PSICON.
As soon as the PSI is enabled, I/O ports are programmed in input and I/O pull-ups are disabled.

Figure 99. PSI Block Diagram

The AT85C51SND3B are accessible by a host in read or write at two different address locations by setting or clearing the SA0 address signal. The data management is
detailed in following sections and differs depending on SAO level. Table 235 shows the addressing truth table. Figure 100 and Figure 101 show the read and write host cycles.

Table 231. PSI Addressing Truth Table

SA0	$\overline{\mathbf{S R D} / \overline{\mathbf{S W R}}}$	Selection
1	Read	Host reads the PSISTH register to get PSI status from both hardware and software.
1	Write	Host writes in the FIFO.
0	Read	DFC transfer (PSI is destination) Host reads data from the source peripheral through the FIFO. CPU transfer Host reads data from the FIFO.
0	Write	DFC transfer (PSI is source) Host writes data to the destination peripheral through the FIFO. CPU transfer Host writes data in the FIFO.

Figure 100. Host Read Waveforms

Figure 101. Host Write Waveforms

In order to be compliant with hosts depending on write cycle timing, a delay from $\overline{\text { SRW }}$ signal assertion can be programmed for sampling data written by the host. This delay is programmable from 0 to 7 peripheral clock periods using PSWS2:0 bits in PSICON. Figure 102 shows the write sampling delay waveform.
Depending on the system clock frequency, host may need to add wait states inside read or write cycles.

Figure 102. Write Data Sampling Configuration

"SA0= H" Mode
"SA0= L" Mode

CPU Transfer

DFC Transfer

The "SAO= H" mode is particularly fitting control management over a protocol. Figure 103 shows a data cycle from host to device. Prior to send any data bytes, the host must take care of the PSI state by reading the AT85C51SND3B with SA0 signal set. This returns PSISTH: the host status register content. While PSHBSY bit in PSISTH is set, the host must not start sending data.
As soon as PSHBSY bit is released, the host can send up to 16 bytes of data.
First data writing automatically sets PSBSY flag in PSISTA and consequently PSHBSY bit so that host knows that system is now busy and processing. An interrupt can be generated when PSBSY flag is set by enabling PSBSYE bit in PSICON while global PSI interrupt is enabled in IEN1 (see Figure 104).
The software can start reading and process the data after first byte reception. As soon as data processing is done, PSBSY flag is cleared and consequently PSHBSY bit so that host knows that system has finished processing. A software status can have been previously written to PSISTH for reporting to the host.
Note: If software reading is quicker than host writing, PSEMPTY bit must be polled before reading new data byte.

Figure 103. Data Management ($\mathrm{SAO}=\mathrm{H}$)

The "SAO= L" mode is particularly fitting data transfer with huge amount of data. Transfer can be done in read and write using the DFC for high throughput or the CPU. After control processing (PSBSY cleared) and relying to the protocol, the host starts transferring data. In all cases the host which is the master controls the data transfer by reading from or writing to the slave.

In case of transfer handled by the CPU, the data transfer is done byte by byte. As the host runs usually quicker than the slave, a software handshake must be established to avoid underrun or overrun condition.

In case of transfer handled by the DFC, the slave can acknowledge its control processing (PSBSY cleared) as soon as destination (host write) or source (host read) is ready.

Host can then read or write by burst an amount of data defined by the protocol (see Section "Data Flow Controller", page 78).
In order to avoid any underrun or overrun condition during burst transfer, host must be slower than the DFC destination peripheral (host write) or the DFC source peripheral (host read).

Overrun - Underrun Conditions
An overrun condition occurs when the hosts writes data quicker than the slave can consume it.
An underrun condition occurs when the host read data quicker than the slave can deliver it.
As soon as one of these two conditions is triggered, the PSRUN flag in PSISTA is set. An interrupt can be generated when PSRUN bit is set by enabling PSRUNE bit in PSICON while global PSI interrupt is enabled in IEN1 (see Figure 104).
Notes: 1. Overrun and underrun conditions may appear in both transfer modes (CPU or DFC).
2. In overrun condition, the data written by the host is discarded.
3. In underrun condition, the data read by the host is the same as the previous one.

As shown in Figure 104, the PSI implements two interrupt sources reported in PSBSY and PSRUN flags in PSISTA. These flags are detailed in the previous sections.
These sources are enabled separately using PSBSYE, and PSRUNE enable bits respectively in PSICON.
The interrupt request is generated each time an enabled flag is set, and the global PSI interrupt enable bit is set (EPSI in IEN1 register).

Figure 104. PSI Controller Interrupt System

Registers

Table 232. PSICON Register
PSICON (1.ADh) - PSI Control Register

7	6	5	4	3	2	1	0
PSEN	PSBSYE	PSRUNE	PSWS2	PSWS1	PSWS0		
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7	PSEN	Interface Enable Bit Set to enable the PSI controller. Clear to disable the PSI controller.					
6	PSBSYE	Busy Interrupt Enable Bit Set to enable the busy interrupt. Clear to disable the busy interrupt.					
5	PSRUNE	Overrun/Underrun Interrupt Enable Bit Set to enable the overrun interrupt. Clear to disable the overrun interrupt.					
4-2	PSWS2:0	Write Sampling Bits Data write sampling wait states after $\overline{\mathrm{WR}}$ signal assertion from 1 clock up to 7 clock periods					
1-0	-	Reserved The value read from these bits is always 0 . Do not set these bits.					

Reset Value $=0000$ 0000b

Table 233. PSISTA Register
PSISTA (1.AEh) - PSI Status Register

7	6	5	4	3	2	1	0
PSEMPTY	PSBSY	PSOVR	PSRDY				
$\begin{gathered} \hline \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7	PSEMPTY	FIFO Empty Flag Set by hardware when the FIFO is empty. Cleared by hardware when at least one data byte is present in the FIFO.					
6	PSBSY	Busy Flag Set by hardware when the FIFO becomes not empty (host has sent data with SAO = H). Can be set or cleared by software.					
5	PSRUN	Overrun/Underrun Flag Overrun Set by hardware when the host sends a data and the FIFO is full. Clear by software to acknowledge the overrun condition. Underrun Set by hardware when the host reads a data and the FIFO is empty. Clear by software to acknowledge the underrun condition.					
4	PSRDY	Ready Flag Set by hardware when a data is ready to be sent to the host. Cleared by hardware at the end of a host read cycle.					

Bit Number	Bit Mnemonic	Description
$3-0$	-	Reserved The value read from these bits is always 0. Do not set these bits.

Reset Value $=1000$ 0000b

Table 234. PSISTH Register
PSISTH (1.ACh) - PSI Host Status Register

7	6	5	4	3	2	1	0
PSHBSY	PSSTH6	PSSTH5	PSSTH4	PSSTH3	PSSTH2	PSSTH1	PSSTH0
Bit Number	Bit Mnemonic	Description					
7	PSHBSY	Interface Busy Flag Host Access (Read with SAO = H) Copy of the PSBSY flag. Software Access Always returned as logic 0 . Can not be written by software.					
6-0	PSSTH6:0	7-bit Host Status Data Set by software to report status to the host.					

Reset Value $=0000$ 0000b
Table 235. PSIDAT Register
PSIDAT (1.AFh) - PSI Data Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
PSD7	PSD6	PSD5	PSD4	PSD3	PSD2	PSD1	PSD0

Bit Number	Bit Mnemonic	Description
$7-0$	PSD7:0	Data Bits Reading this register returns the data written by the host in the FIFO. Writing this register set data in the FIFO read later by the host.

Reset Value $=0000$ 0000b

Serial I/O Port

Description

Data Transfer

The AT85C51SND3B derivatives implement a Serial Input/Output Port (SIO) allowing serial communication. By using this interface, the AT85C51SND3B can be seen as a multimedia co-processor and be remotely controlled by the host.
The main features of the SIO Interface are:

- Asynchronous mode (UART: Rx, Tx)
- Hardware flow control ($\overline{\mathrm{CTS}}, \overline{\mathrm{RTS}})$
- High speed baud rate generator
- 16-byte input buffer with MCU interrupt capability
- Bi-directional multimedia bus connection through one DFC Channel

Figure 105 shows a typical SIO host connection. Interface consists in a 2-bit receive/transmit bus and a 2-bit flow control bus.

Figure 105. Typical SIO Host Connection

The C51 core interfaces with the SIO using the following Special Function Registers: SCON, the SIO Control register (see Table 243); SFCON, the SIO Flow Control register (see Table 244); SINT, the SIO Interrupt Source register (see Table 245); SIEN, the SIO Interrupt Enable register (see Table 246); SBUF, the SIO Buffer register (see Table 247); SBRG0, SBRG1 and SBRG2, the SIO Baud Rate Generator registers (see Table 248 to Table 250). As shown in Figure 106 the SIO is based on three main functional blocks detailed in the following sections: the baud rate generator that generates an oversampling clock for both receiver and transmitter, the receiver that handles the characters reception and the transmitter that handles the characters transmission.

The data transfers can be handled completely by the C51 in full duplex, i.e. C51 manages character transmission by writing data to SBUF register and character reception by reading data from SBUF. It is obvious that using C51 for data transfer leads to low throughput. In order to increase throughput and take advantage of high bit rates up to $8 \mathrm{Mbit} / \mathrm{s}$, a DFC channel can be associated to the SIO in read or write (see Section "Data Flow Controller", page 78). DFC can be used used for data reception (SIO considered as source) or data transmission (SIO considered as destination). In both cases, the data transfer is still full duplex since C51 continues to handle transmission or reception but at lower throughput.
Table 236 summarizes the data transfer modes association. DFC usage is enabled as soon as a DFC transfer is enabled by selecting SIO as source or destination.

Table 236. Data Transfer Modes

Transfer Modes	Reception Handling	Transmission Handling
High Throughput Reception	DFC (SIO is source)	C51
High Throughput Transmission	C51	DFC (SIO is destination)
Low Throughput Transfer (default)	C51	C51

Figure 106. SIO Block Diagram

Character Format

Start Field
Data Field

Parity Field

The start field is fixed and composed of 1 bit transmitted or received at low level.
The data field is composed of 7 or 8 bits by programming DLEN bit in SCON according to Table 237. The least significant bit is always first transmitted.

Table 237. Data Bit Number Selection

DLEN	Description
0	7-bit Data Length.
1	8-bit Data Length.

The parity field is optional and enabled by PBEN bit in SCON. This field is composed of 1 bit and its mode is programmable by PMOD1:0 bits in SCON according to Table 238.

Table 238. Parity Mode Selection

PMOD1	PMODO	Description
0	0	MARK: high Level
0	1	SPACE: Low Level
1	0	EVEN: High Level if the number of bits at high level in the data field is even.
1	1	ODD: Low Level if the number of bits at high level in the data field is odd.

The stop field is composed of 1 or 2 bits transmitted or received at high level by programming STOP bit in SCON according to Table 239.

