

Dual Narrow/Wideband RF Transceiver

Preliminary Technical Data

ADRV9002

FEATURES

2 × 2 highly integrated transceiver Frequency range of 30 MHz to 6000 MHz Transmitter and receiver bandwidth up to 40 MHz Fully integrated, fractional-N, RF synthesizers LVDS and CSSI Low power monitor and sleep modes Multichip synchronization capabilities FFH Dynamic profile switching for dynamic data rates and sample rates Fully integrated DPD for narrowband and wideband waveforms Fully programmable via a 4-wire SPI 12 mm × 12 mm, 196-ball CSP_BGA

APPLICATIONS

Mission critical communications Very high frequency (VHF), ultrahigh frequency (UHF), and cellular to 6 GHz Time division duplexing (TDD) and frequency division

Time division duplexing (TDD) and frequency division duplexing (FDD) applications

GENERAL DESCRIPTION

The ADRV9002 is a highly integrated, RF transceiver that has dual-channel transmitters, dual-channel receivers, integrated synthesizers, and digital signal processing functions.

The IC delivers a versatile combination of high performance and low power consumption required by battery powered radio equipment and can operate in both FDD and TDD modes. The ADRV9002 operates from 30 MHz to 6000 MHz and covers the UHF, VHF, licensed and unlicensed cellular bands, and industrial, scientific, and medical (ISM) bands. The IC can support both narrowband and wideband standards up to 40 MHz bandwidth on both receive and transmit. The transceiver consists of direct conversion signal paths with state of the art noise figure and linearity. Each complete receiver and transmitter subsystem includes dc offset correction, quadrature error correction, and programmable digital filters, which eliminate the need for these functions in the digital baseband. In addition, several auxiliary functions such as auxiliary analog-to-digital converters (ADCs), auxiliary digital-to-analog converters (DACs), and general-purpose input/outputs (GPIOs) are integrated to provide additional monitoring and control capability.

The fully integrated phase-locked loops (PLLs) provide high performance, low power, fractional-N frequency synthesis for the transmitter, receiver, and clock sections. Careful design and layout techniques provide the isolation required in high performance personal radio applications.

All voltage controlled oscillator (VCO) and loop filter components are integrated to minimize the external component count. The local oscillators (LOs) have flexible configuration options and include fast lock modes.

The transceiver includes low power sleep and monitor modes to save power and extend the battery life of portable devices while monitoring communication.

The fully integrated, low power digital predistortion (DPD) is optimized for both narrowband and wideband signals and enables linearization of high efficiency power amplifiers.

The ADRV9002 core can be powered directly from 1.0 V, 1.3 V, and 1.8 V regulators and is controlled via a standard 4-wire serial port. Other voltage supplies are used to provide proper digital interface levels and to optimize receiver, transmitter, and auxiliary converter performance.

High data rate and low data rate interfaces are supported using configurable complementary metal-oxide semiconductors (CMOS) or low voltage differential signaling (LVDS) serial synchronous interface (SSI) choice. The ADRV9002 is packaged in a 12 mm \times 12 mm, 196-ball chip scale package ball grid array (CSP_BGA).

Rev. PrA

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2020 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features1
Applications 1
General Description
Functional Block Diagram
Specifications
Transmitter Specifications 4
Receiver Specifications 6
Internal LO, External LO, and Device Clock
Digital Interfaces and Auxiliary Converters14
Power Supply Specifications
Current Consumption Estimates (Typical Values)16
Timing Specifications
Timing Specifications 18 Absolute Maximum Ratings 20
Absolute Maximum Ratings
Absolute Maximum Ratings
Absolute Maximum Ratings20Reflow Profile20Thermal Resistance20
Absolute Maximum Ratings20Reflow Profile20Thermal Resistance20Electrostatic Discharge (ESD) Ratings20
Absolute Maximum Ratings20Reflow Profile20Thermal Resistance20Electrostatic Discharge (ESD) Ratings20ESD Caution20

470 MHz Ba	nd	
900 MHz Ba	nd	 39
2400 MHz B	and	 44
3500 MHz B	and	 49
5800 MHz B	and	 55
Phase Noise		 60
Theory of Ope	ration	 62
Transmitter		 62
Receiver		 63
DPD		 64
Clock Input		 64
Synthesizers		 64
SPI Interface	2	 65
GPIO Pins		 65
Auxillary Co	onverters	 65
JTAG Bound	lary Scan	 66
Applications I	nformation	 67
Power Suppl	y Sequence	 67
Digital Data	Interface	 67
Outline Dimen	isions	 71

FUNCTIONAL BLOCK DIAGRAM

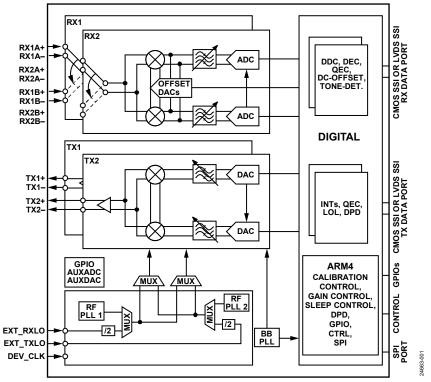


Figure 1.

Downloaded from Arrow.com.

SPECIFICATIONS

Electrical characteristics are at the operating ambient temperature range, $VDDA_1P0 = 1.0 V$, $VDDA_1P3 = 1.3 V$, $VDDA_1P8 = 1.8 V$, $VDD_1P0 = 1.0 V$, $VDD_1P8 = 1.8 V$. The following values are not de-embedded. Refer to the Typical Performance Characteristics section for input/output circuit path loss.

TRANSMITTER SPECIFICATIONS

Table 1. Transmitters (Tx1 and Tx2)

Parameter	Symbol	Min	Тур	Мах	Units	Test Conditions/Comments
CENTER FREQUENCY		30		6000	MHz	
TRANSMITTER SYNTHESIS BANDWIDTH		0.012		40	MHz	Zero-IF mode, see the DPD section for more information.
BANDWIDTH FLATNESS			0.1		dB	10 MHz bandwidth span, including digital compensation.
DEVIATION FROM LINEAR PHASE			1		Degree	40 MHz bandwidth.
POWER CONTROL RANGE						
IQ Mode			42		dB	Increased calibration time, reduced QEC ¹ , and LOL ² performance beyond 20 dB.
Direct Modulation Mode			12		dB	
POWER CONTROL RESOLUTION						
IQ Mode			0.05		dB	
Direct Modulation Mode			0.5		dB	
IN BAND NOISE FLOOR			-154		dBFS³/Hz	0 dB attenuation, in band noise falls 1 dB for each dB of attenuation for attenuation settings between 0 dB and 20 dB.
OUT OF BAND NOISE FLOOR			-156		dBFS/Hz	0 dB attenuation with $3 \times$ bandwidth/2 offset.
Tx1 TO Tx2 ISOLATION						
30 MHz			107		dB	
470 MHz			107		dB	
900 MHz			73		dB	
2400 MHz			73		dB	
3500 MHz			73		dB	
5800 MHz			73		dB	
IMAGE REJECTION WITH INITIALIZATION CALIBRATION ONLY						
Wideband						Up to 20 dB transmitter attenuation, 10 MHz bandwidth, 0 dB observation receiver attenuation, and QEC tracking calibration is disabled.
30 MHz			67		dBc	
470 MHz			69		dBc	
900 MHz			67		dBc	
2400 MHz			70		dBc	
3500 MHz			TBD		dBc	
5800 MHz			TBD		dBc	
Narrow-Band						Up to 20 dB transmitter attenuation, 100 kHz bandwidth, 0 dB observation receiver attenuation, and QEC tracking calibration is disabled. The signal is symmetrical and transmitted on LO.
30 MHz			83		dBc	
470 MHz			85		dBc	
900 MHz			71		dBc	
2400 MHz			62		dBc	
3500 MHz			TBD		dBc	
5800 MHz			TBD		dBc	

Parameter	Symbol	Min Ty	o Max	Units	Test Conditions/Comments
IMAGE REJECTION WITH					
INITIALIZATION CALIBRATION					
AND TRACKING CALIBRATION					0 dB transmitter attenuation 40 MHz handwidth 0.2
Wideband					0 dB transmitter attenuation, 40 MHz bandwidth, -0.2 dBFS, 18 MHz continuous wave ⁴ signal input, 50 Ω load, 0 dB observation receiver attenuation, and QEC is active.
30 MHz		73		dBc	
470 MHz		63		dBc	
900 MHz		64		dBc	
2400 MHz		65		dBc	
3500 MHz		48		dBc	
5800 MHz		48		dBc	
Narrow-band					Up to 20 dB transmitter attenuation, 100 kHz bandwidth, 0 dB observation receiver attenuation, QEC is active, and the signal is symmetrical and transmitted on LO.
30 MHz		тво)	dBc	5,
470 MHz		TBL		dBc	
900 MHz		TBL		dBc	
2400 MHz		TBL		dBc	
3500 MHz		ТВС		dBc	
5800 MHz		TBI		dBc	
CONTINUOUS WAVE FULL-					–0.2 dBFS, 18 MHz continuous wave signal input, 50 Ω
SCALE OUTPUT POWER					load, and 0 dB transmitter attenuation.
30 MHz		7.7		dBm	
470 MHz		7.6		dBm	
900 MHz		7.7		dBm	
2400 MHz		7.3		dBm	
3500 MHz		7.4		dBm	
5800 MHz		6.8		dBm	
OUTPUT IMPEDANCE	Zout	50		Ω	Differential, see the ADRV9001 System Development User Guide for more information.
MAXIMUM OUTPUT LOAD VOLTAGE STANDING WAVE RATIO (VSWR)			3	Ω	Use the maximum value to ensure adequate calibration.
OUTPUT RETURN LOSS					Unmatched differential port return loss.
30 MHz		28		dB	
470 MHz		24		dB	
900 MHz		22		dB	
2400 MHz		17		dB	
3500 MHz		10		dB	
5800 MHz		7		dB	
OUTPUT THIRD-ORDER INTERCEPT POINT	OIP3				0 dB transmitter attenuation. continuous wave tones at 17 MHz and 18 MHz, –11 dBFS/tone, calibrated to the device.
30 MHz		32		dBm	
470 MHz		31		dBm	
900 MHz		30		dBm	
2400 MHz		28		dBm	
3500 MHz		31		dBm	
5800 MHz		26		dBm	
CARRIER LEAKAGE WITH INITIALIZATION CALIBRATION ONLY					LO leakage tracking calibration disabled, 0 dB transmitter attenuation, and scales dB for dB with attenuation.
Wideband					
30 MHz LO		-76	5	dBFS	
470 MHz LO		-76	5	dBFS	

Parameter	Symbol	Min Typ	Max	Units	Test Conditions/Comments
900 MHz LO		-76		dBFS	
2400 MHz LO		-75		dBFS	
3500 MHz LO		TBD		dBFS	
5800 MHz LO		TBD		dBFS	
Narrow-Band					
30 MHz LO		-73		dBFS	
470 MHz LO		-76		dBFS	
900 MHz LO		-76		dBFS	
2400 MHz LO		-70		dBFS	
3500 MHz LO		TBD		dBFS	
5800 MHz LO		TBD		dBFS	
CARRIER LEAKAGE WITH INITIALIZATION CALIBRATION AND TRACKING CALIBRATION					LO leakage calibration is active with 0 dB transmitter attenuation.
Wideband					
30 MHz LO		-61		dBm	
470 MHz LO		-60		dBm	
900 MHz LO		-60		dBm	
2400 MHz LO		-58		dBm	
3500 MHz LO		-56		dBm	
5800 MHz LO		-54		dBm	
Narrow-band					
30 MHz LO		TBD		dBm	
470 MHz LO		TBD		dBm	
900 MHz LO		TBD		dBm	
2400 MHz LO		TBD		dBm	
3500 MHz LO		TBD		dBm	
5800 MHz LO		TBD		dBm	

¹ Quadrature error correction (QEC) is the system for minimizing quadrature images of a desired signal. ² Local oscillator leakage (LOL) is a measure of the amount of the LO signal that is passed from a mixer with the desired signal.

³ dBFS represents the ratio of the actual output signal to the maximum possible output level for a continuous wave output signal at the given RF attenuation setting. ⁴ A continuous wave is a single frequency signal.

RECEIVER SPECIFICATIONS

Table 2. Receivers (Rx1A, Rx1B, Rx2A, and Rx2B)

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
CENTER FREQUENCY		30		6000	MHz	
MAXIMUM GAIN						High performance receiver ADCs, 0 dB attenuation, and 5.6 MHz baseband frequency.
30 MHz			22		dB	
470 MHz			23		dB	
900 MHz			23		dB	
2400 MHz			23		dB	
3500 MHz			19		dB	
5800 MHz			18		dB	
ATTENUATION RANGE FROM MAXIMUM GAIN			36		dB	
Attenuation Accuracy						
Gain Step			0.5		dB	Attenuator steps from 0 dB to 30 dB.
			TBD		dB	Attenuator steps from 30 dB to 36 dB.
Gain Step Error			0.1		dB	
FREQUENCY RESPONSE						
Peak-to-Peak Gain Deviation			1		dB	40 MHz bandwidth including digital compensation.
Peak-to-Peak Gain Deviation			0.2		dB	Any 10 MHz span including digital compensation.