Table 239. Stop Bit Number Selection

STOP	Description
0	1 Stop Bit.
1	2 Stop Bits.

Baud Rate Generator

Baud Rate Calculation

The guard field is not part of a character and is an optional inter-character spacing composed of 0 to 3 bits transmitted at high level by programming GBIT1:0 bits in SCON according to Table 240. The guard field allows transmitter to be compliant with connected host (overrun avoiding) and is emitted after the last stop bit of a character.

Table 240. Guard Field Size Selection

GBIT1	GBIT0	Description
0	0	0 guard bit inserted (default).
0	1	1 guard bit inserted.
1	0	2 guard bits inserted.
1	1	3 guard bits inserted.

The Baud Rate Generator is fed by the SIO clock as detailed in Section "SIO Clock Generator", page 33. The maximum baud rate can be achieved by selecting the high frequency issued by a division of the PLL clock. The clock generated is an oversampling clock. The oversampling factor is programmable using OVRSF3:0 bits in SFCON with oversampling factor equal to OVRSF3:0 + 1 (e.g.: OVRSF3:0= 11 for a $12 x$ oversampling).

As shown in Figure 109, the baud rate generator is composed of an integer divider followed by a fractional divider. The baud rate formula is given by Figure 108. In this formula, variables must be chosen as followed:

- OVRSF

The oversampling factor depends mainly on the frequency and the quality of the medium transporting the data. In any case, OVSF3:0 must not be less than 4 for proper majority vote in bit reception.

- ADIV

Must be greater than BDIV and less than (K . OVRSF). K being the number of bit in a character (from 9 to 11).

- BDIV

Must be greater than $1 / \varepsilon$ according to the tolerance on the real baud rate BR_{R} compare to the theoretical baud rate BR_{T}.
ε being the error: $\varepsilon=K \cdot\left|1 / B B_{T}-1 / B R_{R}\right|$.
Table 241 shows some programming values depending on the SIO frequency and considering an oversampling factor of 12 (OVERSF3:0=11).

Figure 108. Baud Rate Formula

$$
\text { Baud_Rate }=\frac{\mathrm{F}_{\text {SIO }} \cdot \mathrm{BDIV}}{\mathrm{ADIV} \cdot \mathrm{CDIV} \cdot \mathrm{OVRSF}}
$$

Figure 109. Baud Rate Generator Block Diagram

Table 241. Baud Rate Generator Value (12x oversampling)

Baud Rate	$\mathrm{F}_{\text {SIO }}=12 \mathrm{MHz}$				$\mathrm{F}_{\text {SIO }}=16 \mathrm{MHz}$				$\mathrm{F}_{\text {SIO }}=20 \mathrm{MHz}$				$\mathrm{F}_{\text {SIO }}=\mathbf{2 4} \mathbf{M H z}$				$\mathrm{F}_{\text {SIO }}=120 \mathrm{MHz}^{(1)}$			
	A	B	C	$\varepsilon \%$	A	B	C	$\varepsilon \%$	A	B	C	$\varepsilon \%$	A	B	C	$\varepsilon \%$	A	B	C	$\varepsilon \%$
9600	125	6	5	0	110	99	125	0	124	5	7	0.007	125	3	5	0	110	15	142	0.033
19200	125	12	5	0	125	9	5	0	124	10	7	0.007	125	6	5	0	110	49	232	0.00
38400	125	24	5	0	125	18	5	0	124	20	7	0.007	125	12	5	0	110	49	116	0.004
57600	125	36	5	0	125	27	5	0	124	30	7	0.007	125	18	5	0	124	5	7	0.007
115200	125	72	5	0	125	54	5	0	124	60	7	0.007	125	36	5	0	124	10	7	0.007
230400	115	53	2	0.016	125	108	5	0	120	83	5	0.067	125	72	5	0	217	5	1	0.007
460800	115	53	1	0.016	120	83	2	0.067	112	31	1	0.111	115	53	2	0.016	217	10	1	0.007
921600	115	106	1	0.016	120	83	1	0.067	112	62	1	0.111	115	53	1	0.016	118	87	8	0.002
1M	1	1	1	0	112	84	1	0	115	69	1	0	110	55	1	0	120	12	1	0
1.5M	-	-	-	-	-	-	-		110	99	1	0	112	84	1	0	120	18	1	0
2M	-	-	-	-	-	-	-		-	-	-		1	1	1	0	115	23	1	0
4M	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	115	46	1	0
8M	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	115	92	1	0

Note: 1. This high frequency available through the clock generator requires PLL usage. It is recommended to use it only for high baud rate that can not be achieved using oscillator frequency.

Receiver

Flow Control
As shown in Figure 110, the receiver is based on a character handler taking care of character integrity check and feeding the reception shift register filling itself a 16-byte data FIFO managed by the FIFO and flow controller.

Figure 110. Receiver Block Diagram

The reception flow can be controlled by hardware using the $\overline{\mathrm{RTS}}$ pin. The goal of the flow control is to inform the external transmitter when the Rx FIFO is full of a certain amount of data. Thus the transmitter can stop sending characters. $\overline{\text { RTS }}$ usage and so associated flow control is enabled using RTSEN bit in SFCON.
To support transmitter that has stop latency, a threshold can be programmed to allow characters reception after RTS has been deasserted. The threshold can be programmed using RTSTH1:0 in SFCON according to Table 242. As soon as enough data has been read from the Rx FIFO, RTS is asserted again to allow transmitter to continue transmission. To avoid any glitch on RTS signal, an hysteresis on 1 data is implemented.
Figure 111 shows a reception example using a threshold of 4 data and a host transmitter latency of 3 characters.

Figure 111. Reception Flow Control Waveform Example

Table 242. $\overline{R T S}$ Deassertion Threshold

RTSTH1	RTSTH0	Description
0	0	$\overline{\text { RTS }}$ deasserted when Rx FIFO is full.
0	1	$\overline{\text { RTS }}$ deasserted when 2 data can still be loaded in Rx FIFO.
1	0	$\overline{\text { RTS }}$ deasserted when 4 data can still be loaded in Rx FIFO.
1	1	$\overline{\text { RTS }}$ deasserted when 8 data can still be loaded in Rx FIFO.

Receiver Errors

Framing Error

Parity Error

Overrun Error

Transmitter

Interrupts

There are three kinds of errors that can be set during character reception: the framing error, the parity error, and the overrun error detailed in the following sections.

A framing error occurs when the stop field of a received character is not at high level. Framing error is reported in FEI flag in SINT. Framing error condition is acknowledged by clearing the FEI flag.

A parity error occurs when the parity field of a received character does not matches the programmed one in PMOD1:0 bits. Parity error is reported in PEI flag in SINT. Parity error condition is acknowledged by clearing the PEI flag.

An overrun error occurs when a character is received while the $R x$ shift register is full (Rx FIFO full). In this case, received character is discarded. Overrun error is reported in OEI flag in SINT. Overrun error condition is acknowledged by clearing the OEI flag.
Note: In case of data burst reception, the error flags report an error within the data burst. It is obvious to discard the whole data burst and to handle the errors by the protocol (retry...).

As shown in Figure 112, the transmitter is based on a character handler taking care of character transmission and fed by the transmission shift register filled itself by a 1-byte data FIFO managed by the FIFO and flow controller.

Figure 112. Transmitter Block Diagram

The transmission flow can be controlled by hardware using the $\overline{\mathrm{CTS}}$ pin controlled by the external receiver. The goal of the flow control is to stop transmission when the receiver is full of data. CTS usage and so associated flow control is enabled using CTSEN bit in SFCON.
The transmitter stop latency may vary from 0 to a maximum of 1 character, meaning that transmission always stops at the end of the character under transmission if any.

As shown in Figure 113, the SIO implements five interrupt sources reported in RI, TI, FEI, PEI, OEI and EOTI flags in SINT. These flags are detailed in the previous sections.

These sources are enabled separately using RIE, TIE, FEIE, PEIE, OEIE and EOTIE enable bits respectively in SIEN.
The interrupt request is generated each time an enabled source flag is set, and the global SIO interrupt enable bit is set (ES in IENO register).

Figure 113. SIO Controller Interrupt System

Registers

Table 243. SCON Register
SCON (0.91h) - SIO Control Register

7	6	5	4	3	2	1	0
SIOEN	PMOD1	PMOD0	PBEN	STOP	DLEN	GBIT1	GBITO
Bit Number	Bit Mnemonic	Description					
7	SIOEN	SIO Enable Bit Set to enable the Serial Input/Output port. Clear to disable the Serial Input/Output port.					
6-5	PMOD1:0	Parity Mode Bits Refer to Table 238 for information on parity mode					
4	PBEN	Parity Bit Enable Bit Set to enable parity generation according to PMOD1:0 bits. Clear to disable parity generation.					
3	STOP	Stop Bit Number Set to enable generation of 2 stop bits. Clear to enable generation of 1 stop bit.					
2	DLEN	Data Length Bit Set to enable generation of 7 data bits. Clear to enable generation of 8 data bits.					
1-0	GBIT1:0	Guard Bit Number Number of guard bits (from 0 to 3) transmitted after the last stop bit in transmission mode.					

Reset Value $=0000$ 0000b

Table 244. SFCON Register
SFCON (0.95h) - SIO Flow Control Register

7	6	5	4	3	2	1	0
OVRSF3	OVRSF2	OVRSF1	OVRSFO	CTSEN	RTSEN	RTSTH1	RTSTH0
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7-4	OVRSF3:0	Over Sampling Factor Bits Number of time a data bit is sampled for level determination. Oversampling factor $=$ OVRSF3:0 0 .					
3	CTSEN	Clear To send Enable Bit Set to enable transmission hardware flow control using $\overline{\mathrm{CTS}}$ signal. Clear to disable transmission hardware flow control.					
2	RTSEN	Request To send Enable Bit Set to enable reception hardware flow control using RTS signal. Clear to disable reception hardware flow control.					
1-0	RTSTH1:0	Request To send Assertion Threshold Refer to Table 242 for information on threshold values.					

Reset Value $=0000$ 0000b

Table 245. SINT Register
SINT (1.A8h) - SIO Interrupt Source Register

7	6	5	4	3	2	1	0
-	-	EOTI	OEI	PEI	FEI	TI	RI
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
5	EOTI	End Of Transmission Interrupt Flag Set by hardware when both Tx FIFO and Tx shift register are empty: actual end of transmission. Cleared by hardware when the Tx FIFO or Tx shift register are not empty.					
4	OEI	Overrun Reception Error Interrupt Flag Set by hardware when a character is received while the $R x$ shift register is full (Rx FIFO full). Clear by software to acknowledge interrupt.					
3	PEI	Parity Reception Error Interrupt Flag Set by hardware when a parity error occurs in a received character. Clear by software to acknowledge interrupt.					
2	FEI	Framing Reception Error Interrupt Flag Set by hardware when a framing error occurs in a received character. Clear by software to acknowledge interrupt.					