ADRV9002)
----------	---

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
RECEIVER BANDWIDTH		12		40000	kHz	Zero-IF mode, the analog low-pass filter (LPF) bandwidth is 5 MHz minimum, and the programmable finite impulse response (FIR) filter bandwidth is configurable over the entire range.
RECEIVER ALIAS BAND REJECTION		80			dB	This performance is achieved because of the digital filters.
CONTINUOUS WAVE FULL- SCALE INPUT POWER ¹	FSIP		-11.4		dBm	This continuous wave signal level corresponds to the input power at maximum gain that produces 0 dBFS at the ADC output, this level increases dB for dB with attenuation. Back off by at least –2 dBFS is required.
INPUT IMPEDANCE			100		Ω	Differential, see the ADRV9001 System Development User Guide for more information.
INPUT PORT RETURN LOSS						Unmatched differential port return loss, simulated.
30 MHz			TBD		dB	· · · · · · · · · · · · · · · · · · ·
470 MHz			30		dB	
900 MHz			25		dB	
2400 MHz			18		dB	
3500 MHz			15		dB	
5800 MHz			14		dB	
NOISE FIGURE	NF					
30 MHz			14		dB	
470 MHz			11		dB	
900 MHz			11		dB	High performance receiver ADCs, 0 dB attenuation at
2400 MHz			12		dB	device under test (DUT) receive port, integrated bandwidth from 8 MHz to 9 MHz.
3500 MHz			13		dB	
5800 MHz			15		dB	
Noise Figure Ripple			1		dB	High performance receiver ADCs at the band edge.
30 MHz			14		dB	
470 MHz			12		dB	
900 MHz			15		dB	Low power receiver ADCs, 0 dB attenuation at the DUT
2400 MHz			12		dB	receive port, integrated bandwidth from 8 MHz to 9 MHz.
3500 MHz			12		dB	
5800 MHz			13		dB	
Noise Figure Ripple			1		dB	Low power receiver ADCs at the band edge.
SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT						
Wideband	IIP2 _{WB}					High performance receiver ADCs, 0 dB receiver attenuation, 1 dB cutoff frequency (f1dB) of Transimpedance Amplifier (TIA) = 20 MHz, two continuous wave tones at 17 MHz and 18 MHz, FSIP – 12 dB/tone.
30 MHz			70		dBm	
470 MHz			73		dBm	
900 MHz			75		dBm	
2400 MHz			66		dBm	
3500 MHz			68		dBm	
5800 MHz			66		dBm	
Narrow-Band	IIP2 _{LB}					High performance receiver ADCs, 0 dB receiver attenuation, f1dB of TIA = 2 MHz, two continuous wave tones at 100 kHz and 150 kHz, FSIP – 12 dB/tone.
30 MHz			75		dBm	
470 MHz			86		dBm	
900 MHz			74		dBm	
2400 MHz			68		dBm	

Rev. PrA | Page 7 of 71

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
3500 MHz			71		dBm	
5800 MHz			64		dBm	
SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT						
Wideband	IIP2 _{WB}					Low power receiver ADCs, 0 dB receiver attenuation, f1dB of TIA = 20 MHz, two continuous wave tones at 17 MHz and 18 MHz, FSIP – 12 dB/tone.
30 MHz			70		dBm	
470 MHz			72		dBm	
900 MHz			71		dBm	
2400 MHz			65		dBm	
3500 MHz			74		dBm	
5800 MHz			71		dBm	
Narrow-Band	IIP2 _{LB}					Low power receiver ADCs, 0 dB receiver attenuation, f1dB of TIA = 2 MHz, two continuous wave tones at 100 kHz and 150 kHz, FSIP – 12 dB/tone.
30 MHz			TBD		dBm	
470 MHz			TBD		dBm	
900 MHz			TBD		dBm	
2400 MHz			TBD		dBm	
3500 MHz			TBD		dBm	
5800 MHz			TBD		dBm	
THIRD-ORDER INPUT INTERMODULATION INTERCEPT POINT, DIFFERENCE PRODUCT Wideband	WB –					High performance receiver ADCs, 0 dB receiver
Wiccound	IIP3 _{DIFF}					attenuation, f1dB of TIA = 20 MHz, two continuous wave tones at 17 MHz and 18 MHz, FSIP – 12 dB/tone.
30 MHz			19		dBm	
470 MHz			24		dBm	
900 MHz			23		dBm	
2400 MHz			22		dBm	
3500 MHz			20		dBm	
5800 MHz			14		dBm	
Narrow-Band	LB – IIP3 _{DIFF}					High performance receiver ADCs, 0 dB receiver attenuation, f1dB of TIA = 2 MHz, two continuous wave tones at 100 kHz and 150 kHz, FSIP – 12 dB/tone.
30 MHz			27		dBm	
470 MHz			24		dBm	
900 MHz			26		dBm	
2400 MHz			25		dBm	
3500 MHz			24		dBm	
5800 MHz			21		dBm	
Wideband	WB – IIP3 _{DIFF}					Low power receiver ADCs, 0 dB receiver attenuation, f1dB of TIA = 20 MHz, two continuous wave tones at 17 MHz and 18 MHz, FSIP – 12 dB/tone.
30 MHz			17		dBm	
470 MHz			19		dBm	
900 MHz			19		dBm	
2400 MHz			19		dBm	
3500 MHz			15		dBm	
5800 MHz	1		15		dBm	

Parameter	Symbol	Min Ty	/p	Max	Units	Test Conditions/Comments
Narrow-Band	LB – IIP3 _{DIFF}					Low power receiver ADCs, 0 dB receiver attenuation, f1dB of TIA = 2 MHz, two continuous wave tones at 100 kHz and 150 kHz, FSIP – 12 dB/tone.
30 MHz		20)		dBm	
470 MHz		19)		dBm	
900 MHz		18	3		dBm	
2400 MHz		15	5		dBm	
3500 MHz		14	ŀ		dBm	
5800 MHz		13			dBm	
THIRD-ORDER HARMONIC						
DISTORTION						
Wideband	HD3 _{wb}					High performance receiver ADCs, FSIP – 7 dB continuous wave tone at 5.6 MHz, f1dB of TIA = 20 MHz, HD3 product at 16.8 MHz.
30 MHz		-8	35		dBc	The RF source is low-pass filtered before DUT.
470 MHz		-7	75		dBc	
900 MHz		-8	32		dBc	
2400 MHz		_9	90		dBc	
3500 MHz		_9	90		dBc	
5800 MHz		-8	39		dBc	
Narrow-Band	HD3 _{LB}					High performance receiver ADCs, FSIP – 7 dB continuous wave tone at 34 kHz, f1dB of TIA = 2 MHz, HD3 product at 102 kHz.
30 MHz		_1	00		dBc	
470 MHz		_9	99		dBc	
900 MHz		_9	93		dBc	
2400 MHz		_9			dBc	
3500 MHz		_9			dBc	
5800 MHz					dBc	
Wideband	HD3 _{WB}					Low power receiver ADCs, FSIP – 7 dB continuous wave tone at 5.6 MHz, f1dB of TIA = 20 MHz, HD3 product at 16.8 MHz.
30 MHz		-8	30		dBc	RF source low-pass filtered before DUT.
470 MHz		-7	74		dBc	
900 MHz		-7	76		dBc	
2400 MHz		-8	32		dBc	
3500 MHz		-7	78		dBc	
5800 MHz		-8	30		dBc	
Narrow-Band	HD3 _{LB}					Low power receiver ADCs, FSIP – 7 dB continuous wave tone at 34 kHz, f1dB of TIA = 2 MHz, HD3 product at 102 kHz.
30 MHz		TE	BD		dBc	
470 MHz		-8			dBc	
900 MHz		-7			dBc	
2400 MHz		-7			dBc	
3500 MHz		-7			dBc	
5800 MHz		-7	74		dBc	
SECOND-ORDER HARMONIC DISTORTION						
Wideband	HD2 _{wB}					High performance receiver ADCs, FSIP – 7 dB continuous wave tone at 5.6 MHz, f1dB of TIA = 20 MHz, HD2 product at 11.2 MHz.
30 MHz		_9	90		dBc	
470 MHz		_9			dBc	
900 MHz		-8			dBc	

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
2400 MHz			-91		dBc	
3500 MHz			-85		dBc	
5800 MHz			-79		dBc	
Narrow-Band	HD2 _{LB}					High performance receiver ADCs, FSIP – 7 dB continuous wave tone at 34 kHz, f1dB of TIA = 2 MHz, HD2 product at
						68 kHz.
30 MHz			-102		dBc	
470 MHz			-106		dBc	
900 MHz			-99		dBc	
2400 MHz			-87		dBc	
3500 MHz			-86		dBc	
5800 MHz			-91		dBc	
SECOND-ORDER HARMONIC DISTORTION						
Wideband	HD2 _{WB}					Low power receiver ADCs, FSIP – 7 dB continuous wave tone at 5.6 MHz, f1dB of TIA = 20 MHz, HD2 product at 11.2 MHz.
30 MHz			-90		dBc	
470 MHz			-88		dBc	
900 MHz			-88		dBc	
2400 MHz			-89		dBc	
3500 MHz			-83		dBc	
5800 MHz			-76		dBc	
Narrow-Band	HD2 _{LB}					Low power receiver ADCs, FSIP – 7 dB continuous wave tone at 34 kHz, f1dB of TIA = 2 MHz, HD2 product at 68 kHz.
30 MHz			TBD		dBc	
470 MHz			TBD		dBc	
900 MHz			TBD		dBc	
2400 MHz			TBD		dBc	
3500 MHz			TBD		dBc	
IMAGE REJECTION WITH INITIAL CALIBRATION ONLY						
Wideband						High performance receiver ADCs, QEC disabled, within 200 kHz to 40 MHz receiver bandwidth, maximum receiver gain index, FSIP – 10 dB continuous wave tone at 15 MHz.
30 MHz			82		dBc	
470 MHz			82 83		dBc	
470 MHZ 900 MHz			83		dBc	
2400 MHz			83		dBc	
3500 MHz			os TBD		dBc	
5800 MHz			TBD		dBc	
Narrow-Band			IDU		UBC	High performance receiver ADCs, QEC disabled, within
Nanow-Banu						12.5 kHz to 200 kHz receiver bandwidth, maximum receiver gain index, FSIP – 10 dB continuous wave tone at $2 \times IF + 3$ kHz.
30 MHz			83		dBc	
470 MHz			95		dBc	
900 MHz			95		dBc	
2400 MHz			95		dBc	
3500 MHz			TBD		dBc	
5800 MHz			TBD		dBc	

Parameter	Symbol	Min	Тур	Мах	Units	Test Conditions/Comments
IMAGE REJECTION WITH						
INITIALIZATION CALIBRATION ONLY						
Wideband						Low performance receiver ADCs, QEC disabled, within 200
						kHz to 40 MHz receiver bandwidth, maximum receiver gain index, FSIP – 10 dB continuous wave tone at 15 MHz.
30 MHz			TBD		dBc	
470 MHz			TBD		dBc	
900 MHz			TBD		dBc	
2400 MHz			TBD		dBc	
3500 MHz			TBD		dBc	
5800 MHz			TBD		dBc	
Narrow-Band						Low performance receiver ADCs, QEC disabled, within 12.5 kHz to 200 kHz receiver bandwidth, maximum receiver gain index, FSIP – 10 dB continuous wave tone at $2 \times IF + 3$ kHz.
30 MHz			TBD		dBc	J KHZ.
470 MHz			TBD		dBc	
900 MHz			TBD		dBc	
2400 MHz			TBD		dBc	
3500 MHz			TBD		dBc	
5800 MHz			TBD		dBc	
IMAGE REJECTION WITH INITIAL CALIBRATION AND TRACKING CALIBRATION						
Wideband						High performance receiver ADCs, QEC disabled, within 200
						kHz to 40 MHz receiver bandwidth, maximum receiver gain index, FSIP – 10 dB continuous wave tone at 5.6 MHz.
30 MHz			86		dBc	
470 MHz			85		dBc	
900 MHz			82		dBc	
2400 MHz			TBD		dBc	
3500 MHz			78		dBc	
5800 MHz			78		dBc	
Narrow-Band						High performance receiver ADCs, QEC disabled, within 12.5 kHz to 200 kHz receiver bandwidth, maximum receiver gain index, FSIP – 10 dB continuous wave tone at $2 \times IF + 3$ kHz.
30 MHz			TBD		dBc	
470 MHz			TBD		dBc	
900 MHz			TBD		dBc	
2400 MHz			TBD		dBc	
3500 MHz			TBD		dBc	
5800 MHz			TBD		dBc	
IMAGE REJECTION WITH INITIALIZATION CALIBRATION AND TRACKING CALIBRATION						
Wideband						Low power receiver ADCs, QEC disabled, within 200 kHz to 40 MHz receiver bandwidth, maximum receiver gain index, FSIP – 10 dB continuous wave tone at 5.6 MHz.
30 MHz			87		dBc	
470 MHz			86		dBc	
900 MHz			86		dBc	
2400 MHz			TBD		dBc	
3500 MHz			81		dBc	
5800 MHz			77		dBc	

Preliminary Technical Data

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
Narrow-Band						Low power receiver ADCs, QEC disabled, within 12.5 kHz
						to 200 kHz receiver bandwidth, maximum receiver gain
30 MHz			TBD		dBc	index, FSIP – 10 dB continuous wave tone at $2 \times IF + 3$ kHz.
470 MHz			TBD		dBc	
900 MHz			TBD		dBc	
2400 MHz			TBD		dBc	
3500 MHz			TBD		dBc	
5800 MHz			TBD		dBc	
RECEIVER INPUT LO LEAKAGE AT MAXIMUM GAIN						Leakage decreased dB for dB with attenuation for the first 12 dB.
30 MHz			-66		dBm	
470 MHz			-66		dBm	
900 MHz			-66		dBm	
2400 MHz			-66		dBm	
3500 MHz			-62		dBm	
5800 MHz			-60		dBm	
SIGNAL ISOLATION						
Tx1 to Rx1A or Rx1B Signal Isolation and Tx2 to Rx2A or Rx2B Signal Isolation						
30 MHz			76		dB	
470 MHz			TBD		dB	
900 MHz			68		dB	
2400 MHz			68		dB	
3500 MHz			62		dB	
5800 MHz			60		dB	
Tx1 to Rx2A or Rx2B Isolation and Tx2 to Rx1A or Rx2B Signal Isolation						
30 MHz			97		dB	
470 MHz			84		dB	
900 MHz			70		dB	
2400 MHz			70		dB	
3500 MHz			62		dB	
5800 MHz			60		dB	
Rx1A or Rx1B to Rx2A or Rx2B Signal Isolation						
30 MHz			92		dB	
470 MHz			89		dB	
900 MHz			106		dB	
2400 MHz			79		dB	
3500 MHz			79		dB	
5800 MHz			77		dB	
Rx1A to Rx1B and Rx2A to Rx2B Signal Isolation						
30 MHz			TBD		dB	
470 MHz			TBD		dB	
900 MHz			60		dB	
2400 MHz			60		dB	
3500 MHz			60		dB	
5800 MHz			60		dB	

¹ Note that the input signal power limit does not correspond to 0 dBFS at the digital output because of the nature of the continuous time Σ - Δ ADCs. Unlike the hard clipping characteristic of pipeline ADCs, these converters exhibit a soft overload behavior when the input approaches the maximum level.

INTERNAL LO, EXTERNAL LO, AND DEVICE CLOCK

Table 3.

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
LOCAL OSCILLATOR						
LO Frequency Step			4.5		Hz	For 38.4 MHz DEV_CLK, use the equation DEV_CLK/2 ²³ – 15 to calculate.
LO Reference Spurs			-80		dBc	LO < 1GHz, PLL bandwidth = 300 kHz.
LOCAL OSCILLATOR WITH HIGH PERFORMANCE MODE						
Integrated Phase Noise						Integrated from 100 Hz to 50 MHz.
30 MHz LO			0.008		°rms	PLL bandwidth = 300 kHz.
470 MHz LO			0.04		°rms	PLL bandwidth = 300 kHz.
900 MHz LO			0.08		°rms	PLL bandwidth = 300 kHz.
2400 MHz LO			0.22		°rms	PLL bandwidth = 300 kHz.
3500 MHz LO			0.27		°rms	PLL bandwidth = 300 kHz.
5800 MHz LO			0.6		°rms	PLL bandwidth = 300 kHz .
Phase Noise			0.0		1113	DEV_CLK = 38.4 MHz, typical performance.
30 MHz LO			See Figure 193			PLL bandwidth = 300 kHz .
470 MHz LO			See Figure 194			PLL bandwidth = 300 kHz .
900 MHz LO			See Figure 194			PLL bandwidth = 300 kHz .
			-			PLL bandwidth = 300 kHz .
2400 MHz LO			See Figure 196			
3500 MHz LO			See Figure 197			PLL bandwidth = 300 kHz.
5800 MHz LO			See Figure 198			PLL bandwidth = 300 kHz.
LO PHASE SYNCHRONIZATION						
Initial Phase Synchronization Accuracy			TBD		ps	
EXTERNAL LO INPUT						
Input Frequency						Input frequency must be $2 \times$ the desired frequency for LO frequency (f _{LO}).
	f extlo	60		12000 (initially up to 4000)	MHz	
Input Signal Power		-6	0	6	dBm	50 Ω matching at the source.
Input Signal Differential Phase Balance				20	Degrees	Do not exceed 20 degrees to ensure adequate quadrature error correction.
Input Signal Differential Amplitude Balance				TBD	dB	
Input Signal Duty Cycle				5	%	
Input Impedance					Ω	Differential, see the ADRV9001 System Development User Guide for more information.
REFERENCE CLOCK (DEV_CLK_IN SIGNAL)						
Differential mode						
Frequency Range		10		1000	MHz	
Signal Level		0.2		1	V р-р	AC-coupled. For optimal spurious performance and to meet the specified PLL performance parameters, use a 1 V p-p (2 V p-p differential) input clock.

Preliminary Technical Data

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
Single-Ended Mode						
Frequency Range		10		80	MHz	
Signal Level		0.2		1	V р-р	AC-coupled. For optimal spurious performance and to meet the specified PLL performance parameters, use a 1 V p-p input clock.
REFERENCE CLOCK (X _{TAL})						
Frequency Range		20		80	MHz	
CLOCK OUTPUT (DEV_CLK_OUT SIGNAL)						
Frequency Range		10		80	MHz	

DIGITAL INTERFACES AND AUXILIARY CONVERTERS

Table 4.					
Parameter	Min	Тур	Max	Units	Test Conditions/Comments
AUXILIARY ADC CONVERTERS					
Resolution		10		Bits	
Input Voltage					
Minimum		0.05		V	
Maximum		0.95		V	
AUXILIARY DAC CONVERTERS					
Resolution		12		Bits	
Output Voltage					
Minimum		0.05		V	
Maximum		VDDA_1P8 ¹ - 0.05		V	
Drive Capability		10		mA	
DIGITAL SPECIFICATIONS (CMOS-SSI SIGNALS)					
Logic Inputs					
Input Voltage					
High Level	VDIGIO_1P8 × 0.65		VDIGIO_1P8 + 0.18	V	
Low Level	-0.30		VDIGIO_1P8 × 0.35	V	
Logic Outputs Voltage					
Output Voltage					
High Level	VDIGIO_1P8 - 0.45			V	
Low Level			0.45	V	
Drive Capability		10		mA	
DIGITAL SPECIFICATIONS (DIGITAL GPIO SIGNALS)					
Logic Inputs					
Input Voltage					
High Level	VDIGIO_1P8 × 0.65		VDIGIO_1P8 + 0.18	V	
Low Level	-0.30		VDIGIO_1P8 × 0.35	V	
Logic Outputs					
Output Voltage					
High Level	VDIGIO_1P8 - 0.45			V	

ADRV9002

Parameter	Min	Тур	Max	Units	Test Conditions/Comments
Low Level			0.45	V	
Drive Capability		10		mA	
DATAPORT SPECIFICATIONS (LVDS SSI, MCS+/MCS-)					
Logic Inputs					
Input Voltage Range	825		1675	mV	Each differential input in the pair.
Input Differential Voltage Threshold	-100		+100	mV	
Receiver Differential Input Impedance		100		Ω	Internal termination enabled.
Logic Outputs					
Output Voltage					
High			1390	mV	
Low	1000			mV	
Differential		360		mV	
Offset		1200		mV	
			17	mA	Drivers are shorted to ground, there is no internal termination available, an off-chip 100Ω termination is required.
Output Current			4.1	mA	Drivers are shorted together.
Clock Signal Duty Cycle	45	50	55	%	500 MHz.
Output Rise/Fall Time		0.371		ns	300 mVp swing.
DIGITAL SPECIFICATIONS (ANALOG GPIO SIGNALS)					
Logic Inputs					
Input Voltage					
High Level	VDDA_1P8 × 0.65		VDDA_1P8 + 0.18	V	
Low Level	-0.30		VDDA_1P8 × 0.35	V	
Logic Outputs					
Output Voltage					
High Level	VDDA_1P8 – 0.45			V	
Low Level			0.45	V	
Drive Capability		10		mA	

¹ VDDA_1P8 refers to all analog 1.8 V supplies including VCONV_1P8, VAGPIO_1P8, VANA2_1P8, and VANA1_1P8.

POWER SUPPLY SPECIFICATIONS

Table 5.

Parameter	Min	Тур	Мах	Units	Test Conditions / Comments
SUPPLY CHARACTERISTICS					
VDDA_1P0 ¹ Analog Supplies	0.975	1.0	1.025	V	
VDD_1P0 ² Digital Supply	0.95	1.0	1.05	V	
VDDA_1P3 ³ Analog Supplies	1.267	1.3	1.33	V	
VDDA_1P8 Analog Supplies	1.71	1.8	1.89	V	
VDD_1P8 ⁴ Digital Supply	1.71	1.8	1.89	V	

¹ VDDA_1P0 refers to all analog 1.0 V supplies that operate with the internal LDO bypassed. The power domain that allows the internal LDO bypass includes VRFLO2_1P0, VRFLO1_1P0, VRX2LO_1P3, VRX1LO_1P3, VCX2LO_1P3, VCONV_1P3, and VTX1LO_1P3.
 ² VDD_1P0 refers to all digital 1.0 V supplies including VDIG_1P0.
 ³ VDDA_1P3 refers to all analog 1.3 V supplies including VRFVCO2_1P3, VRFVCO1_1P3, VANA2_1P3, VANA1_1P3, VRX2LO_1P3, VCLKSYN_1P3, VRFSYN2_1P3, VRFSYN1_1P3, VAX2LO_1P3, VCLKSYN_1P3, VRFSYN2_1P3, VRFSYN1_1P3, VAX1LO_1P3, VCLKO2_1P3, VCLVCO_1P3, VAUXVCO_1P3, VTX1LO_1P3, and VCONV_1P3.

⁴ VDD_1P8 refers to all digital 1.8 V supplies including VDIGIO_1P8.

CURRENT CONSUMPTION ESTIMATES (TYPICAL VALUES)

No external VDDA_1P0 1.0 V power domain is used in the following power consumption tables. In all following modes described, the ADRV9002 operates with internal low dropout (LDO) regulators used to produce an on-chip, 1.0 V analog power domain.

Sleep Mode (Typical Values)

Table 6. Digital Mobile Radio (DMR) CMOS SSI

ADRV9002 Mode Conditions	VDDA_1P0 Analog Supplies	VDD_1P0 Digital Supply	VDDA_1P3 Analog Supplies	VDDA_1P8 Analog Supplies	VDD_1P8 Digital Supply	Total Average Power (W)
Receiver, Transmitter, Clock PLL, and LDO Regulator Powered Down, Internal Microprocessor Active, SSI CMOS Interface Off, DEV_CLK_OUT Active, Auxiliary DACs Off	Not used	18.2	7.0	8.8	3.3	0.049
Receiver, Transmitter, Clock PLL, LDO Regulator, and Internal Microprocessor Powered Down, SSI CMOS Interface Off, DEV_CLK_OUT Active, Auxiliary DACs Off	Not used	1.5	5.7	8.3	3.3	0.030

Table 7. Long-Term Evolution (LTE) Dual Transmitter and Dual Receiver LVDS SSI

		Supply (mA)					
ADRV9002 Mode	VDDA_1P0 Analog Supplies	VDD_1P0 Digital Supply	VDDA_1P3 Analog Supplies	VDDA_1P8 Analog Supplies	VDD_1P8 Digital Supply	Total Average Power (W)	
Receiver, Transmitter, Clock PLL, and LDO Regulator Powered Down Powered Down, Internal Microprocessor Active, SSI LVDS Interface Active, DEV_CLK_OUT Active, Auxiliary DACs Off	Not used	23.1	7.7	9.8	49.8	0.140	
Receiver, Transmitter, Clock PLL, LDO Regulator, and Internal Microprocessor Powered Down, SSI LVDS Interface Active, DEV_CLK_OUT Active, Auxiliary DACs Off	Not used	2.4	5.4	9.6	49.8	0.116	

TDD Operation (Typical Values)

Table 8. DMR, 4× External LO, LO = 470 MHz, Low Power Mode Clock PLL, Processor Clock Divisor = 4, CMOS SSI

		Supply (mA)				
ADRV9002 Mode Conditions	VDDA_1P0 Analog Supplies	VDD_1P0 Digital Supply	VDDA_1P3 Analog Supplies	VDDA_1P8 Analog Supplies	VDD_1P8 Digital Supply	Total Average Power (W)
1 × Receiver Low Power ADC, Low IF, 12.5 KHz Receiver Bandwidth, 24 Ksps Data Rate, Receiver QEC Enabled, QEC Engine Active, Transmitter Powered Down	Not used	99	180	25	3	0.383
1 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave 12.5 KHz Transmitter Bandwidth, 96 Ksps Data Rate, DM Mode, Transmitter QEC Disabled, QEC Engine Inactive, Receiver Powered Down	Not used	62	257	100	3	0.582
1 × Transmitter RF Attenuation = 6 dB, Full-Scale Continuous Wave 12.5 KHz Transmitter Bandwidth, 96 Ksps Data Rate, DM Mode, Transmitter QEC Disabled, QEC Engine Inactive, Receiver Powered Down	Not used	62	257	58	3	0.506