$\left.$| Bit
 Number | Bit
 Mnemonic | TI |
| :---: | :---: | :--- |
| 1 | Description | | | Transmission Interrupt Flag |
| :--- |
| Set by hardware when the Tx FIFO is not full: a character can be loaded through |
| SBUF. |
| Cleared by hardware when the Tx FIFO becomes full: no more character can be |
| loaded. | \right\rvert\, | Reception Interrupt Flag |
| :--- |
| Set by hardware when the Rx FIFO is not empty: character ready to be read |
| through SBUF. |
| Cleared by hardware when the Rx FIFO becomes empty: no more character to |
| be read. |

Reset Value $=0 \times 10$ 0010b

Table 246. SIEN Register
SIEN (1.A9h) - SIO Interrupt Enable Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
-	-	EOTIE	OEIE	PEIE	FEIE	TIE	RIE

Bit Number	Bit Mnemonic	Description
$7-6$	-	Reserved The value read from these bits is always 0. Do not set these bits.
5	EOTIE	End Of Transmission Interrupt Enable Bit Set to enable end of transmission interrupt generation. Clear to disable end of transmission interrupt generation.
4	OEIE	Overrun Error Interrupt Enable Bit Set to enable overrun error interrupt generation. Clear to disable overrun error interrupt generation.
3	PEIE	Parity Error Interrupt Enable Bit Set to enable parity error interrupt generation. Clear to disable parity error interrupt generation.
2	TIE	Framing Error Interrupt Enable Bit Set to enable framing error interrupt generation. Clear to disable framing error interrupt generation.
1	Transmission Interrupt Enable Bit Set to enable transmission interrupt generation. Clear to disable transmission interrupt generation.	
0	RIE	Reception Interrupt Enable Bit Set to enable reception interrupt generation. Clear to disable reception interrupt generation.

Reset Value $=00000000 \mathrm{~b}$

Table 247. SBUF Register
SBUF (1.AAh) - SIO Data Buffer Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
SIOD7	SIOD6	SIOD5	SIOD4	SIOD3	SIOD2	SIOD1	SIOD0
Bit Number	Bit Mnemonic	Description					
$7-0$	SIOD7:0	8-Bit data Buffer.					

Reset Value $=$ XXXX XXXXb
Table 248. SBRG0 Register
SBRGO (0.92h) - SIO Baud Rate Generator Register 0

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
CDIV7	CDIV6	CDIV5	CDIV4	CDIV3	CDIV2	CDIV1	CDIV0

Bit Number	Bit Mnemonic	Description
$7-0$	CDIV7:0	Baud Rate Generator 8-bit C divider.

Reset Value $=0000$ 0000b

Table 249. SBRG1 Register
SBRG1 (0.93h) - SIO Baud Rate Generator Register 1

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
ADIV7	ADIV6	ADIV5	ADIV4	ADIV3	ADIV2	ADIV1	ADIV0
Bit Number	Bit Mnemonic	Description					
$7-0$	ADIV7:0	Baud Rate Generator 8-bit A divider.					

Reset Value $=0000$ 0000b
Table 250. SBRG2 Register
SBRG2 (0.94h) - SIO Baud Rate Generator Register 2

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
BDIV7	BDIV6	BDIV5	BDIV4	BDIV3	BDIV2	BDIV1	BDIV0

Bit Number	Bit Mnemonic	Description
$7-0$	BDIV7:0	Baud Rate Generator 8-bit B divider.

Reset Value $=0000$ 0000b

Serial Peripheral Interface

The AT85C51SND3B derivatives implement a Synchronous Peripheral Interface (SPI) allowing full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs.
Features of the SPI module include the following:

- Full-duplex, three-wire synchronous transfers
- Master or Slave operation
- Programmable Master clock rates in master mode
- Serial clock with programmable polarity and phase
- Master Mode fault error flag with MCU interrupt capability

Figure 114 shows a SPI bus configuration using the AT85C51SND3B as master connected to slave peripherals while Figure 115 shows a SPI bus configuration using the AT85C51SND3B as slave of an other master.

The bus is made of three wires connecting all the devices together:

- Master Output Slave Input (MOSI): it is used to transfer data in series from the master to a slave. It is driven by the master.
- Master Input Slave Output (MISO): it is used to transfer data in series from a slave to the master. It is driven by the selected slave.
- Serial Clock (SCK): it is used to synchronize the data transmission both in and out the devices through their MOSI and MISO lines. It is driven by the master for eight clock cycles which allows to exchange one byte on the serial lines.
Each slave peripheral is selected by one Slave Select pin ($\overline{\mathrm{SS}}$). If there is only one slave, it may be continuously selected with $\overline{\mathrm{SS}}$ tied to a low level. Otherwise, the AT85C51SND3B may select each device by software through port pins (Pn.x). Special care should be taken not to select 2 slaves at the same time to avoid bus conflicts.

Figure 114. Typical Master SPI Bus Configuration

Figure 115. Typical Slave SPI Bus Configuration

Master Mode

The SPI operates in master mode when the MSTR bit in SPCON is set.
Note: The SPI Module should be configured as a master before it is enabled (SPEN set). In a system, the master SPI should be configured before the slave SPI device.

Figure 117 shows the SPI block diagram in master mode. Only a master SPI module can initiate transmissions.

The transmission begins by writing to SPDAT through CPU or DFC. Writing to SPDAT writes to an intermediate register which is automatically loaded to the shift register if no transmission is in progress. Reading SPDAT through CPU or DFC reads an intermediate register updated at the end of each transfer.

The byte begins shifting out on the MOSI pin under the control of the bit rate generator This generator also controls the shift register of the slave peripheral through the SCK output pin. As the byte shifts out, another byte shifts in from the slave peripheral on the MISO pin. The byte is transmitted most significant bit (MSB) first when UARTM bit in SPCR is cleared or least significant bit (LSB) first when UARTM bit in SPCR is set. The end of transfer is signaled by SPIF being set.

In case SPI is the source of a DFC channel (slave device data read), SPDAT is first loaded with a dummy byte (FFh value) to initiate the transfer. Then transfer continues by transmitting the shift register content which is the last data received.

When the AT85C51SND3B is the only master on the bus, it can be useful not to use $\overline{S S}$ pin and get it back to I/O functionality. This is achieved by setting SSDIS bit in SPCON.

Figure 117. SPI Master Mode Block Diagram

Note: MSTR bit in SPCON is set to select master mode.
The SPI operates in slave mode when the MSTR bit in SPCON is cleared and data has been loaded in SPDAT.
Note: The SPI Module should be configured as a slave before it is enabled (SPEN set).
Figure 118 shows the SPI block diagram in slave mode. In slave mode, before a data transmission occurs, the $\overline{\mathrm{SS}}$ pin of the slave SPI must be asserted to low level. $\overline{\mathrm{SS}}$ must remain low until the transmission of the byte is complete. In the slave SPI module, data enters the shift register through the MOSI pin under the control of the serial clock provided by the master SPI module on the SCK input pin. When the master starts a transmission, the data in the shift register begins shifting out on the MISO pin. The end of transfer is signaled by SPIF being set.

When the AT85C51SND3B is the only slave on the bus, it can be useful not to use $\overline{\mathrm{SS}}$ pin and get it back to I/O functionality. This is achieved by setting SSDIS bit in SPCON. This bit has no effect when CPHA is cleared (see Section "SS Management", page 228).

Figure 118. SPI Slave Mode Block Diagram

Note: MSTR bit in SPCON is cleared to select slave mode.
Bit Rate
In master mode, the bit rate can be selected from seven predefined bit rates using the SPR2, SPR1 and SPR0 control bits in SPCON according to Table 251. These bit rates are derived from the peripheral clock ($\mathrm{F}_{\text {PER }}$) issued from the Clock Controller block as detailed in Section "Clock Controller", page 28.
In slave mode, the maximum baud rate allowed on the SCK input is limited to FOSC $\div 4$.
Table 251. Serial Bit Rates

SPR2	SPR1	SPR0	Bit Rate (kHz) Vs $\mathrm{F}_{\text {PER }}(\mathrm{MHz})$							$\mathrm{F}_{\text {PER }}$ Divider
			$6^{(1)}$	$8{ }^{(1)}$	$10^{(1)}$	$12^{(1)(2)}$	$16^{(2)}$	$20^{(2)}$	$24^{(2)}$	
0	0	0	3000	4000	5000	6000	8000	10000	12000	2
0	0	1	1500	2000	2500	3000	4000	5000	6000	4
0	1	0	750	1000	1250	1500	2000	2500	3000	8
0	1	1	375	500	625	750	1000	1250	1500	16
1	0	0	187.5	250	312.5	375	500	625	750	32
1	0	1	93.75	125	156.25	187.5	250	312.5	375	64
1	1	0	46.875	62.5	78.125	93.75	125	156.25	187.5	128
1	1	1	-	-	-	-	-	-	-	Reserved

Notes: 1. These frequencies are achieved in X 1 mode, $\mathrm{F}_{\text {PER }}=\mathrm{F}_{\mathrm{OSC}} \div 2$.
2. These frequencies are achieved in $X 2$ mode, $F_{\text {PER }}=F_{\text {OSC }}$.

Data Transfer

$\overline{\text { SS }}$ Management

The Clock Polarity bit (CPOL in SPCON) defines the default SCK line level in idle state ${ }^{(1)}$ while the Clock Phase bit (CPHA in SPCON) defines the edges on which the input data are sampled and the edges on which the output data are shifted (see Figure 119 and Figure 120).

For simplicity, Figure 119 and Figure 120 depict the SPI waveforms in idealized form and do not provide precise timing information. For timing parameters refer to the Section "AC Characteristics", page 247.
Note: 1. When the peripheral is disabled (SPEN $=0$), default SCK line is high level.
Figure 119. Data Transmission Format ($C P H A=0, U A R T M=0$)

Figure 120. Data Transmission Format $(C P H A=1, U A R T M=0)$

Figure 119 shows a SPI transmission with CPHA = 0, where the first SCK edge is the MSB capture point. Therefore the slave starts to output its MSB as soon as it is selected: $\overline{\mathrm{SS}}$ asserted to low level. $\overline{\mathrm{SS}}$ must then be de-asserted between each byte transmission (see Figure 121). SPDAT must be loaded with a data before $\overline{\text { SS }}$ is asserted again.
Note: In master mode, SPI transmission with CPHA $=0$ is not allowed in case of DFC transfer.

Figure 120 shows a SPI transmission with CPHA = 1, where the first SCK edge is used by the slave as a start of transmission signal. Therefore, $\overline{\text { SS }}$ may remain asserted between each byte transmission (see Figure 121). This format may be preferred in systems having only one master and only one slave driving the MISO data line.

Figure 121. $\overline{\mathrm{SS}}$ Timing Diagram

Queuing Transmission

Error Conditions

Mode Fault in Master Mode

For a SPI configured in master or slave mode, a queued data byte must be transmitted/received immediately after the previous transmission has completed.
When a transmission is in progress a new data can be queued and sent as soon as transmission has been completed. So it is possible to transmit bytes without latency, useful in some applications.