Table 9. LTE40 2T2R, LO=2.5Ghz, High Power Clock PLL, LVDS SSI

		Supply (mA)							
ADRV9002 Mode Conditions	VDDA_1P0 Analog Supplies	VDD_1P0 Digital Supply	VDDA_1P3 Analog Supplies	VDDA_1P8 Analog Supplies	VDD_1P8 Digital Supply	Average Power (W)			
2 × Receiver Low Power ADC-Low Rate, 40 MHz Receiver Bandwidth, 61.44 Msps Data Rate, Receiver QEC Enabled, QEC Engine Active, Transmitter in Primed State	Not used	446	546	64	53	1.366			
2 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 Msps Data Rate, Transmitter QEC Disabled, QEC Engine Inactive, Receiver in Primed State	Not used	225	701	276	52	1.727			
2 × Transmitter RF Attenuation = 10 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 Msps Data Rate, Transmitter QEC Disabled, QEC Engine Inactive, Receiver in Primed State	Not used	225	701	120	52	1.446			
2 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 Msps Data Rate, Transmitter QEC Disabled, QEC Engine Active. Receiver in Primed State, Transmitter QEC Tracking Always On, Observation Receiver Continuously On, Transmitter Tracking Duty Cycled (Practical Scenario).	Not used	397	1136	296	52	2.500			
2 × Transmitter RF Attenuation = 10 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 Msps Data Rate, Transmitter QEC Enabled, QEC Engine Active. Receiver in Primed State, Transmitter QEC Tracking Always On, Observation Receiver Continuously On, Transmitter Tracking Duty Cycled (Practical Scenario).	Not used	395	1126	144	52	2.212			

Table 10. LTE40 1T1R, LO=2.5Ghz, High Power Clock PLL, LVDS SSI

		Total								
ADRV9002 Mode Conditions	VDDA_1P0 Analog Supplies	VDD_1P0 Digital Supply	VDDA_1P3 Analog Supplies	VDDA_1P8 Analog Supplies	nalog Digital					
1 × Receiver Low Power ADC Low Rate, 40 MHz Receiver Bandwidth, 61.44 Msps Data Rate. Receiver QEC Enabled, QEC Engine Active, Transmitter in Primed State	Not used	258	406	39	28	0.906				
1 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 Msps Data Rate, Transmitter QEC Disabled, QEC Engine Inactive, Receiver in Primed State	Not used	140	486	143	28	1.080				
1 × Transmitter RF Atten = 10 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 Msps Data Rate, Transmitter QEC Disabled, QEC Engine Inactive, Receiver in Primed State	Not used	141	486	66	28	0.942				
1 × Transmitter RF Atten = 0 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 Msps Data Rate, Transmitter QEC Enabled, QEC Engine Active, Receiver in Primed State, Transmitter QEC Tracking Always On, Observation Receiver Continuously On, Transmitter Tracking is Duty Cycled (Practical Scenario)	Not used	232	754	156	28	1.543				
1 × Transmitter RF Atten = 10 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 Msps Data Rate, Transmitter QEC Enabled, QEC Engine Active, Receiver in Primed State, Transmitter QEC Tracking Always On, Observation Receiver Continuously On, Transmitter Tracking is Duty Cycled (Practical Scenario)	Not used	231	755	79	28	1.405				

FDD Operation (Typical Values)

Transmit channel enabled, 40 MHz transmitter bandwidth, 61.44 Msps data rat, transmitter internal LO = 2.4 GHz, transmit QEC disabled, QEC engine inactive, LVDS SSI, receive channel enabled, 40 MHz receiver bandwidth, 61.44 Msps data rate, receiver internal LO = 2.5 GHz, high power clock PLL, high power receiver ADC low rate, receive QEC enabled, QEC engine active. Using a low power ADC decreases power consumption by approximately 110 mW per receiver channel. No auxiliary DACs or auxiliary ADCs are enabled.

Table 11. FDD Modes

	Supply (mA)						
ADRV9002 Mode Conditions	VDDA_1P0 Analog Supplies	VDD_1P0 Digital Supply	VDDA_1P3 Analog Supplies	VDDA_1P8 Analog Supplies	VDD_1P8 Digital Supply	Average Power (W)	
1 × Receiver, 1 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave	Not used	298	835	179	28	1.756	
1 × Receiver, 1 × Transmitter RF Attenuation = 10 dB, Full- Scale Continuous Wave	Not used	298	835	103	28	1.619	
2 × Receiver 2 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave	Not used	507	1234	344	53	2.826	
2 × Receiver, 2 × Transmitter RF Attenuation = 10 dB, Full- Scale Continuous Wave	Not used	507	1234	190	53	2.549	

TIMING SPECIFICATIONS

Table 12.	
-	

Parameter	Symbol	Min	Тур	Мах	Units	Test Conditions/Comments
SERIAL PERIPHERAL INTERFACE (SPI) TIMING						
t _{CP}		20			ns	SPI_CLK period.
t _{MP}		10			ns	SPI_CLK pulse width.
tsc		3			ns	SPI_EN setup to first SPI_CLK rising edge.
t _{нс}		0			ns	Last SPI_CLK falling edge to SPI_EN hold.
ts		2			ns	SPI_DIO data input setup to SPI_CLK.
tн		0			ns	SPI_DIO data input hold to SPI_CLK.
tco		3		8	ns	SPI_CLK falling edge to output data delay (3- wire or 4-wire mode).
t _{HZM}		tн		tco	ns	Bus turnaround time after the baseband processor drives the last address bit.
t _{HZS}		0		tco	ns	Bus turnaround time after the ADRV9002 drives the last address bit.
DIGITAL TIMING ¹						
TX1_ENABLE or TX2_ENABLE Pulse Width		10			μs	
RX1_ENABLE or Rx2_ENABLE Pulse Width		10			μs	
TX1_ENABLE or TX2_ENABLE Valid Data			2		μs	
RX1_ENABLE or Rx2_ENABLE Valid Data			2		μs	
DIGITAL DATA TIMING (LVDS SSI)						Zero on-chip lane skew and an adjustable delay of ±300 pS available per lane.
TXx_DCLK_IN±, RXx_DCLK_OUT± and TXx_DCLK_OUT± Clock Period		2			ns	500 MHz.
TXx_DCLK_IN±, RXx_DCLK_OUT± and TXx_DCLK_OUT± Pulse Width			1		ns	
Transmitter Data						
TXx_IDATA_IN± or TXx_QDATA_IN or TXx_STROBE_IN± Setup to TXx_DCLK_IN±		0.2			ns	
TXx_IDATA_IN± or TXx_QDATA_IN± or TXx_STROBE_IN± Hold to TXx_DCLK_IN±		0.3			ns	

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
Receiver Data				0.2		
RXx_DCLK_OUT± to RXx_IDATA_OUT± or					ns	DC-coupled.
RXx_QDATA_OUT± or RXx_STROBE_OUT± Delay						
/						
DIGITAL DATA TIMING (CMOS-SSI)						
TXx_DCLK_IN±, RXx_DCLK_OUT± and TXx_DCLK_OUT± Clock Period		12.5			ns	80 MHz.
TXx_DCLK_IN±, RXx_DCLK_OUT± and		6.25			ns	
TXx_DCLK_OUT± Pulse Width						
Transmitter Data						
TXx_DATA_IN± or TXx_STROBE_IN± Setup to TXx_DCLK_IN±		2			ns	
TXx_DATA_IN± or TXx_STROBE_IN± Hold to TXx_DCLK_IN±		2			ns	
Receiver Data						
RXx_DCLK_OUT± to RXx_DATA_OUT± or				5	ns	DC-coupled.
RXx_STROBE_OUT± Delay						

¹ TX2_ENABLE, TX2_ENABLE, RX1_ENABLE, and RX2_ENABLE are the channel enabling and disabling signals.

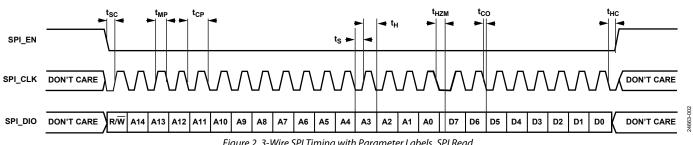


Figure 2. 3-Wire SPI Timing with Parameter Labels, SPI Read

ABSOLUTE MAXIMUM RATINGS

Table 13.

1 4010 101	
Parameter	Rating
VDDA_1P0 to VSSA	–0.2 V to +1.2 V
VDDA_1P3 to VSSA	–0.2 V to +1.5 V
VDDA_1P8 to VSSA	–0.3 V to +2.2 V
VDD_1P0 to VSSD	–0.2 V to +1.2 V
VDD_1P8 to VSSD	–0.3 V to +2.2 V
Input Current to Any Pin Except Supplies	±10 mA
Maximum Input Power into RF Port	See Table 14 for limits vs. survival time
Junction Temperature Range	-40°C to +110°C
Storage Temperature Range	–65°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 14. Maximum Input Power into RF Ports vs. Lifetime

RF Port Input Power,	Lifetime					
Continuous Wave Signal (dBm)	Gain = −30 dB	Gain = 0 dB				
7	>10 years	>10 years				
10	>10 years	20000 hours				
20	>10 years	14 hours				
23	>10 years	110 minutes				
25	>7 years	60 minutes				

REFLOW PROFILE

The ADRV9002 reflow profile is in accordance with the JEDEC JESD20 criteria for Pb-free devices. The maximum reflow temperature is 260°C.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

The thermal resistance values specified in Table 15 are calculated based on JEDEC specifications (unless specified otherwise) and must be used in compliance with JESD51-12. Note that using enhanced heat removal techniques (PCB, heat sink, airflow, and so on) improves thermal resistance.

 θ_{IA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

 θ_{JCtop} is the thermal resistance from the junction to the top of the package case.

Table 15. Thermal Resistance Values^{1,2}

Package	θ _{JA}	θ _{JCtop}	θ _{JB}	Ψ _{JC}	Ψ _{JB}
Type	(°C/W)	(°C/W)	(°C/W)	(°C/W)	(°C/W)
BC-196-13	21.1	0.04	4.9	0.3	4.9

¹ For test, 100um TIM is used. TIM is assumed to have 3.6 W/mK.

² Using enhanced heat removal (PCB, heat sink, airflow, etc.) techniques shall improve thermal resistance values.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for ADRV2009

Table 16. ADRV2009, 196-Ball CSP_BGA

ESD Model	Withstand Threshold (v)	Class
HBM	2000	2
CDM	500	C4

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	VSSA	VSSA	EXT_LO2+	EXT_LO2-	VRFVC02_ 1P3	VRFLO2_ 1P0	MODEA	RBIAS	VRFLO1_ 1P0	VRFVC01_ 1P3	EXT_LO1-	EXT_LO1+	VSSA	VSSA
в	RX2A-	VSSA	VSSA	VSSA	VSSA	VRFVCO2_ 1P0	AUXADC_2	AUXADC_1	VRFVCO1_ 1P0	VSSA	VSSA	VSSA	VSSA	RX1A-
с	RX2A+	VSSA	RX2B+	RX2B-	VSSA	VANA2_ 1P0	VANA2_ 1P3	VANA1_ 1P3	VANA1_ 1P0	VSSA	RX1B-	RX1B+	VSSA	RX1A+
D	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	MCS+	MCS-	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
E	VRX2LO_ 1P0	VRX2LO_ 1P3	AGPIO_2	VRFSYN2_ 1P3	VCLKSYN_ 1P3	VSSA	DEV_CLK_ IN+	DEV_CLK_ IN-	VSSA	VAUXSYN_ 1P3	VRFSYN1_ 1P3	AGPIO_0	VRX1LO_ 1P3	VRX1LO_ 1P0
F	VSSA	VSSA	VSSA	AGPIO_4	AGPIO_3	VSSA	VSSA	VSSA	VSSA	AGPIO_1	AGPIO_10	VSSA	VSSA	VSSA
G	TX2+	VSSA	VTX2LO_ 1P3	AGPIO_5	VCLKVCO_ 1P3	AGPIO_6	VCONV_ 1P8	VAGPIO_ 1P8	AGPIO_8	VAUXVCO _1P3	AGPIO_11	VTX1LO_ 1P3	VSSA	TX1+
н	TX2-	VANA2_I 1P8	VTX2LO_ 1P0	AUXADC_3	VCLKVCO_ 1P0	AGPIO_7	VCONV_ 1P0	VCONV_ 1P3	AGPIO_9	VAUXVCO _1P0	AUXADC_0	VTX1LO_ 1P0	VANA1_ 1P8	TX1-
J	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
к	SPI_CLK	SPI_DIO	RX2_EN	VSSA/TES TCK+	VSSA/TES TCK-	DGPIO_0	DGPIO_1	DGPIO_2	DGPIO_3	DGPIO_4	DGPIO_5	RX1_EN	RESETB	GP_INT
L	SPI_EN	SPI_DO	TX2_EN	DGPIO_6	DGPIO_7	DGPIO_8	VDIG_1P0	VDIG_1P0	DGPIO_9	DGPIO_10	DGPIO_11	TX1_EN	MODE	DEV_CLK_ OUT
м	RX2_IDAT A_OUT-	RX2_IDAT A_OUT+	RX2_DCLK _OUT-	RX2_DCLK _OUT+	DGPIO_15/ TX2_DCLK _OUT+	DGPIO_14/ TX2_DCLK _OUT-	VDIGIO_I 1P8	VDIG_0P9	DGPIO_12/ TX1_DCLK _OUT-	DGPIO_13/ TX1_DCLK _OUT+	RX1_DCLK _OUT+	RX1_DCLK _OUT+	RX1_IDAT A_OUT+	RX1_IDAT A_OUT-
N	RX2_ STROBE_ OUT-	RX2_ STROBE_ OUT+	RX2_ QDATA_ OUT-	RX2_ QDATA_ OUT+	TX2_DCLK _IN+	TX2_DCLK _IN-	VSSD	VSSD	TX1_DCLK _IN-	TX1_DCLK _IN+	RX1_ QDATA_ OUT+	RX1_ QDATA_ OUT-	RX1_ STROBE_ OUT+	RX1_ STROBE_ OUT-
Ρ	VSSD	TX2_ STROBE_ IN+	TX2_ STROBE_ IN-	TX2_ QDATA_ IN-	TX2_ QDATA_ IN+	TX2_ IDATA_ IN+	TX2_ IDATA_ IN-	TX1_ IDATA_ IN-	TX1_ IDATA_ IN+	TX1_ QDATA_ IN+	TX1_ QDATA_ IN-	TX1_ STROBE_ IN-	TX1_ STROBE_ IN+	VSSD

24663-003

 RF PORTS
 POWER 1.8V
 DIGITAL GPIO
 SPI, ENABLICATION

 ANALOG GND
 POWER 1.3V
 ANALOG GPIO
 SYNCHRO

 DIGITAL GND
 POWER 1.0V
 MULTIFUNCTION GPIO
 Aux ADC

SPI, ENABLES, RESET, MODE, DEV_CLK_OUT

Figure 3. Pin Configuration

Table 17. Pin Function Descriptions

Pin No.	Туре	Mnemonic	Description
A1, A2, A13, A14, B2 to B5, B10 to B13, C2, C5, C10, C13, D1 to D6, D9 to D14, E6, E9, F1 to F3, F6 to F9, F12 to F14, G2, G13, J1 to J14	Input	VSSA	Analog Supply Voltage (V _{SSA}).
A3, A4	Input	EXT_LO2+, EXT_LO2-	Differential External LO Input 1 (LO1). If EXT_LO2+ and EXT_LO2– are used for the external LO1, the input frequency must be 2× or higher the desired carrier frequency. If unused, connect EXT_LO2+ and EXT_LO2– to VSSA.
A5	Input	VRFVCO2_1P3	1.3 V Internal LDO Regulator Input Supply for RF External LO Input 2 (LO2) VCO and LO Generation Circuitry. VRFVCO2_1P3 is sensitive to supply noise.
A6	Input/ Output	VRFLO2_1P0	1.0 V Internal Supply Node for RF LO2 LO Generation Circuitry. Connect VRFLO2_1P0 together with VRFVCO2_1P0 and bypass with a 4.7 μF capacitor when the internal LDO operated from the VRFVCO2_1P3 input is in use. Provide a 1.0 V supply to VRFLO2_1P0 when the internal LDO that is operated from VRFVCO2_1P3 is not in use.
Α7	Input	MODEA	Use MODEA to configure the boot up option for the DEV_CLK_IN± inputs and the DEV_CLK_OUT output. Connect MODEA to VSSA to enable the differential clock receiver at the DEV_CLK_IN± pins. Connect MODEA to a voltage level higher than any VSSA to enable either the single-ended clock at DEV_CLK_IN+ or the crystal oscillator resonator at both of the DEV_CLK_IN± pins.
A8	Input	RBIAS	Bias Resistor Connection. RBIAS generates an internal current based on an external 1% resistor. Connect a 4.99 k Ω resistor between RBIAS and VSSA (analog ground).
A9	Input/ Output	VRFLO1_1P0	1.0 V Internal Supply Node for RF LO1 LO Generation Circuitry. Connect VRFLO1_1P0 together with VRFVCO1_1P0 and bypass with a 4.7 μ F capacitor when the internal LDO operated from the VRFVCO1_1P3 input is in use. Provide a 1.0 V supply to VRFLO1_1P0 when the internal LDO operated from VRFVCO1_1P3 is not in use.
A10	Input	VRFVCO1_1P3	1.3 V Internal LDO Input Supply for RF LO1 VCO and LO Generation Circuitry. VRFVCO1_1P3 is sensitive to supply noise.
A11, A12	Input	EXT_LO1–, EXT_LO1+	Differential External LO Input 2. If EXT_LO1+ and EXT_LO1– are used for the external LO2, the input frequency must be 2× or higher the desired carrier frequency Is unused, connect EXT_LO1+ and EXT_LO1– to VSSA.
B1, C1 B6	Input Output	RX2A-, RX2A+ VRFVCO2_1P0	Differential Input A for Rx2. If unused, connect RX2A– and RX2A+ to VSSA. 1.0 V Internal Supply Node for RF LO2 VCO Circuitry. Connect this VRFVCO2_1P0 together with VRFLO2_1P0 and bypass with a 4.7 μF capacitor when the internal LDO operated from the VRFVCO2_1P3 input is in use.
B7	Input	AUXADC_2	Input 2 to Auxiliary ADC Input Multiplexer. If unused, do not connect AUXADC_2.
B8	Input	AUXADC_1	Input 1 to Auxiliary ADC Input Multiplexer. If unused, do not connect AUXADC_1.
B9	Output	VRFVCO1_1P0	1.0 V Internal Supply node for RF LO1 VCO Circuitry. Connect VRFVCO1_1P0 together with VRFLO1_1P0 and bypass with a 4.7 μ F capacitor when the internal LDO operated from the VRFVCO1_1P3 input is in use.
B14, C14	Input	RX1A–, RX1A+	Differential Input A for Rx1. If unused, connect RX1A- and RX1A+ to VSSA.
C3, C4	Input	RX2B+, RX2B–	Differential Input B for Rx2. If unused, connect RX2B+ and RX2B- to VSSA.
C6	Input/ Output	VANA2_1P0	1.0 V Internal Supply Node for Tx2 and Rx2 Baseband Circuits, TIA, Transmitter Transconductance (GM) Baseband Filters, and Auxiliary DACs and ADCs. For normal operation, leave VANA2_1P0 unconnected.
C7	Input	VANA2_1P3	1.3 V Internal LDO Input Supply for Tx2 and Rx2 Baseband Circuits, TIA, Transmitter GM, Baseband Filters, and Auxiliary DACs and ADCs. VANA2_1P3 is sensitive to supply noise.
C8	Input	VANA1_1P3	1.3 V Internal LDO Input Supply for Tx1 and Rx1 Baseband Circuits, TIA, Transmitter GM and Baseband Filters. VANA1_1P3 is sensitive to supply noise.
С9	Input/ Output	VANA1_1P0	1.0 V Internal Supply Node for Tx1 and Rx1 Baseband Circuits, TIA, Transmitter GN and Baseband Filters. For normal operation, leave VANA1_1P0 unconnected.
C11, C12	Input	RX1B-, RX1B+	Differential Input B for Rx1. If unused, connect RX1B– and RX1B+ to VSSA.
D7, D8	Input	MCS+, MCS–	Multichip Synchronization Reference Inputs. If unused, connect MCS+ and MCS- to VSSA.
E1	Output	VRX2LO_1P0	1.0 V Internal Supply Node for Rx2 LO Buffers and Mixers. VRX2LO_1P0 is sensitive to supply noise. Bypass VRX2LO_1P0 with a 4.7 μ F capacitor.

Rev. PrA | Page 22 of 71

Pin No.	Туре	Mnemonic	Description
E2	Input	VRX2LO_1P3	1.3 V Internal LDO Input Supply for Rx2 LO Buffers and Mixers. Provide a 1.0 V supply to VRX2LO_1P3 when the internal LDO is not used. VRX2LO_1P3 is sensitive to supply noise.
E3, E12, F4, F5, F10, F11, G4, G6, G9, G11, H6, H9	Input/ Output	Agpio_xx	GPIOs Signals Referenced to VAGPIO_1P8 1.8 V Supply. See Table 18 to match the ball location to the AGPIO_xx signal name. Some AGPIO_xx pins can also function as auxiliary DAC outputs. See Table 18 for mapping between AGPIO_xx and the auxiliary DAC signals. If unused, do not connect AGPIO_xx.
E4	Input	VRFSYN2_1P3	1.3 V Supply for RF LO2 Synthesizer. VRFSYN2_1P3 is sensitive to supply noise.
E5	Input	VCLKSYN_1P3	1.3 V Supply for Clock Synthesizer. VCLKSYN_1P3 is sensitive to supply noise.
E7, E8	Input	DEV_CLK_IN+, DEV_CLK_IN-	Device Clock Input. DEV_CLK_IN± can operate as differential, single-ended, or be connected to the external crystal oscillator. In single-ended mode, apply the clock signal to the DEV_CLK_IN+ pin and leave the DEV_CLK_IN– pin unconnected.
E10	Input	VAUXSYN_1P3	1.3 V Supply for Auxiliary Synthesizer. VAUXSYN_1P3 is sensitive to supply noise.
E11	Input	VRFSYN1_1P3	1.3 V Supply for RF LO1 Synthesizer. VRFSYN1_1P3 is sensitive to supply noise.
E13	Input	VRX1LO_1P3	1.3 V Internal LDO Input Supply for Rx1 LO Buffers and Mixers. Provide a 1.0 V supply to VRX1LO_1P3 when the internal LDO is not used. VRX1LO_1P3 is sensitive to supply noise.
E14	Output	VRX1LO_1P0	1.0 V Internal Supply Node for Rx1 LO Buffers and Mixers. VRX1LO_1P0 is sensitive to supply noise. Bypass VRX1LO_1P0 with a 4.7 μ F capacitor.
G1, H1	Output	TX2+, TX2–	Differential Output for Transmitter Channel 2. If unused, do not connect TX2+ and TX2–.
G3	Input	VTX2LO_1P3	1.3 V Supply for Tx2 LO Buffers, Upconverter, and LO Delay. Provide a 1.0 V supply to VTX2LO_1P3 when the internal LDO is not used. VTX2LO_1P3 is sensitive to supply noise.
G5	Input	VCLKVCO_1P3	1.3 V Internal LDO Input Supply for Clock LO VCO and LO Generation Circuitry. VCLKVCO_1P3 is sensitive to supply noise.
G7	Input	VCONV_1P8	1.8 V Supply for Tx1 and Tx2 DAC and Rx1 and Rx2 ADC.
G8	Input	VAGPIO_1P8	1.8 V Supply for Auxiliary DACs, Auxiliary ADCs, and AGPIO Signals.
G10	Input	VAUXVCO_1P3	1.3 V Internal LDO Input Supply for Auxiliary LO VCO and LO Generation Circuitry. VAUXVCO_1P3 is sensitive to supply noise.
G12	Input	VTX1LO_1P3	1.3 V Internal LDO Input Supply for Tx1 LO Buffers, Upconverter, and LO Delay. Provide a 1.0 V supply to VTX1LO_1P3 when the internal LDO is not used. VTX1LO_1P3 is sensitive to supply noise.
G14, H14	Output	TX1+, TX1–	Differential Output for Transmitter Channel 1. If unused, do not connect TX1+ and TX1–.
H2	Input	VANA2_1P8	1.8 V Supply for Rx2 Mixer, Rx2 TIA, Tx2 LPF, and Internal References.
H3	Output	VTX2LO_1P0	1.0 V Internal Supply Node for Tx2 LO Buffers, Upconverter, and LO Delay. For normal operation, leave VTX2LO_1P0 unconnected.
H4	Input	AUXADC_3	Input 3 to Auxiliary ADC Input Multiplexer. If unused, do not connect AUXADC_3.
H5	Output	VCLKVCO_1P0	1.0 V Internal Supply Node for Clock LO VCO and LO Generation Circuitry. Bypass VCLKVCO_1P0 with a 4.7 μF capacitor.
H7	Output	VCONV_1P0	1.0 V Internal Supply Node for Receiver ADCs and Transmitter DACs. Bypass VCONV_1P0 with a 4.7 μF capacitor.
H8	Input	VCONV_1P3	1.3 V Internal LDO Input Supply for Receiver ADCs and Transmitter DACs. Provide a 1.0 V supply to VCONV_1P3 when the internal LDO is not used. VCONV_1P3 is sensitive to supply noise.
H10	Output	VAUXVCO_1P0	1.0 V Internal Supply Node for Auxiliary LO VCO and LO Generation Circuitry. Bypass VAUXVCO_1P0 with a 4.7 μ F Capacitor.
H11	Input	AUXADC_0	Input 0 to Auxiliary ADC Input Multiplexer. If unused, do not connect AUXADC_0.
H12	Output	VTX1LO_1P0	1.0 V Internal Supply Node for Tx1 LO Buffers, Upconverter, and LO Delay. For normal operation, leave VTX1LO_1P0 unconnected.
H13	Input	VANA1_1P8	1.8 V Supply for Rx1 Mixer, Rx1 TIA, Tx1 LPF, Crystal Oscillator, DEV_CLK Circuitry, and Internal References.
K1	Input	SPI_CLK	Serial Data Bus Clock Input.
K2	Input/ Output	SPI_DIO	Serial Data Input in 4-Wire Mode or Input/Output in 3-Wire Mode.
К3	Input	RX2_EN	Enable Input for Rx2. If unused, do not connect RX2_EN.
K4	Input	VSSA/TESTCK+	Connect VSSA/TESTCK+ to VSSA for normal operation.