The SPTE bit in SPSCR is set as long as the transmission buffer is free. It means that the user application can write SPDAT with the next data to be transmitted until the SPTE becomes cleared.
Figure 122 shows a queuing transmission in master mode. Once the Byte 1 is ready, it is immediately sent on the bus. Meanwhile an other byte is prepared (and the SPTE is cleared), it will be sent at the end of the current transmission. The next data must be ready before the end of the current transmission.

Figure 122. Queuing Transmission In Master Mode

In slave mode it is almost the same except it is the external master that starts the transmission. Also, in slave mode, if no new data is ready, the last value received will be the next data byte transmitted.

The following flags in SPSCR register signal the SPI error conditions:

- MODF signals a mode fault condition.
- OVR signals an overrun condition.

MODF is set to warn that there may be a multi-master conflict for system control. In this case, the SPI controller is affected in the following ways:

- a SPI receiver/error CPU interrupt request is generated
- the SPEN bit in SPCON is cleared. This disables the SPI
- the MSTR bit in SPCON is cleared

Clearing the MODF bit is accomplished by reading SPSCR with MODF bit set, followed by a write to SPCON. SPI controller may be re-enabled (SPEN = 1) after the MODF bit is cleared.

Figure 123. Mode Fault Conditions in Master Mode ($\mathrm{CPHA}=1 / \mathrm{CPOL}=0$)

Mode Fault in Slave Mode

MODF error is detected when $\overline{S S}$ goes high during a transmission.
A transmission begins when $\overline{\text { SS }}$ goes low and ends once the incoming SCK goes back to its idle level following the shift of the eighth data bit.
A MODF error occurs if a slave is selected ($\overline{\mathrm{SS}}$ is low) and later unselected ($\overline{\mathrm{SS}}$ is high) even if no SCK is sent to that slave.
At any time, a ' 1 ' on the $\overline{\text { SS }}$ pin of a slave SPI puts the MISO pin in a high impedance state and internal state counter is cleared. Also, the slave SPI ignores all incoming SCK clocks, even if it was already in the middle of a transmission. A new transmission will be performed as soon as SS pin returns low.

Figure 124. Mode Fault Conditions in Slave Mode

Note: when $\overline{\mathrm{SS}}$ is disabled (SSDIS set) it is not possible to detect a MODF error in slave mode because the SPI is internally selected. Also the $\overline{\mathrm{SS}}$ pin becomes a general purpose I/O.

OverRun Condition

Interrupt

This error means that the speed is not adapted for the running application.
An OverRun condition occurs when a byte has been received whereas the previous one has not been read by the application yet.
The last byte (which generate the overrun error) does not overwrite the unread data so that it can still be read. Therefore, an overrun error always indicates the loss of data.

The SPI handles 3 interrupt sources that are the "end of transfer", the "mode fault" and the "transmit register empty" flags.

As shown in Figure 125, these flags are combined together to appear as a single interrupt source for the C51 core.
The SPIF flag is set at the end of an 8-bit shift in and out and is cleared by reading SPSCR and then reading from or writing to SPDAT.
The MODF flag is set in case of mode fault error and is cleared by reading SPSCR and then writing to SPCON.
The SPTE flag is set when the transmit register is empty and ready to receive new data. When SPTE interrupt source is enabled, SPIF flag does not generate any interrupt.
The SPI interrupt is enabled by setting ESPI bit in IEN1 register. This assumes interrupts are globally enabled by setting EA bit in IENO register.

Figure 125. SPI Interrupt System

Registers

Table 252. SPCON Register
SPCON (1:91h) - SPI Control Register

7	6	5	4	3	2	1	0
SPR2	SPEN	SSDIS	MSTR	CPOL	CPHA	SPR1	SPRO
$\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$	Bit Mnemonic	Description					
7	SPR2	SPI Rate Bit 2 Refer to Table 251 for bit rate description.					
6	SPEN	SPI Enable Bit Set to enable the SPI interface. Clear to disable the SPI interface.					
5	SSDIS	Slave Select Input Disable Bit Set to disable $\overline{\mathrm{SS}}$ in both master and slave modes. In slave mode this bit has no effect if CPHA $=0$. Clear to enable $\overline{\mathrm{SS}}$ in both master and slave modes.					

Bit Number	Bit Mnemonic	Description
4	MSTR	Master Mode Select Set to select the master mode. Clear to select the slave mode.
3	CPOL	SPI Clock Polarity Bit Set to have the clock output set to high level in idle state. Clear to have the clock output set to low level in idle state.
2	CPHA	SPI Clock Phase Bit Set to have the data sampled when the clock returns to idle state (see CPOL). Clear to have the data sampled when the clock leaves the idle state (see CPOL).
$1-0$	SPR1:0	SPI Rate Bits $\mathbf{0}$ and $\mathbf{1}$ Refer to Table 251 for bit rate description.

Reset Value $=0001$ 0100b

Table 253. SPSCR Register
SPSCR (1.92h) - SPI Status and Control Register

7	6	5	4	3	2	1	0
SPIF		OVR	MODF	SPTE	UARTM	SPTEIE	MODFIE
Bit Number	Bit Mnemonic	Description					
7	SPIF	SPI Interrupt Flag Set by hardware when an 8 -bit shift is completed. Cleared by hardware to indicate data transfer is in progress or has been acknowledged by a clearing sequence: reading or writing SPDAT after reading SPSCR.					
6		Reserved The value read from this bit is indeterminate. Do not set this bit.					
5	OVR	Overrun Error Flag Set by hardware when a byte is received whereas SPIF is set (the previous received data is not overwritten). Cleared by hardware when reading SPSCR.					
4	MODF	Mode Fault Interrupt Flag Set by hardware to indicate that the $\overline{\mathrm{SS}}$ pin is in inappropriate logic level. Cleared by hardware when reading SPSCR When MODF error occurred: - In slave mode: SPI interface ignores all transmitted data while $\overline{\mathrm{SS}}$ remains high. A new transmission is perform as soon as SS returns low. - In master mode: SPI interface is disabled (SPEN=0, see description for SPEN bit in SPCON register).					
3	SPTE	Serial Peripheral Transmit register Empty Interrupt Flag Set by hardware when transmit register is empty (if needed, SPDAT can be loaded with another data). Cleared by hardware when transmit register is full (no more data should be loaded in SPDAT).					
2	UARTM	Serial Peripheral UART mode Set to select UART mode: data is transmitted LSB first. Clear to select SPI mode: data is transmitted MSB first.					

Bit Number	Bit Mnemonic	Description
1	SPTEIE	SPTE Interrupt Enable Bit Set to enable SPTE interrupt generation. Clear to disable SPTE interrupt generation.
0	MODFIE	MODF Interrupt Enable Bit Set and cleared by software: - Set to enable MODF interrupt generation - Clear to disable MODF interrupt generation

Reset Value $=0000$ 1000b
Table 254. SPDAT Register
SPDAT (1:93h) - Synchronous Serial Data Register

7	6	5	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0

Bit Number	Bit Mnemonic	Description
$7-0$	SPD7:0	Synchronous Serial Data.

Reset Value $=$ XXXX XXXXb

Display Interface

The AT85C51SND3B derivatives implement a display interface allowing glueless direct interfacing (thanks to its highly configurable capability) to almost all of the LCD controllers found in either graphic or text LCD display.
These LCD controllers interface is from either 6800 or 8080 compatible type with some variant in the implementation.

The display interfaces to the C51 core through the following special function registers: LCDCONO, LCDCON1, the LCD control registers (see Table 256 and Table 257); LCDSTA, the LCD status register (see Table 258); LCDBUM, the LCD busy mask register (see Table 259); and LCDDAT, the LCD data register (see Table 260).
As shown in Figure 126, the Display Interface is divided in two major blocks: the Access Cycle Generator which generates read or write cycles to the LCD controller, and the Busy Check Processor which enables automatic busy checking after any read or write cycles.

Figure 126. Display Interface Block Diagram

Configuration

Interface Enable

Interface Selection

Setting LCEN bit in LCDCON1 enables the display interface. When this bit is cleared, all signals to the controller are switch back to I/O port alternate function. Thus after reset, all signals are set to high level.

The display interface is programmed in 6800 type or 8080 type by setting or clearing the LCIFS bit LCDCONO. Table 255 shows the pin configuration depending on the interface selected.

Table 255. Pin Configuration vs. LCD Controller Interface Type (6800/8080)

Pin Name	$\mathbf{8 0 8 0}$ Type Controller	$\mathbf{6 8 0 0}$ Type Controller
$\overline{\mathrm{LWR}} / \mathrm{LRW}$	$\overline{\mathrm{WR}}$	RW
$\overline{\mathrm{LRD}} / \mathrm{LDE}$	$\overline{\mathrm{RD}}$	E
$\mathrm{LAO} / \mathrm{LRS}$	$\mathrm{A0}$	RS
$\overline{\mathrm{LCS}}$	$\overline{\mathrm{CS}}$	$\overline{\mathrm{CS}}$
$\mathrm{LD7}: 0$	$\mathrm{D7}: 0$	$\mathrm{D} 7: 0$

Access Cycles

The AT85C51SND3B enables connection of LCD controller with normalized 6800 and 8080 interface as shown in Figure 127 and Figure 128, but also enables connection of LCD controller with non normalized 6800 and 8080 interface as shown in Figure 129 and Figure 130.
This is achieved by setting or clearing CYCT bit in LCDCON1 for selecting non normalized or normalized access type.

Figure 127. 6800 Normalized Type Access Cycle

Figure 128. 8080 Normalized Type Access Cycle

Figure 129. 6800 Special Type Access Cycle

Figure 130. 8080 Special Type Access Cycle

Timings Configuration

Address Set-Up and Hold Time

Access Width Time

As detailed in Figure 131, access cycle timing can be configured to comply with the LCD controller specification. These timing parameters are:

- Address set-up time
- Access width time
- Address hold time
- Sleep Wait time

The address set-up and hold time can be programmed by ADSUH1:0 bits in LCDCON0 from 1 oscillator clock period up to 4 oscillator clock periods. These timing are not dissociated and must be programmed to the highest time value of the set-up and hold time parameters.

The access width time can be programmed by ACCW3:0 bits in LCDCON0 from 1 oscillator clock period up to 16 oscillator clock period.

Sleep Wait Time
Full Access Cycle Time

Automatic Busy Process

Busy Report

Read / Write Operation

Write Access

Read Access

The sleep wait time is the time between two consecutive access cycle. It can be programmed by SLW1:0 bits in LCDCON1 from 1 oscillator clock period up to 4 oscillator clock periods

The full access cycle time can be computed by adding the address set-up time, the access width time, the address hold time and the sleep wait time. However, some LCD controller may require that the inactive state of the selection signal being equal to the access width time. In such case, LCYCW bit in LCDCON1 must be set.