Pin No.	Туре	Mnemonic	Description
K5	Input	VSSA/TESTCK-	Connect VSSA/TESTCK- to VSSA for normal operation.
K6 to K11, L4 to L6, L9	Input/	DGPIO_xx	Digital GPIO. VDIGIO_1P8 supplies 1.8 V to DGPIO_xx. See Table 18 to match the
to L11	Output		pin location to the DGPIO_xx signal name. If unused, do not connect DGPIO_xx.
K12	Input	RX1_EN	Enable Input for Rx1. If unused, do not connect RX1_EN.
K13	Input	RESETB	Active Low Chip Reset.
K14	Output	GP_INT	General-Purpose Digital Interrupt Output Signal. If unused, do not connect GP_INT.
L1	Input	SPI_EN	Active Low Serial Data Bus Chip Select.
L2	Output	SPI_DO	Serial Data Output. If unused in SPI 3-wire mode, do not connect SPI_DO.
L3	Input	TX2_EN	Enable Input for Transmitter Channel 2. If unused, do not connect TX2_EN.
L7, L8	Input	VDIG_1P0	1.0 V Digital Core. Connect Pin L7 and Pin L8 together. Use a wide trace to connect the VDIG_1P0 pins to a separate power supply domain. Provide reservoir capacitance close to the chip.
L12	Input	TX1_EN	Enable Input for Transmitter Channel 1. If unused, do not connect TX1_EN.
L13	Input	MODE	Joint Test Action Group (JTAG) Boundary Scan Pin. See Table 19 for more information. If unused, connect MODE to VSSA.
L14	Output	DEV_CLK_OUT	Single-Ended Device Clock Output. DEV_CLK_OUT provides a DEV_CLK signal or the divided version to the baseband IC. If unused, do not connect DEV_CLK_OUT.
M1	Output	RX2_IDATA_OUT-	In LVDS SSI mode, RX2_IDATA_OUT- is the Rx2 I sample data output on the negative side or the Rx2 I and Q sample data output on the negative side. In CMOS SSI mode, RX2_IDATA_OUT- is the Rx2 Data Output 0 or the Rx2 I and Q sample data output. If unused, do not connect RX2_IDATA_OUT
M2	Output	RX2_IDATA_OUT+	In LVDS SSI mode, RX2_IDATA_OUT+ is the Rx2 I sample data output positive side of the differential pair or the Rx2 I and Q sample data output positive side of the differential pair. In CMOS SSI mode, RX2_IDATA_OUT+ is the Rx2 Data Output 1. If unused, do not connect RX2_IDATA_OUT+.
М3	Output	RX2_DCLK_OUT-	In LVDS SSI mode, RX2_DCLK_OUT- is the Rx2 data clock output negative side. In CMOS SSI mode, RX2_DCLK_OUT- is not used. If unused, do not connect RX2_DCLK_OUT
M4	Output	RX2_DCLK_OUT+	In LVDS SSI mode, RX2_DCLK_OUT+ is the Rx2 data clock output positive side. In CMOS SSI mode, RX2_DCLK_OUT+ is the Rx2 data clock output. If unused, do not connect RX2_DCLK_OUT+.
M5	Input/ Output	DGPIO_15/TX2_ DCLK_OUT+	Digital GPIO 15. VDIGIO_1P8 supplies 1.8 V to DGPIO_15/TX2_DCLK_OUT+. Alternative function of DGPIO_15/TX2_DCLK_OUT+ is to provide the positive side of the reference clock output for the Tx2 data port in LVDS SSI mode. If unused, do not connect DGPIO_15/TX2_DCLK_OUT+.
M6	Input/ Output	DGPIO_14/TX2_ DCLK_OUT-	Digital GPIO 14. VDIGIO_1P8 supplies 1.8 V to DGPIO_14/TX2_DCLK_OUT–. The alternative function of DGPIO_14/TX2_DCLK_OUT– is to provide the negative side of the reference clock output for the Tx2 data port in LVDS SSI mode. If unused, do not connect DGPIO_14/TX2_DCLK_OUT–.
M7	Input	VDIGIO_1P8	1.8 V Supply Input for Data Port Interface (CMOS-SSI and LVDS SSI Mode), SPI Signals, Control Input/Output Signals, and DGPIO Interface.
M8	Output	VDIG_0P9	1.0 V Internal Supply Node for Digital Circuitry. Bypass VDIG_0P9 with a 4.7 μF capacitor.
M9	Input/ Output	DGPIO_12/TX1_ DCLK_OUT-	Digital GPIO 12. VDIGIO_1P8 supplies 1.8 V to DGPIO_12/TX1_DCLK_OUT–. The alternative function of DGPIO_12/TX1_DCLK_OUT– is to provide the negative side of the reference clock output for the Tx1 data port in LVDS SSI mode. If unused, do not connect DGPIO_12/TX1_DCLK_OUT–.
M10	Input/ Output	DGPIO_13/TX1_ DCLK_OUT+	Digital GPIO 13. VDIGIO_1P8 supplies 1.8 V to DGPIO_13/TX1_DCLK_OUT+. The alternative function of DGPIO_13/TX1_DCLK_OUT+ is to provide the positive side of the reference clock output for the Tx1 data port in LVDS SSI mode. If unused, do not connect DGPIO_13/TX1_DCLK_OUT+.
M11	Output	RX1_DCLK_OUT+	In LVDS SSI mode, RX1_DCLK_OUT+ is the Rx1 data clock output positive side. In CMOS SSI mode, RX1_DCLK_OUT+ is the Rx1 data clock output. If unused, do not connect RX1_DCLK_OUT+.
M12	Output	RX1_DCLK_OUT-	In LVDS SSI mode, RX1_DCLK_OUT– is the Rx1 data clock output negative side. In CMOS SSI mode, RX1_DCLK_OUT– is not used. If unused, do not connect RX1_DCLK_OUT–.

Pin No.	Туре	Mnemonic	Description
M13	Output	RX1_IDATA_OUT+	In LVDS SSI mode, RX1_IDATA_OUT+ is the Rx1 I sample data output positive side or the Rx1 I and Q sample data output positive side. In CMOS SSI mode, RX1_IDATA_OUT+ is the Rx1 Data Output 1.
M14	Output	RX1_IDATA_OUT-	In LVDS SSI mode, RX1_IDATA_OUT– is the Rx1 I sample data output negative side or the Rx1 I and Q sample data output negative side. In CMOS SSI mode, RX1_IDATA_OUT– is the Rx1 Data Output 0 or the Rx1 I and Q sample data output.
N1	Output	RX2_STROBE_OUT-	In LVDS SSI mode, RX2_STROBE_OUT- is the Rx2 strobe output negative side. In CMOS SSI mode, RX2_STROBE_OUT- is not used. If unused, do not connect RX2_STROBE_OUT
N2	Output	RX2_STROBE_OUT+	In LVDS SSI mode, RX2_STROBE_OUT+ is the Rx2 strobe output positive side. In CMOS SSI mode, RX2_STROBE_OUT+ is the Rx2 strobe output. If unused, do not connect RX2_STROBE_OUT+.
N3	Output	RX2_QDATA_OUT-	In LVDS SSI mode, RX2_QDATA_OUT- is the Rx2 Q sample data output positive side. In CMOS SSI mode, RX2_QDATA_OUT- is the Rx2 Data Output 2. If unused, do not connect RX2_QDATA_OUT
N4	Output	RX2_QDATA_OUT+	In LVDS SSI mode, RX2_QDATA_OUT+ is the Rx2 Q sample data output positive side. In CMOS SSI mode, RX2_QDATA_OUT+ is the Rx2 Data Output 3. If unused, do not connect RX2_QDATA_OUT+.
N5	Input	TX2_DCLK_IN+	In LVDS SSI mode, TX2_DCLK_IN+ is the Tx2 data clock input positive side. In CMOS SSI mode, TX2_DCLK_IN+ is the Tx2 data clock input. If unused, do not connect TX2_DCLK_IN+.
N6	Input	TX2_DCLK_IN-	In LVDS SSI mode, TX2_DCLK_IN– is the Tx2 data clock input negative side. In CMOS SSI mode, TX2_DCLK_IN– is not used. If unused, do not connect TX2_DCLK_IN–.
N7, N8, P1, P14	Input	VSSD	Digital Supply Voltage (V _{SSD}).
N9	Input	TX1_DCLK_IN-	In LVDS SSI mode, TX1_DCLK_IN— is the Tx1 data clock input negative side. In CMOS SSI mode, TX1_DCLK_IN— is not used. If unused, do not connect TX1_DCLK_IN—.
N10	Input	TX1_DCLK_IN+	In LVDS SSI mode, TX1_DCLK_IN+ is the Tx1 data clock input positive side. In CMOS SSI mode, TX1_DCLK_IN+ is the Tx1data clock input. If unused, do not connect TX1_DCLK_IN+.
N11	Output	RX1_QDATA_OUT+	In LVDS SSI mode, RX1_QDATA_OUT+ is the Rx1 Q sample data output positive side. In CMOS SSI mode, RX1_QDATA_OUT+ is the Rx1 Data Output 3. If unused, do not connect RX1_QDATA_OUT+.
N12	Output	RX1_QDATA_OUT-	In LVDS SSI mode, RX1_QDATA_OUT– is the Rx1 Q sample data output positive side. In CMOS-SSI mode, RX1_QDATA_OUT– is the Rx1 Data Output 2. If unused, do not connect RX1_QDATA_OUT–.
N13	Output	RX1_STROBE_OUT+	In LVDS SSI mode, RX1_STROBE_OUT+ is the Rx1 strobe output positive side. In CMOS SSI mode, RX1_STROBE_OUT+ is the Rx1 strobe output. If unused, do not connect RX1_STROBE_OUT+.
N14	Output	RX1_STROBE_OUT-	In LVDS SSI mode, RX1_STROBE_OUT- is the Rx1 strobe output negative side. In CMOS SSI mode, RX1_STROBE_OUT- is not used. If unused, do not connect RX1_STROBE_OUT
P2	Input	TX2_STROBE_IN+	In LVDS SSI mode, TX2_STROBE_IN+ is the Tx2 strobe input positive side. In CMOS SSI mode, TX2_STROBE_IN+ is the Tx2 strobe input. If unused, do not connect TX2_STROBE_IN+.
Р3	Input/ Output	TX2_STROBE_IN-	In LVDS SSI mode, TX2_STROBE_IN— is the Tx2 strobe input negative side. In CMOS SSI mode, TX2_STROBE_IN— is the Tx2 reference data clock output. If unused, do not connect TX2_STROBE_IN—.
P4	Input	TX2_QDATA_IN-	In LVDS SSI mode, TX2_QDATA_IN— is the Tx2 Q sample data input negative side. In CMOS SSI mode, TX2_QDATA_IN— is the Tx2 Data Input 2. If unused, do not connect TX2_QDATA_IN—.
P5	Input	TX2_QDATA_IN+	In LVDS SSI mode, TX2_QDATA_IN+ is the Tx2 Q sample data input positive side. In CMOS SSI mode, TX2_QDATA_IN+ is the Tx2 Data Input 3. If unused, do not connect TX2_QDATA_IN+.
P6	Input	TX2_IDATA_IN+	In LVDS SSI mode, TX2_IDATA_IN+ is the Tx2 I sample data input positive side or the Tx2 I and Q sample data input positive side. In CMOS SSI mode, TX2_IDATA_IN+ is the Tx2 Data Input 1. If unused, do not connect TX2_IDATA_IN+.

Pin No.	Туре	Mnemonic	Description
P7	Input	TX2_IDATA_IN-	In LVDS SSI mode, TX2_IDATA_IN- is the Tx2 I sample data input negative side or the Tx2 I and Q sample data input negative side. In CMOS SSI mode, TX2_IDATA_IN- is the Tx2 Data Input 0 or the Tx2 I and Q sample data input. If unused, do not connect TX2_IDATA_IN
P8	Input	TX1_IDATA_IN-	In LVDS SSI mode, TX1_IDATA_IN- is the Tx1 I sample data input negative side or the Tx1 I and Q sample data input negative side. In CMOS SSI mode, TX1_IDATA_IN- is the Tx1 Data Input 0 or the Tx1 I and Q sample data input. If unused, do not connect TX1_IDATA_IN
P9	Input	TX1_IDATA_IN+	In LVDS SSI mode, TX1_IDATA_IN+ is the Tx1 I sample data input positive side or the Tx1 I and Q sample data input positive side. In CMOS SSI mode, TX1_IDATA_IN+ is the Tx1 Data Input 1. If unused, do not connect TX1_IDATA_IN+.
P10	Input	TX1_QDATA_IN+	In LVDS SSI mode, TX1_QDATA_IN+ is the Tx1 Q sample data input positive side. In CMOS SSI mode, TX1_QDATA_IN+ is the Tx1 Data Input 3. If unused, do not connect TX1_QDATA_IN+.
P11	Input	TX1_QDATA_IN-	In LVDS SSI mode, TX1_QDATA_IN- is the Tx1 Q sample data input negative side. In CMOS SSI mode, TX1_QDATA_IN- is the Tx1 Data Input 2. If unused, do not connect TX1_QDATA_IN
P12	Input/ Output	TX1_STROBE_IN-	In LVDS SSI mode, TX1_STROBE_IN— is the Tx1 strobe input negative side. In CMOS SSI mode, TX1_STROBE_IN— is the Tx1 reference data clock output. If unused, do not connect TX1_STROBE_IN—.
P13	Input	TX1_STROBE_IN+	In LVDS SSI mode, TX1_STROBE_IN+ is the Tx1 strobe input positive side. In CMOS SSI mode, TX1_STROBE_IN+ is the Tx1 strobe input. If unused, do not connect TX1_STROBE_IN+.

TYPICAL PERFORMANCE CHARACTERISTICS

Device configuration profile: receiver = 40 MHz bandwidth, I/Q rate = 61.44 MHz, transmitter = 40 MHz bandwidth, I/Q rate = 61.44 MHz, device clock = 38.4 MHz, internal LO used for all measurements. Measurement are at nominal power supply voltages. All RF specifications are based on measurements that include printed circuit board (PCB) and matching circuit losses, unless otherwise noted. Specifications are applicable over the lifetime of the device.

30 MHZ BAND

The following temperature settings refer to the die temperature. All LO frequencies are set to 30 MHz, unless otherwise noted.

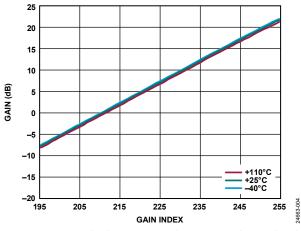


Figure 4. Receiver Absolute Gain (Complex) vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance, Pout = 2 dBm

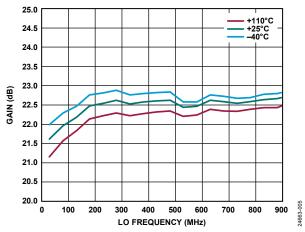


Figure 5. Receiver Absolute Gain (Complex) vs. LO Frequency, Baseband Frequency = 5.6 MHz, ADC = High Performance, Pout = 2 dBm

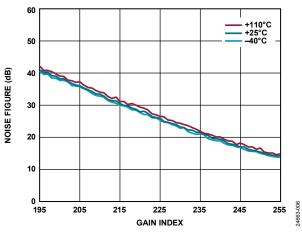


Figure 6. Receiver Noise Figure vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

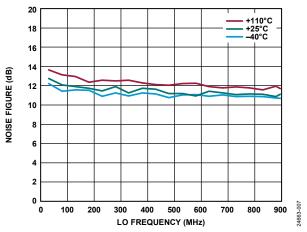


Figure 7. Receiver Noise Figure vs. LO Frequency, Baseband Frequency = 5.6 MHz, ADC = High Performance, Pout = 2 dBm

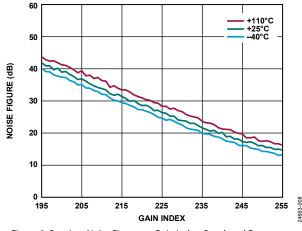


Figure 8. Receiver Noise Figure vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

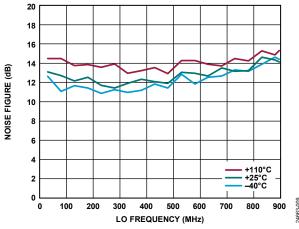


Figure 9. Receiver Noise Figure vs. LO Frequency, Baseband Frequency = 5.6 MHz, ADC = Low Power, Pout = 2dBm

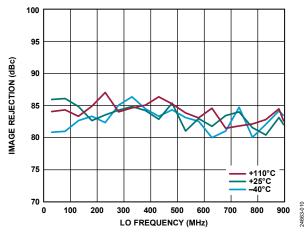


Figure 10. Receiver Image Rejection vs. LO Frequency, Baseband Frequency = 5.6 MHz, ADC = High Performance, Pout = 2 dBm

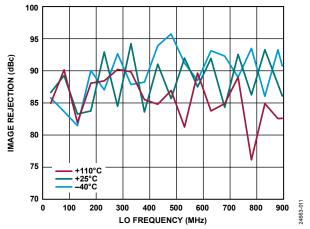
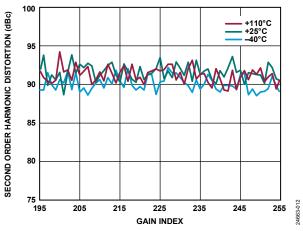
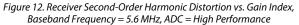




Figure 11. Receiver Image Rejection vs. LO Frequency, Baseband Frequency = 5.6 MHz, ADC = Low Power, Pout = 2 dBm

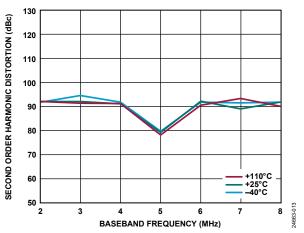


Figure 13. Receiver Second-Order Harmonic Distortion vs. Baseband Frequency, Gain Index = 255, ADC = High Performance

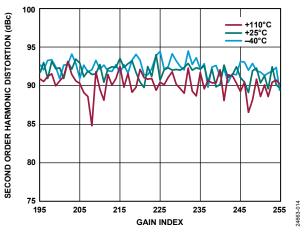
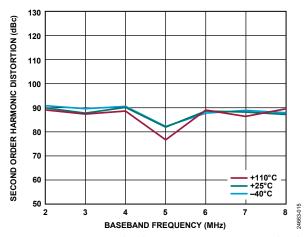
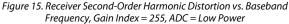




Figure 14. Receiver Second-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

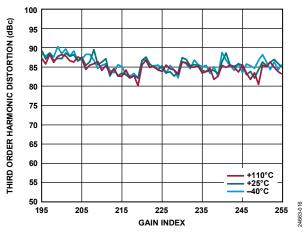


Figure 16. Receiver Third-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance, RF Input Low-Pass Filtered

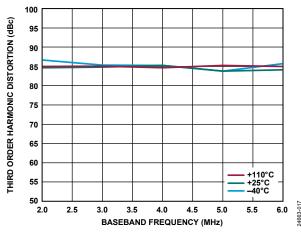
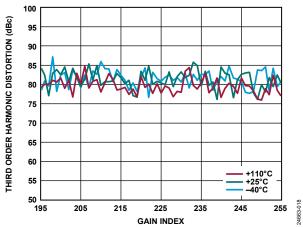
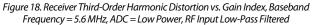




Figure 17. Receiver Third-Order Harmonic Distortion vs. Baseband Frequency, Gain Index = 255, ADC = High Performance

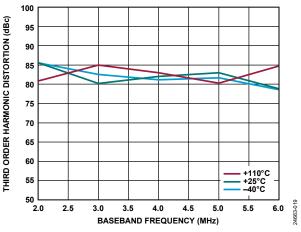


Figure 19. Receiver Third-Order Harmonic Distortion vs. Baseband Frequency, Gain Index = 255, ADC = Low Power

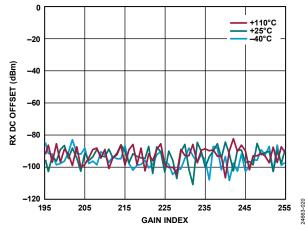


Figure 20. Receiver DC Offset vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

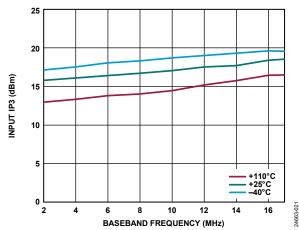
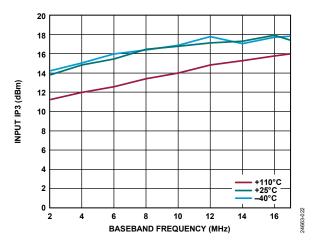
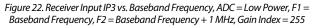




Figure 21. Receiver Input IP3 vs. Baseband Frequency, ADC = High Performance, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

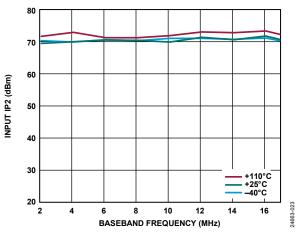


Figure 23. Receiver Input IP2 vs. Baseband Frequency, ADC = High Performance, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

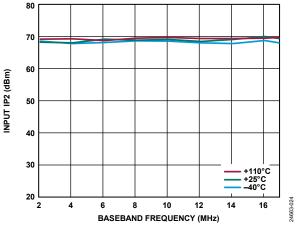


Figure 24. Receiver Input IP2 vs. Baseband Frequency, ADC = Low Power, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

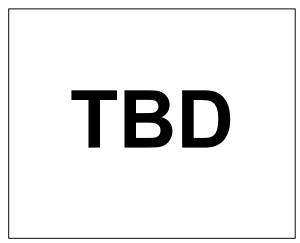


Figure 25. S11 vs. RF Frequency

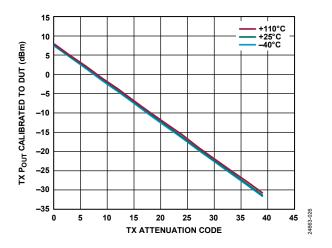


Figure 26. Transmitter Absolute Power vs. Attenuation Setting Baseband Frequency = 18 MHz, Backoff = 0.2 dB

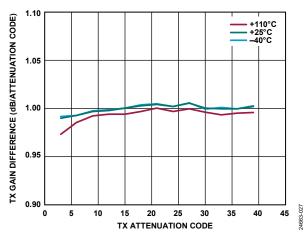


Figure 27. Transmitter Attenuation Delta (Error) vs. Transmitter Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

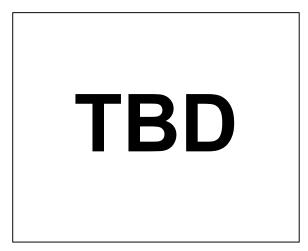


Figure 28. Transmitter Image Rejection Without Tracking Calibration vs. Attenuation Settings for Three Temperatures

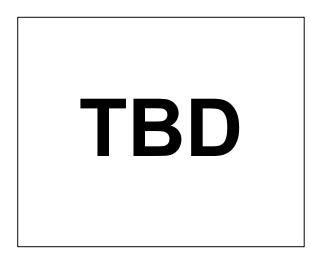


Figure 29. Transmitter Image Rejection Without Tracking Calibration vs. Baseband Frequency

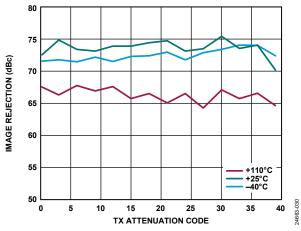


Figure 30. Transmitter Image Rejection vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

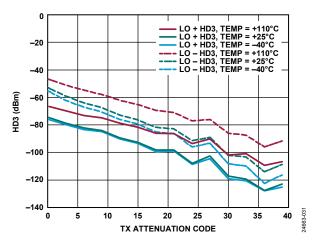


Figure 31. Transmitter HD3 vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

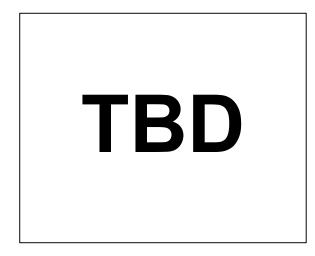


Figure 32. Transmitter HD2 with Calibration Off vs. Attenuation Setting for Three Temperatures

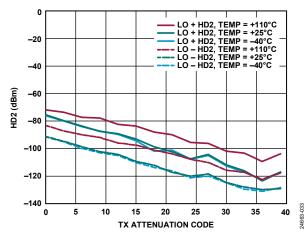


Figure 33. Transmitter HD2 vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

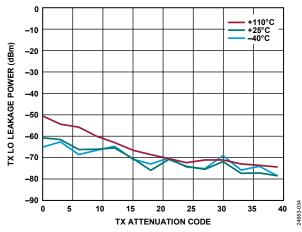


Figure 34. Transmitter LO Leakage vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