Figure 131. Full Access Cycle Timing

An automatic busy check process can be enabled after any read or write access to the LCD controller to verify this one is ready to execute next instruction.
Busy check configuration uses BUINV bit in LCDCON0, BUM7:0 data in LCDBUM and RSCMD bit in LCDCON1.
RSCMD is used to program the address of the status register (L or H depending on the LCD controller) during the status read cycle.

The busy process performs reads of the LCD controller status register until all relevant busy bits are deasserted (i.e. controller ready). Relevant bits are selected by the BUM7:0 bits set. And busy asserted level is programmed by BUINV, set this bit when busy bit(s) are asserted low, clear it otherwise.
When LCDBUM is reset (i.e. all bits cleared), no busy check is performed.
The busy state report is done by the LCBUSY flag in LCDSTA. LCBUSY is set at the beginning of any read or write cycles and cleared at the end of any access cycle (after the sleep wait time) when the automatic busy check process is disabled or at the end of the first LCD controller ready status read cycle (after the sleep wait time) when the automatic busy check process is enabled.
LCBUSY flag must be checked before performing any read or write cycle to the LCD controller.

LCD controllers have two registers, the display data register and instruction/status register. To determine which register will be accessed, LCRS bit in LCDCON1 must be configured according to the LCD controller.

While the display interface is enabled, writing a data to LCDDAT launches a write cycle to the LCD controller according to the programmed configuration.

While the display interface is enabled, setting LCRD bit in LCDCON1 launches a read cycle to the LCD controller according to the programmed configuration. At the end of the read cycle, including busy time, data can be retrieved by reading LCDAT. Reading LCDAT automatically relaunches a new read cycle to the LCD controller allowing continuous read of data.

Table 256. LCDCONO Register
LCDCON0 (1.96h) - LCD Control Register 0

7	6	5	4	3	2	1	0
BUINV	LCIFS	ADSUH1	ADSUHO	ACCW3	ACCW2	ACCW1	ACCWO
Bit Number	Bit Mnemonic	Description					
7	BUINV	Busy Invert Active Set to check busy bits selected in LCDBUM as active low. Clear to check busy bits selected in LCDBUM as active high.					
6	LCIFS	Interface Select Bit Set to select 6800 interface type. Clear to select 8080 interface type.					
5-4	ADSUH1:0	Address Setup/Hold Address Setup and hold length in clock periods (from 1 to 4 clock periods).					
3-0	ACCW3:0	Access Cycle Width Access width in clock periods (from 1 to 16 clock periods). In 8080 mode, corresponds to WR or RD low state. In 6800 mode, corresponds to E high state.					

Reset Value $=00000000 \mathrm{~b}$

Table 257. LCDCON1 Register
LCDCON1 (1.8Eh) - LCD Control Register 1

7	6	5	4	3	2	1	0
SLW1	SLW0	RSCMD	LCYCW	LCYCT	LCEN	LCRD	LCRS
Bit Number	Bit Mnemonic	Description					
7-6	SLW1:0	Sleep Wait States Busy check process enabled Number of wait states between a read or write access and a busy check process (from 1 to 4 clock periods). Busy check process disabled Number of wait states between two read or write accesses (from 1 to 4 clock periods).					
5	RSCMD	RS Command/Status Set to output high level on LAO/LRS pin during busy check process. Clear to output low level on LAO/LRS pin during busy check process. This value depends on the LCD controller.					
4	LCYCW	Deassertion Cycle Width Set to program E or $\overline{\mathrm{RD}} \overline{\mathrm{WR}}$ signals deassertion time to the number of clock set in ACCW3:0 bits. \qquad Clear to let E or $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ signals deassertion time to the number of clock set in ADSUH1:0 + SLW1:0.					

Bit Number	Bit Mnemonic	Description
3	LCYCT	Cycle Type Selection Set to select non normalized access cycles (6800 or 8080 interface). Clear to select normalized access cycles (6800 or 8080 interface).
2	LCEN	LCD Interface Enable Set to enable the LCD Interface. Clear to disable the LCD Interface.
1	LCRD	LCD Read Command Set to initiate a read data or status register from LCD controller. Cleared by hardware at the end of read.
0	LCRS	LCD Register Select Set to output high level on LAO/LRS pin during next read or write access. Clear to output low level on LAO/LRS pin during next read or write access. This value depends on the LCD controller.

Reset Value $=00000000 \mathrm{~b}$

Table 258. LCDSTA Register
LCDSTA (1.8Fh) - LCD Status Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	
-	-	-	-	-	-	-	LCBUSY
Bit Number	Bit Mnemic	Description					
$7: 1$	-	Reserved The value read from these bits is always 0. Do not set these bits.					
0	LCBUSY	Busy Flag Set by hardware during any access to the LCD controller and while LCD controller is busy if busy check process is enabled.					

Reset Value $=0000$ 0000b

Table 259. LCDBUM Register
LCDBUM (1.8Dh) - LCD Busy Mask Register

7	6	5	4	3	2	1	0
BUM7	BUM6	BUM5	BUM4	BUM3	BUM2	BUM1	BUMO
Bit Number	Bit Mnemonic	Description					
7:0	BUM7:0	Busy Mask Set bits to be checked during the busy check process and thus enable the busy check process. Clear all bits to disable the busy check process.					

Reset Value $=0000$ 0000b

Table 260. LCDDAT Register
LCDDAT (1.97h) - LCD Data Register

7	6	5	4	3	2	1	0
LD7	LD6	LD5	LD4	LD3	LD2	LD1	LDO
Bit Number	Bit Mnemonic	Description					
7:0	LD7:0	LCD Data Byte Reading a data automatically initiates a new read cycle to the LCD controller.					

Reset Value $=0000$ 0000b

Keyboard Interface

Description

The AT85C51SND3B derivatives implement a keyboard interface allowing the connection of a $4 \times n$ matrix keyboard. It is based on 4 inputs with programmable interrupt capability on both high or low level. These inputs are available as alternate function of P1.3:0 and allow exit from idle and power down modes.

The keyboard interfaces with the C51 core through 2 special function registers: KBCON, the keyboard control register (see Table 261); and KBSTA, the keyboard control and status register (see Table 262).
The keyboard inputs are considered as 4 independent interrupt sources sharing the same interrupt vector. An interrupt enable bit (EKB in IEN1 register) allows global enable or disable of the keyboard interrupt (see Figure 132). As detailed in Figure 133 each keyboard input has the capability to detect a programmable level according to KINL3:0 bit value in KBCON register. Level detection is then reported in interrupt flags KINF3:0 in KBSTA register.

A keyboard interrupt is requested each time one of the four flags is set, i.e. the input level matches the programmed one. Each of these four flags can be masked by software using KINM3:0 bits in KBCON register and is cleared by reading KBSTA register. This structure allows keyboard arrangement from 1 by n to 4 by n matrix and allows usage of KIN inputs for any other purposes.

Figure 132. Keyboard Interface Block Diagram

Figure 133. Keyboard Input Circuitry

Power Reduction Modes
KIN3:0 inputs allow exit from idle and power-down modes as detailed in Section "Power Reduction Mode", page 21. To enable power-down mode exit, KPDE bit in KBSTA register must be set.

Due to the asynchronous keypad detection in power down mode (all clocks are stopped), exit may happen on parasitic key press. In this case, no key is detected and software returns to power down again.

Table 261. KBCON Register
KBCON (0.A3h) - Keyboard Control Register

7	6	5	4	3	2	1	0
KINL3	KINL2	KINL1	KINLO	KINM3	KINM2	KINM1	KINMO
Bit Number	Bit Mnemonic	Description					
7-4	KINL3:0	Keyboard Input Level Bit Set to enable a high level detection on the respective KIN3:0 input. Clear to enable a low level detection on the respective KIN3:0 input.					
3-0	KINM3:0	Keyboard Input Mask Bit Set to prevent the respective KINF3:0 flag from generating a keyboard interrupt. Clear to allow the respective KINF3:0 flag to generate a keyboard interrupt.					

Reset Value $=0000$ 1111b
Table 262. KBSTA Register
KBSTA (0.A4h) - Keyboard Control and Status Register

7	6	5	4	3	2	1	0
KPDE	KDCPE	KDCPL	-	KINF3	KINF2	KINF1	KINFO
Bit Number	Bit Mnemonic	Description					
7	KPDE	Keyboard Power Down Enable Bit Set to enable exit of power down mode by the keyboard interrupt. Clear to disable exit of power down mode by the keyboard interrupt.					
6	KDCPE	Keyboard $\overline{\text { DCPWR Pin Enable }}$ Set to connect $\overline{\text { DCPWR }}$ pin on KINO input. Clear to isolate $\overline{\text { DCPWR }}$ pin from KINO input.					
5	KDCPL	Keyboard $\overline{\text { DCPWR }}$ Pin Line Set by hardware and represent the level on $\overline{\text { DCPWR }}$ input.					
4	-	Reserved The value read from this bit is always 0 . Do not set this bit.					
3-0	KINF3:0	Keyboard Input Interrupt Flag Set by hardware when the respective KIN3:0 input detects a programmed level. Cleared when reading KBSTA.					

Reset Value $=0010$ 0000b

Electrical Characteristics

Absolute Maximum Rating

Storage Temperature -65 to +150 ${ }^{\circ} \mathrm{C}$	
Voltage on any other Pin to $\mathrm{V}_{\text {SS }}$	-0.3 to +4.0 V
$\mathrm{I}_{\text {OL }}$ per I/O Pin. 5 mA
Power Dissipation. 1 W
Operating Conditions	
Ambient Temperature Under Bias...................... 40 to $+85^{\circ} \mathrm{C}$	
$V_{D D}$TBD V

*NOTICE: \quad Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "operating conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

DC Characteristics

Digital Logic

Table 263. Digital DC Characteristics
$10 V_{D D}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ ${ }^{(1)}$	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.25 \cdot 10 V_{\text {DD }}$	V	
$\mathrm{V}_{\mathrm{H}+1}$	Input High Voltage (except X1)	$0.65 \cdot 10 V_{\text {DD }}$		$1 \mathrm{IOV}_{\text {D }}+0.5$	V	
$\mathrm{V}_{\mathrm{HH} 2}$	Input High Voltage (X1)	$0.7 \cdot I O V_{\text {D }}$		$1 \mathrm{IV}_{\text {DD }}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$
$\mathrm{V}_{\text {OH1 }}$	Output High Voltage (P0, P1, P2, P3, P4, P5)	$10 V_{D D}-0.7$			V	$\mathrm{I}_{\mathrm{OH}}=-30 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage (NFD7:0, NFALE, NFCLE, NFRE, NFWE, NFCE3:0, LD7:0, SDCMD, SDLCK, SDDAT3:0, RXD, TXD, MISO, MOSI, $\overline{R T S}$, LCS, LAO/LRS, $\overline{\text { LRD/LDE, }}$ $\overline{L W R} / L R W, \overline{S C S}, \overline{S R D}, \overline{S W R}$, SAO, OCLK, DCLK, DDAT, DSEL)	$10 V_{D D}-0.7$			V	$\mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA}$
$1 / 1$	Logical 0 Input Current (P0, P1, P2, P3, P4, P5)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
I_{LI}	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Input Leakage Current } \\ (\text { NFD7:0, } \quad \text { NFALE, } \end{array} \\ \hline \text { NFRE, NFCLE, } \end{array}$			10	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {DD }}$
$\mathrm{I}_{\text {TL }}$	Logical 1 to 0 Transition Current (P0, P1, P2, P3, P4 and P5)			-650	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\text {RST }}$	$\overline{\text { RST Pull-Up Resistor }}$	10	16	21	$\mathrm{k} \Omega$	
C_{10}	Pin Capacitance		10		pF	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes: 1. Typical values are obtained at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. They are not tested and there is no guarantee on these values.

Oscillator \& Crystal

Schematic

Parameters

Figure 134. Crystal Connection

Note: For operation with most standard crystals, no external components are needed on X1 and X2. It may be necessary to add external capacitors on X1 and X2 to ground in special cases (max 10 pF).

Table 264. Oscillator \& Crystal Characteristics
$V_{D D}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{C}_{\mathrm{X} 1}$	Internal Capacitance (X1 - VSS)		10		pF
$\mathrm{C}_{\mathrm{X} 2}$	Internal Capacitance (X2 - VSS)		10		pF
C_{L}	Equivalent Load Capacitance (X1 - X2)		5		pF
DL	Drive Level			50	$\mu \mathrm{~W}$
F	Crystal Frequency ${ }^{(1)}$	12		24	MHz
RS	Crystal Series Resistance			40	Ω
CS	Crystal Shunt Capacitance			6	pF

Notes: 1. Authorized crystal frequencies are 12, 16, 20 and 24 MHz
2. Authorised input frequencies are $12,13,16,19.2,19.5,20,24$ and 26 MHz

DC to DC Convertor

Schematic
Figure 135. Battery DC-DC Connection

Notes: 1. Mandatory connection if DC-DC is used.
2. Depending on power supply scheme, $\mathrm{C}_{\mathrm{DC} 1}$ may replace C_{LV} capacitor (see Figure 136).

Parameters

Table 265. DC-DC Filter Characteristics
$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit
L_{DC}	DC-DC Inductance		10		$\mu \mathrm{H}$
$\mathrm{C}_{\mathrm{DC} 1}$	Low ESR Decoupling Capacitor		20		$\mu \mathrm{~F}$
$\mathrm{C}_{\mathrm{DC} 2}$	Low ESR Decoupling Capacitor		100		nF

Table 266. DC-DC Power Characteristics
$\mathrm{V}_{\mathrm{BAT}}=0.9$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
$\mathrm{V}_{\text {BAT }}$	DC-DC Input Voltage	0.9		3.6	V	$\mathrm{I}_{\mathrm{DC}}=40 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{DC}}$	DC-DC Output Voltage	1.6	1.75	1.9	V	$\mathrm{I}_{\mathrm{DC}}=40 \mathrm{~mA}$
I_{DC}	DC-DC Output Current			40	mA	$\mathrm{~V}_{\mathrm{BAT}}=1.0 \mathrm{~V}$
$\mathrm{H}_{\text {MAX }}$	Maximum Efficiency	92			$\%$	$\mathrm{~V}_{\mathrm{BAT}}=1.5 \mathrm{~V}$
$\mathrm{~F}_{\text {SWITCH }}$	Switching Frequency	0.5	1.5	3	MHz	
$\mathrm{R}_{\mathrm{DCP}}$	$\overline{\mathrm{DCPWR}}$ Input Pull-Up Resistor		30		$\mathrm{~K} \Omega$	

Regulators
Schematic

Parameters

Figure 136. Regulator Connection

Note: Depending on power supply scheme, C_{LV} may replace $\mathrm{C}_{\mathrm{DC} 1}$ capacitor (see Figure 135).
Table 267. Regulator Filter Characteristics
$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit
C_{HV}	Decoupling Capacitor		10		$\mu \mathrm{~F}$
C_{LV}	Decoupling Capacitor		20		$\mu \mathrm{~F}$

Table 268. High Voltage Regulator Power Characteristics
$U V_{C C}=4.4$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
V_{HV}	High Voltage Regulator Output Voltage	3.1	3.3	3.5	V	$\mathrm{I}_{\mathrm{DC}}=50 \mathrm{~mA}$
I_{HV}	High Voltage Regulator Output Current			50	mA	

Table 269. Low Voltage Regulator Power Characteristics
HV DD $=3$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
V_{LV}	Low Voltage Regulator Output Voltage	1.7	1.8	1.9	V	$\mathrm{I}_{\mathrm{DC}}=50 \mathrm{~mA}$
I_{LV}	Low Voltage Regulator Output Current			50	mA	

USB

Schematic

Parameters
Figure 137. USB Connection

Table 270. USB Component Characteristics
$\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{R}_{\text {UFT }}$	USB Full Speed Termination Resistor		39		Ω
$\mathrm{R}_{\text {UB }}$	USB Bias Filter Resistor		6810		Ω
$\mathrm{C}_{\text {UB }}$	USB Bias Filter Capacitor		10		pF

Audio Codec

Schematic
Figure 138. Audio Codec Connection

Parameters

MMC Controller

Schematic

Parameters

Table 271. Audio Codec Components Characteristics
$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit
C $_{\text {OUT }}$	OUTR/OUTL DC-Decoupling Capacitor		$100^{(1)}$ $0.1^{(2)}$		$\mu \mathrm{F}$
$\mathrm{C}_{\text {INL }}$	LINR/LINL DC-Decoupling Capacitor		1		$\mu \mathrm{~F}$
$\mathrm{C}_{\text {INM }}$	MICIN DC-Decoupling Capacitor		1		$\mu \mathrm{~F}$
$\mathrm{C}_{\text {VCM }}$	AVCM Filter Capacitor		100		nF
$\mathrm{C}_{\text {AREF }}$	AREF Filter Capacitor		1		$\mu \mathrm{~F}$
$\mathrm{C}_{\text {MB }}$	MICBIAS Filter Capacitor		10		nF

Notes: 1. Value in low impedance mode (Headphone mode when AODRV = 1)
2. Value in high impedance mode (Line out mode when AODRV $=0$)

Figure 139. MMC Connection

Table 272. MMC Components Characteristics
$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit
$R_{\text {CMD }}$	MMC/SD Command Line Pull-Up Resistor		10		$\mathrm{~K} \Omega$
$\mathrm{R}_{\text {DAT }}$	MMC/SD Data Line Pull-Up Resistor		100		$\mathrm{~K} \Omega$

AC Characteristics

NFC Interface

Definition of Symbols

Timings

Table 273. NFC Interface Timing Symbol Definitions

Signals	
D	NFD7:0 In
Q	NFD7:0 Out
R	$\overline{\text { NFRE }}$
W	$\overline{\text { NFWE }}$
E	$\overline{\text { NFCEn }}$
A	NFALE
C	NFCLE

Table 274. NFC Command Latch Cycle AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 40 \mathrm{pF}$ (4 NF)

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {ELWH }}$	$\overline{\text { NFCEn Write Setup Time }}$	$3 \cdot \mathrm{~T}_{\mathrm{NFC}}-? ?$		ns
$\mathrm{t}_{\text {WHEH }}$	NFCEn Write Hold Time	$1 \cdot \mathrm{~T}_{\mathrm{NFC}}-? ?$		ns
$\mathrm{t}_{\text {CHWH }}$	NFCLE Setup Time	$3 \cdot \mathrm{~T}_{\mathrm{NFC}}-?$?		ns
$\mathrm{t}_{\text {WHCL }}$	NFCLE Hold Time	$1 \cdot \mathrm{~T}_{\mathrm{NFC}}-$??		ns
$\mathrm{t}_{\text {WLW }}$	$\overline{\text { NFWE Pulse Width }}$	$2 \cdot \mathrm{~T}_{\mathrm{NFC}}-? ?$		ns
$\mathrm{t}_{\text {QVwh }}$	Data Setup Time	$2 \cdot \mathrm{~T}_{\mathrm{NFC}}-? ?$		ns
$\mathrm{t}_{\text {WHQX }}$	Data Hold Time	$1 \cdot \mathrm{~T}_{\mathrm{NFC}}-? ?$		ns

Table 275. NFC Address Latch Cycle AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to 3.6 V ; $\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 40 \mathrm{pF}$ (4 NF)

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {ELWH }}$	$\overline{\text { NFCEn }}$ Write Setup Time	$3 \cdot \mathrm{~T}_{\mathrm{NFC}}-? ?$		ns
$\mathrm{t}_{\text {WHEH }}$	$\overline{\text { NFCEn Write Hold Time }}$	$1 \cdot \mathrm{~T}_{\mathrm{NFC}^{-}}$??		ns
$\mathrm{t}_{\text {AHWH }}$	NFALE Setup Time	$3 \cdot \mathrm{~T}_{\mathrm{NFC}}-$??		ns
$\mathrm{t}_{\text {WHAL }}$	NFALE Hold Time	$1 \cdot \mathrm{~T}_{\mathrm{NFC}}-$??		ns
$t_{\text {WLWH }}$	$\overline{\text { NFWE Pulse Width }}$	$2 \cdot \mathrm{~T}_{\mathrm{NFC}}-$??		ns
$\mathrm{t}_{\text {QVWH }}$	Data Setup Time	$2 \cdot \mathrm{~T}_{\mathrm{NFC}}-? ?$		ns
$\mathrm{t}_{\text {WHQX }}$	Data Hold Time	$1 \cdot \mathrm{~T}_{\mathrm{NFC}}-$??		ns

Table 276. NFC Interface Write Cycle AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 40 \mathrm{pF}$ (4 NF)

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {ELWH }}$	$\overline{\text { NFCEn Write Setup Time }}$	$3 \cdot \mathrm{~T}_{\text {NFC }}-? ?$		ns
$\mathrm{t}_{\text {WHEH }}$	$\overline{\text { NFCEn Write Hold Time }}$	$1 \cdot \mathrm{~T}_{\text {NFC }}-? ?$		ns
$\mathrm{t}_{\text {WLWH }}$	$\overline{\text { NFWE Pulse Width }}$	$2 \cdot \mathrm{~T}_{\text {NFC }}-? ?$		ns
$\mathrm{t}_{\text {QVWH }}$	Data Setup Time	$2 \cdot \mathrm{~T}_{\text {NFC }}-? ?$		ns
$\mathrm{t}_{\text {WHQX }}$	Data Hold Time	$1 \cdot \mathrm{~T}_{\text {NFC }}-? ?$		ns

Table 277. NFC Interface Read Cycle AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 40 \mathrm{pF}$ (4NF)

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {RLRH }}$	$\overline{\text { NFRE Pulse Width }}$	$2 \cdot \mathrm{~T}_{\text {NFC }}-? ?$ $3 \cdot \mathrm{~T}_{\text {NFC }}-? ?$		$\mathrm{~ns}^{(1)}$
$\mathrm{t}_{\text {ELDV }}$	$\overline{\text { NFCEn Access Time }}$		$? ?$	ns
$\mathrm{t}_{\text {RLDV }}$	$\overline{\text { NFRE Access Time }}$		$? ?$	ns
$\mathrm{t}_{\text {RHDX }}$	Data Hold Time		$? ?$	
$\mathrm{t}_{\text {RHDZ }}$	Data Float after $\overline{\text { NFRE }} \mathrm{High}$	ns		
$\mathrm{t}_{\text {EHDZ }}$	Data Float after $\overline{\text { NFCEn }} \overline{\text { High }}$		$? ?$	ns

Note: 1. Refer to TRS bit in NFCON register.

Figure 140. NFC Command Latch Cycle Waveforms

Figure 141. NFC Address Latch Cycle Waveforms

Figure 142. NFC Write Cycle Waveforms

Figure 143. NFC Read Cycle Waveforms

MMC Interface

Definition of symbols

Timings

Waveforms

LCD Interface

Definition of Symbols

Table 278. MMC Interface Timing Symbol Definitions

Signals	
C	Clock
D	Data In
O	Data Out

Conditions	
H	High
L	Low
V	Valid
X	No Longer Valid

Table 279. MMC Interface AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to 3.6 V ; $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 40 \mathrm{pF}$ (4 cards)

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {CHCH }}$	Clock Period	40		ns
$\mathrm{t}_{\text {CHCX }}$	Clock High Time	10		ns
$\mathrm{t}_{\text {CLCX }}$	Clock Low Time	10		ns
$\mathrm{t}_{\text {CLCH }}$	Clock Rise Time		10	ns
$\mathrm{t}_{\text {CHCL }}$	Clock Fall Time		10	ns
$\mathrm{t}_{\text {DVCH }}$	Input Data Valid to Clock High	3		ns
$\mathrm{t}_{\text {CHDX }}$	Input Data Hold after Clock High	3		ns
$\mathrm{t}_{\text {CHOX }}$	Output Data Hold after Clock High	5		ns
$\mathrm{t}_{\text {OVCH }}$	Output Data Valid to Clock High	5		ns

Figure 144. MMC Input-Output Waveforms

Table 280. LCD Interface Timing Symbol Definitions

Signals	
D	LCD7:0 In
Q	LCD7:0 Out

Conditions	
H	High
L	Low

Signals	
A	LAO/LRS
R	$\overline{\text { LRD }}$
W	$\overline{\mathrm{LWR}}$
S	$\overline{\text { LCS }}$
E	LDE

Conditions	
V	Valid
X	No Longer Valid
Z	Floating

Timings
Table 281. LCD 8080 Write Cycle AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 50 \mathrm{pF}$

Symbol	Parameter	Min	Max	Unit
$t_{\text {SLWH }}$	$\overline{\text { LCS Write Setup Time }}$	$? ?$		ns
$\mathrm{t}_{\text {WHSH }}$	$\overline{\text { LCS Write Hold Time }}$	$? ?$		ns
$\mathrm{t}_{\text {QVWH }}$	Data Setup Time	$? ?$		ns
$\mathrm{t}_{\text {WHQX }}$	Data Hold Time	$? ?$		ns
$\mathrm{t}_{\text {WLWH }}$	$\overline{\text { LWR/LRW Pulse Width }}$	$? ?$		ns

Table 282. LCD 8080 Read Cycle AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 50 \mathrm{pF}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {SLDV }}$	$\overline{\text { LCS } A c c e s s ~ T i m e ~}$		$? ?$	ns
$\mathrm{t}_{\text {RLDV }}$	$\overline{\text { LRD/LDE Access Time }}$		$? ?$	ns
$\mathrm{t}_{\text {RHDX }}$	Data Hold Time After $\overline{\mathrm{LRD} / L D E ~ H i g h ~}$	$? ?$		ns
$\mathrm{t}_{\text {RHDZ }}$	Data Float Time After $\overline{\mathrm{LRD} / L D E ~ H i g h ~}$	$? ?$		ns
$\mathrm{t}_{\text {RLRH }}$	$\overline{\text { LRD/LDE Pulse Width }}$	$? ?$		ns

Table 283. LCD 6800 Write Cycle AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 50 \mathrm{pF}$

Symbol	Parameter	Min	Max	Unit
$t_{\text {SLEL }}$	$\overline{\text { LCS Write Setup Time }}$	$? ?$		ns
$\mathrm{t}_{\text {ELSH }}$	$\overline{\text { LCS }}$ Write Hold Time	$? ?$		ns
$\mathrm{t}_{\text {AVEH }}$	Address Setup Time	$? ?$		ns
$\mathrm{t}_{\text {ELAX }}$	Address Hold Time	$? ?$		ns
$\mathrm{t}_{\text {QVEL }}$	Data Setup Time	$? ?$		ns
$\mathrm{t}_{\text {ELQX }}$	Data Hold Time	$? ?$		ns
$\mathrm{t}_{\text {EHEL }}$	$\overline{\text { LRD/LDE Pulse Width }}$	$? ?$		ns

Table 284. LCD 6800 Read Cycle AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 50 \mathrm{pF}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {SLDV }}$	$\overline{\mathrm{LCS}}$ Access Time		$? ?$	ns
$\mathrm{t}_{\text {EHDV }}$	$\overline{\text { LRD/LDE Access Time }}$	$? ?$	ns	
$\mathrm{t}_{\text {AVDV }}$	Address Access Time		$? ?$	ns
$\mathrm{t}_{\text {AVEH }}$	Address Setup Time	$? ?$		ns
$\mathrm{t}_{\text {AVEH }}$	Address Access Time		$? ?$	ns
$\mathrm{t}_{\text {ELDX }}$	Data Hold Time After $\overline{\mathrm{LRD} / L D E ~ L o w ~}$	$? ?$		ns
$\mathrm{t}_{\text {ELDZ }}$	Data Float Time After $\overline{\mathrm{LRD} / L D E ~ L o w ~}$	$? ?$		ns
$\mathrm{t}_{\text {ELEH }}$	$\overline{\mathrm{LRD} / L D E ~ P u l s e ~ W i d t h ~}$	$? ?$		ns

Figure 145. LCD 8080 Write Cycle Waveform

Figure 146. LCD 8080 Read Cycle Waveform

Figure 147. LCD 6800 Write Cycle Waveform

Figure 148. LCD 6800 Read Cycle Waveform

PSI Interface

Definition of Symbols
Table 285. PSI Interface Timing Symbol Definitions

Signals	
D	SD7:0 In
Q	SD7:0 Out
A	SA0
R	$\overline{\text { SRD }}$
W	$\overline{\text { SWR }}$
E	$\overline{S C S}$

Conditions	
H	High
L	Low
V	Valid
X	No Longer Valid
Z	Floating

Timings

Waveforms

Table 286. PSI Write Cycle AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 50 \mathrm{pF}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {AVAV }}$	Write Cycle Time	4		$\mathrm{~T}_{\text {OSC }}$
$\mathrm{t}_{\text {WLWH }}$	SWR Pulse Width	$3+$ PSWS $^{(1)}$		$\mathrm{T}_{\text {OSC }}$
$\mathrm{t}_{\text {AVEL }}$	Address Setup Time	0		ns
$\mathrm{t}_{\text {WHAX }}$	Address Hold Time	0		ns
$\mathrm{t}_{\text {WLDV }}$	$\overline{\text { SWR }}$ to Data Valid Time		$3+$ PSWS $^{(1)}$	$\mathrm{T}_{\text {OSC }}$
$\mathrm{t}_{\text {WHDX }}$	Data Hold Time	0		ns
$\mathrm{t}_{\text {ELWH }}$	$\overline{\text { SCS }}$ Setup Time	$4+$ PSWS $^{(1)}$		$\mathrm{T}_{\text {OSC }}$
$\mathrm{t}_{\text {WHEH }}$	$\overline{\text { SCS }}$ Hold Time	0		ns

Note: 1. PSWS2:0 value in PSICON register
Table 287. PSI Read Cycle AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 50 \mathrm{pF}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {AVAV }}$	Read Cycle Time	4		$\mathrm{~T}_{\text {OSC }}$
$\mathrm{t}_{\text {RLRH }}$	$\overline{\text { SRD Pulse Width }}$	2		$\mathrm{~T}_{\text {OSC }}$
$\mathrm{t}_{\text {ELQV }}$	$\overline{\text { SCS Access Time }}$		3.5	$\mathrm{~T}_{\text {OSC }}$
$\mathrm{t}_{\text {AVQV }}$	Address Access Time		3.5	$\mathrm{~T}_{\text {OSC }}$
$\mathrm{t}_{\text {RLQV }}$	$\overline{\text { SRD Access Time }}$		1.5	$\mathrm{~T}_{\text {OSC }}$
$\mathrm{t}_{\text {EHQZ }}$	Data Float after $\overline{\text { SCS }}$ High		1.5	$\mathrm{~T}_{\text {OSC }}$
$\mathrm{t}_{\text {RHQZ }}$	Data Float after $\overline{\text { SRD }}$ High		1.5	$\mathrm{~T}_{\text {OSC }}$

Figure 149. PSI Write Cycle Waveform

Figure 150. PSI Read Cycle Waveform

SPI Interface

Definition of Symbols
Table 288. SPI Interface Timing Symbol Definitions

Signals	
C	Clock
I	Data In
O	Data Out

Conditions	
H	High
L	Low
V	Valid
X	No Longer Valid
Z	Floating

Timings
Test conditions: capacitive load on all pins $=50 \mathrm{pF}$.

Table 289. SPI Interface Master AC Timing
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Unit
Slave Mode				
$\mathrm{t}_{\mathrm{CHCH}}$	Clock Period	2		$\mathrm{T}_{\text {PER }}$
$\mathrm{t}_{\text {CHCX }}$	Clock High Time	0.8		$\mathrm{T}_{\text {PER }}$
$\mathrm{t}_{\text {CLCX }}$	Clock Low Time	0.8		$\mathrm{T}_{\text {PER }}$
$\mathrm{t}_{\text {SLCH, }}, \mathrm{t}_{\text {SLCL }}$	$\overline{\text { SS }}$ Low to Clock edge	100		ns
$\mathrm{t}_{\text {IVCL }}, \mathrm{t}_{\mathrm{IVCH}}$	Input Data Valid to Clock Edge	40		ns
$\mathrm{t}_{\text {CLIX }}, \mathrm{t}_{\text {CHIX }}$	Input Data Hold after Clock Edge	40		ns
$\mathrm{t}_{\text {cLov, }} \mathrm{t}_{\text {chov }}$	Output Data Valid after Clock Edge		40	ns
$\mathrm{t}_{\text {clox }}, \mathrm{t}_{\text {chox }}$	Output Data Hold Time after Clock Edge	0		ns
$\mathrm{t}_{\text {CLSH }}, \mathrm{t}_{\text {CHSH }}$	$\overline{\text { SS }}$ High after Clock Edge	0		ns
$\mathrm{t}_{\text {sLov }}$	$\overline{\text { SS Low to Output Data Valid }}$		50	ns
$\mathrm{t}_{\text {SHOX }}$	Output Data Hold after $\overline{\text { SS }}$ High		50	ns
$\mathrm{t}_{\text {SHSL }}$	$\overline{\text { SS }}$ High to $\overline{\text { SS }}$ Low	${ }^{(1)}$		
$\mathrm{t}_{\text {LIIH }}$	Input Rise Time		2	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIL }}$	Input Fall Time		2	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{OLOH}}$	Output Rise time		100	ns
$\mathrm{t}_{\text {OHOL }}$	Output Fall Time		100	ns
Master Mode				
$\mathrm{t}_{\mathrm{CHCH}}$	Clock Period	2		$\mathrm{T}_{\text {PER }}$
$\mathrm{t}_{\text {chCx }}$	Clock High Time	0.8		$\mathrm{T}_{\text {PER }}$
$\mathrm{t}_{\text {CLCX }}$	Clock Low Time	0.8		$\mathrm{T}_{\text {PER }}$
$\mathrm{tivCL} \mathrm{t}_{\mathrm{IVCH}}$	Input Data Valid to Clock Edge	20		ns
$\mathrm{t}_{\text {CLIX }}, \mathrm{t}_{\text {CHIX }}$	Input Data Hold after Clock Edge	20		ns
$\mathrm{t}_{\text {cLov, }} \mathrm{t}_{\text {chov }}$	Output Data Valid after Clock Edge		40	ns
$\mathrm{t}_{\text {clox }}, \mathrm{t}_{\text {chox }}$	Output Data Hold Time after Clock Edge	0		ns
$\mathrm{t}_{\text {LIIH }}$	Input Data Rise Time		2	$\mu \mathrm{s}$
$\mathrm{t}_{\text {IHIL }}$	Input Data Fall Time		2	$\mu \mathrm{s}$
toloh	Output Data Rise time		50	ns
$\mathrm{t}_{\mathrm{OHOL}}$	Output Data Fall Time		50	ns

Note: 1. Value of this parameter depends on software.

Waveforms

Figure 151. SPI Slave Waveforms (SSCPHA=0)

Note: 1. Not Defined but generally the MSB of the character which has just been received.
Figure 152. SPI Slave Waveforms (SSCPHA=1)

Note: 1. Not Defined but generally the LSB of the character which has just been received.

Figure 153. SPI Master Waveforms (SSCPHA= 0)

Note: $\quad \overline{\mathrm{SS}}$ handled by software using general purpose port pin.
Figure 154. SPI Master Waveforms (SSCPHA=1)

Note: $\overline{\mathrm{SS}}$ handled by software using general purpose port pin.

Audio DAC Interface

Definition of symbols

Timings

Waveforms

External Clock Interface

Definition of symbols

Table 290. Audio DAC Interface Timing Symbol Definitions

Signals	
C	Clock
O	Data Out
S	Data Select

Conditions	
H	High
L	Low
V	Valid
X	No Longer Valid

Table 291. Audio Interface AC timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{CL} \leq 30 \mathrm{pF}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {CHCH }}$	Clock Period		$325.5^{(1)}$	ns
$\mathrm{t}_{\text {CHCX }}$	Clock High Time	30		ns
$\mathrm{t}_{\text {CLCX }}$	Clock Low Time	30		ns
$\mathrm{t}_{\text {CLCH }}$	Clock Rise Time		10	ns
$\mathrm{t}_{\text {CHCL }}$	Clock Fall Time		10	ns
$\mathrm{t}_{\text {CLSV }}$	Clock Low to Select Valid		10	ns
$\mathrm{t}_{\text {CLOV }}$	Clock Low to Data Valid		10	ns

Note: 1. 32 -bit format with $\mathrm{Fs}=48 \mathrm{KHz}$.
Figure 155. Audio Interface Waveforms

Timings

Waveforms

Table 293. External Clock AC Timings
$\mathrm{V}_{\mathrm{DD}}=1.65$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {CLCL }}$	Clock Period	38		ns
$\mathrm{t}_{\text {CHCX }}$	High Time	10		ns
$\mathrm{t}_{\text {CLCX }}$	Low Time	10		ns
$\mathrm{t}_{\text {CLCH }}$	Rise Time	3		ns
$\mathrm{t}_{\text {CHCL }}$	Fall Time	3		ns
$\mathrm{t}_{\text {CR }}$	Cyclic Ratio in X2 mode	40	60	$\%$

Figure 156. External Clock Waveform

Ordering Information

Table 294. Ordering Information

Part Number	Temp. Range	Package	Packing	Product Marking	MP3 Royalties
AT85SND3B1N-RTTUL	Industrial \& Green	LQFP100	Tray	85C51SND3B1N-UL	No
AT85SND3B1N-7FTUL	Industrial \& Green	CTBGA100	Tray	85C51SND3B1N-UL	No
AT85SND3B1-RTTUL	Industrial \& Green	LQFP100	Tray	85C51SND3B1-UL	Yes
AT85SND3B1-7FTUL	Industrial \& Green	CTBGA100	Tray	85C51SND3B1-UL	Yes

Table 295. Part Number Information

Part Number	1.8V DC-DC	Stereo DAC
85SND3B0	No	No
85SND3B1	No	Yes
85SND3B2	Yes	Yes

Package Information

LQFP 100

	MM		INCH	
	Min	Max	Min	Max
A	1. 40	1. 60	055	063
A 1	1. 35	1. 45	. 053	. 057
C	0. 17 BSC		007 BSC	
D	15.80	16. 20	. 622	. 638
D1	13.90	14.10	. 547	555
E	15.80	16. 20	622	638
E1	13.90	14.10	547	. 555
」	0.05	0. 15	. 002	. 006
L	0. 45	0.75	. 018	. 030
e	0. 50 BSC		0197 BSC	
f	0. 22 BSC		. 009 BSC	

CTBGA 100

TOP VIEW

SIDE VIEW

BOTTOM VIEW

	mm		
	M IN	NDM	MAX
A			1. 20
A 1	0. 25	0.30	0. 35
A2	0. 55	0.60	0. 65
e	0.80 BSC		
E / D	8. 95	9.00	9.05
I / J	0. 90 REF		
b	0. 25		0. 45

Document Revision History

Changes from
Rev. A-03/06 to
Rev. B-04/06
Changes from
Rev. B-04/06 to
Rev. C-10/06
Changes from
Rev. C-10/06 to
Rev. D-01/07

1. Update to "Electrical Characteristics" on page 242.
2. Update to product features on page 1.
3. Added BGA pinout drawing on page 7 .
4. PSI Timings updated.
5. Part numbers changed.
6. Correction to ordering information.

Table of Contents

Features 1
Description 2
Key Features 3
Block Diagram 4
Application Information 5
Pin Description 6
Pinouts 6
Signals Description 8
Internal Pin Structure 16
Power Management 19
Power Supply 19
Power Reduction Mode 21
Reset 24
Registers 26
Clock Controller 28
Oscillator 28
Clock Generator. 29
System Clock Generator 30
DFC/NFC Clock Generator 31
MMC Clock Generator 32
SIO Clock Generator 33
Registers 34
Special Function Registers 37
SFR Pagination 37
SFR Registers 38
Memory Space 50
Memory Segments 50
Memory Configuration 51
Registers 52
Interrupt System 55
Interrupt System Priorities 55
External Interrupts 58
Registers 59
Timers/Counters 65
Timer/Counter Operations 65
Timer Clock Controller 65
Timer 0 66
Timer 1 69
Interrupt 70
Registers 71
Watchdog Timer 75
Description 75
Clock Controller 75
Operation 76
Registers 77
Data Flow Controller 78
CPU Interface 78
Clock Unit 78
Data Flow Descriptor 78
CRC Processor 79
Null Device 79
Channel Priority 80
Data Flow Status 80
Data Flow Abort 80
Data Flow Configuration 81
Interrupts 81
Registers 82
USB Controller 85
Description 85
General Operating Modes 86
Interrupts 87
Power modes 88
Speed Control 89
Memory Access Capability 89
Memory Management. 90
PAD suspend 91
OTG Timers Customizing 92
Plug-in detection 92
ID Detection 94
Registers 94
USB Software Operating modes 100
USB Device Operating modes 101
Introduction 101
Power-On and Reset 101
Speed Identification 101
Endpoint Reset 102
USB Reset 102
Endpoint Selection 102
Endpoint Activation 103
Address Setup 103
Suspend, Wake-Up and Resume 104
Detach 104
Remote Wake-Up 105
STALL Request 105
CONTROL Endpoint Management 106
OUT Endpoint Management 107
IN Endpoint Management 109
Isochronous Mode 112
Overflow 112
Interrupts 113
Registers 115
USB Host Operating Modes 127
Pipe Description. 127
Detach 127
Power-on and Reset 127
Device Detection 128
Pipe Selection 128
Pipe Configuration 129
USB Reset 130
Address Setup 130
Remote Wake-Up Detection 130
USB Pipe Reset 130
Pipe Data Access 130
Control Pipe Management 130
OUT Pipe Management 131
IN Pipe management 133
Interrupt 134
Registers 136
Audio Controller 149
Clock Generator. 149
Audio Processor 149
Audio Codec 154
Audio DAC Interface 156
Registers 158
Nand Flash Controller 169
Functional overview 169
Clock Unit 170
Control Unit 170
Data Unit 177
End of Data Transfer 180
Security Unit 180
Card Unit 183
Interrupt Unit 184
Registers 185
MMC/SD Controller 192
Clock Generator. 192
Command Line Controller 192
Data Line Controller 195
Card Management 201
Interrupt 202
Registers 203
Parallel Slave Interface 208
Description 208
Interrupts 211
Registers 212
Serial I/O Port 214
Description 214
Baud Rate Generator 216
Receiver 218
Transmitter 219
Interrupts 219
Registers 220
Serial Peripheral Interface 224
Description 225
Interrupt 231
Registers 231
Display Interface 234
Configuration 234
Registers 237
Keyboard Interface 240
Description 240
Registers 241
Electrical Characteristics 242
Absolute Maximum Rating 242
DC Characteristics 242
AC Characteristics 247
Ordering Information 262
Package Information 263
LQFP 100 263
CTBGA 100 264
Document Revision History 265
Changes from
Rev. A - 03/06 to
Rev. B - 04/06 265
Changes from
Rev. B-04/06 to
Rev. C - 10/06 265
Changes from
Rev. C - 10/06 toRev. D-01/07265
265
Table of Contents i

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia

Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
 www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedotherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
©2007 Atmel Corporation. All rights reserved. Atmel ${ }^{\oplus}$, logo and combinations thereof, are registered trademarks, or are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

[^0]: A血亚

[^1]: Reset Value $=0000$ 0000b