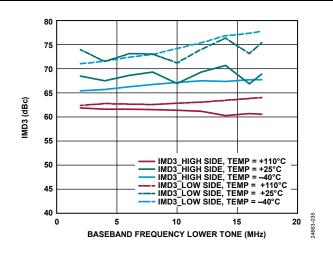


Figure 35. Transmitter IMD3 vs. Baseband Frequency, Transmitter Attenuation Code = 0, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Transmitter Power = 5 dB Below Full Scale

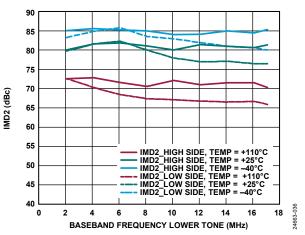


Figure 36. Transmitter IMD2 vs. Baseband Frequency, Transmitter Attenuation Code = 0, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Transmitter Power = 5 dB Below Full Scale

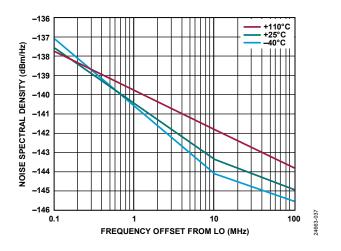


Figure 37. Transmitter Noise Spectral Density vs. Frequency Offset from LO, No RF Signal Applied, Internal LO

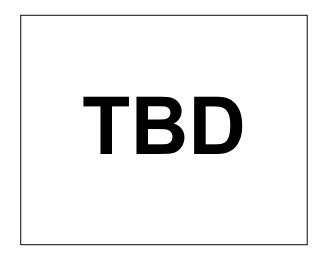


Figure 38. Transmitter Noise Spectral Density with External LO vs. Offset for Three Temperatures

470 MHZ BAND

The temperature settings refer to the die temperature. All LO frequencies set to 470 MHz, unless otherwise noted

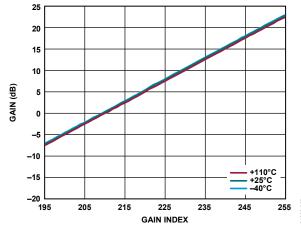


Figure 39. Receiver Absolute Gain (Complex) vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance, Pout = 2 dBm

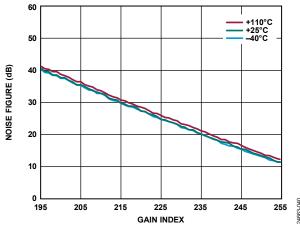


Figure 40. Receiver Noise Figure vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

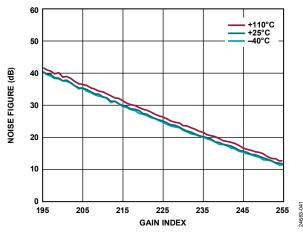


Figure 41. Receiver Noise Figure vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

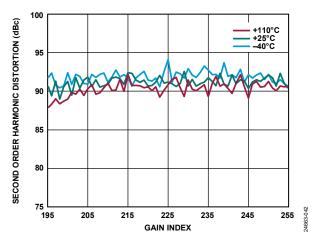


Figure 42. Receiver Second-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

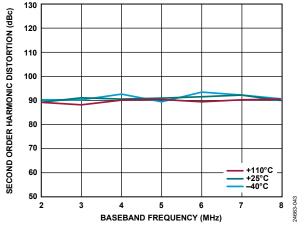
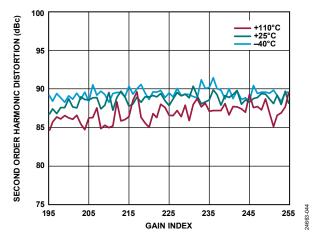
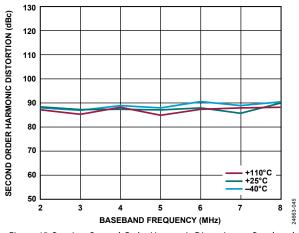
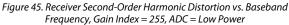
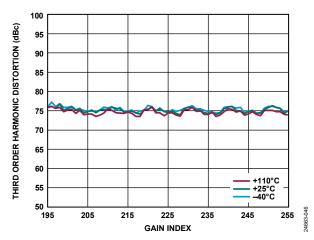
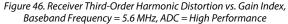
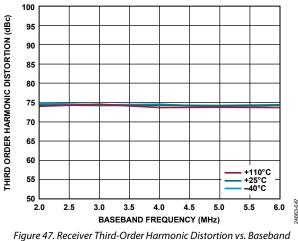


Figure 43. Receiver Second-Order Harmonic Distortion vs. Baseband Frequency, Gain Index = 255, ADC = High Performance


Figure 44. Receiver Second-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

Frequency, Gain Index = 255, ADC = High Performance

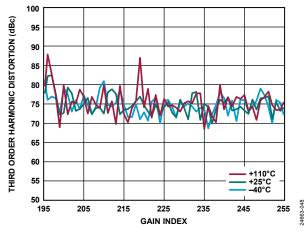


Figure 48. Receiver Third-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

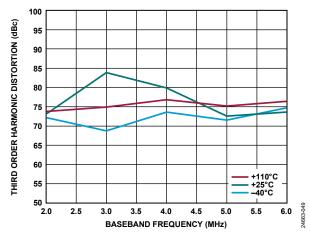


Figure 49. Receiver Third-Order Harmonic Distortion vs. Baseband Frequency, Gain Index = 255, ADC = Low Power

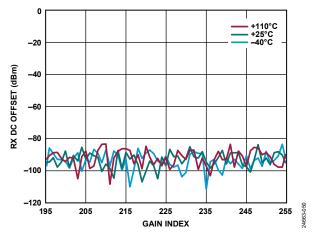


Figure 50. Receiver DC Offset vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

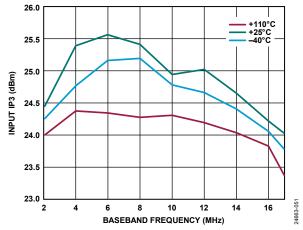


Figure 51. Receiver Input IP3 vs. Baseband Frequency, ADC = High Performance, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

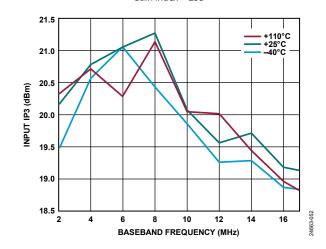


Figure 52. Receiver Input IP3 vs. Baseband Frequency, ADC = Low Power, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

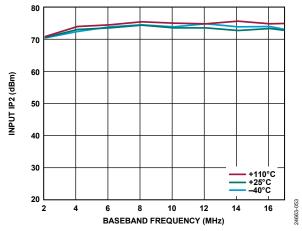
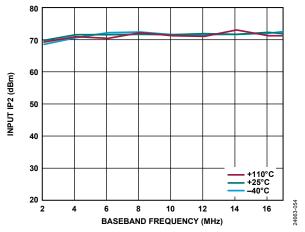
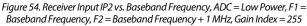




Figure 53. Receiver Input IP2 vs. Baseband Frequency, ADC = High Performance, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

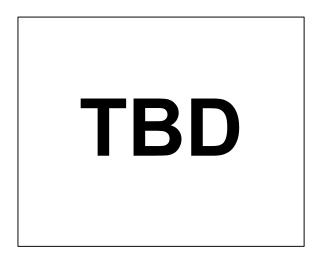


Figure 55. S11 vs. RF Frequency

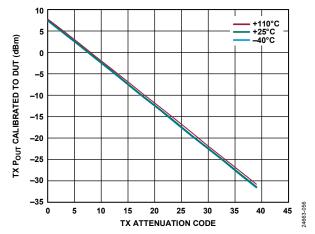


Figure 56. Transmitter Absolute Power vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

1.10 TX GAIN DIFFERENCE (dB/ATTENUATION CODE) +110°C +25°C -40°C 1.05 1.00 0.95 0.90 24663-057 0 5 10 15 20 25 30 35 40 45 TX ATTENUATION CODE

Figure 57. Transmitter Attenuation Delta (Error) vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

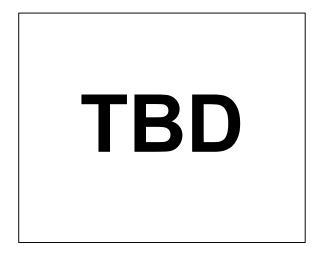


Figure 58. Transmitter Image Rejection Without Tracking Calibration vs. Attenuation Settings for Three Temperatures

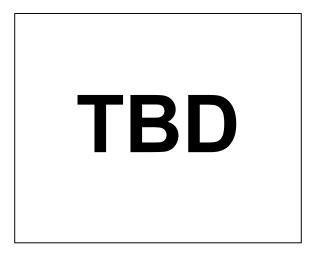


Figure 59. Transmitter Image Rejection Without Tracking Calibration vs. Baseband Frequency

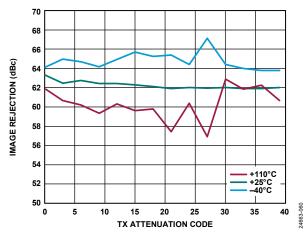


Figure 60. Transmitter Image Rejection vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

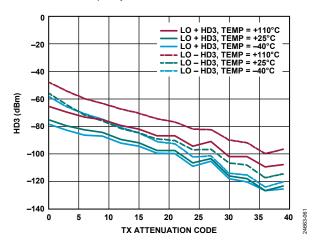


Figure 61. Transmitter HD3 vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

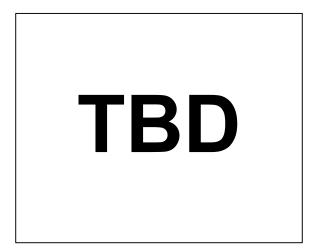


Figure 62. Transmitter HD2 with Calibration Off vs. Attenuation Setting for Three Temperatures

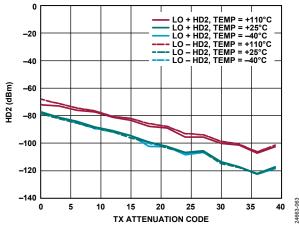


Figure 63. Transmitter HD2 vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

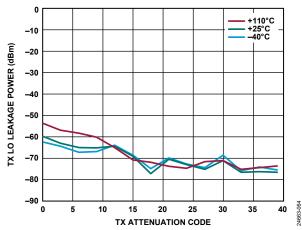


Figure 64. Transmitter LO Leakage vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

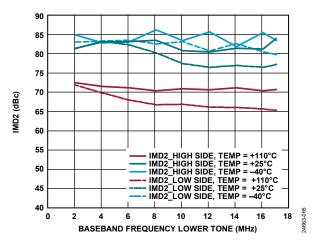


Figure 65. Transmitter IMD2 vs. Baseband Frequency, Transmitter Attenuation Code = 0, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Transmitter Power = 5 dB Below Full Scale

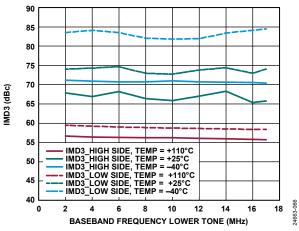


Figure 66. Transmitter IMD3 vs. Baseband Frequency, Transmitter Attenuation Code = 0, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Transmitter Power = 5 dB Below Full Scale

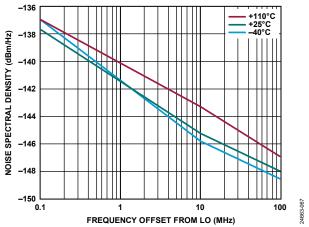


Figure 67. Transmitter Noise Spectral Density vs. Frequency Offset from LO, No RF Signal Applied, Internal LO

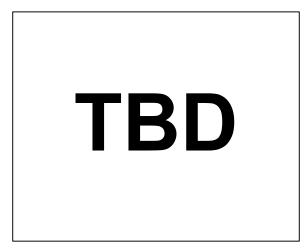


Figure 68. Transmitter Noise Spectral Density with External LO vs. Offset for Three Temperatures

900 MHZ BAND

The temperature settings refer to the die temperature. All LO frequencies set to 900 MHz, unless otherwise noted.

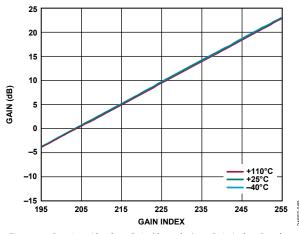


Figure 69. Receiver Absolute Gain (Complex) vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance, Pout = 2 dBm

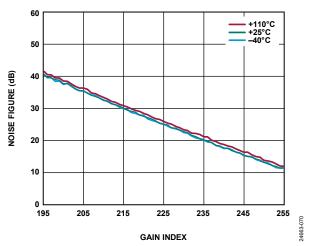


Figure 70. Receiver Noise Figure vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

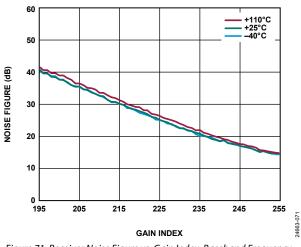


Figure 71. Receiver Noise Figure vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

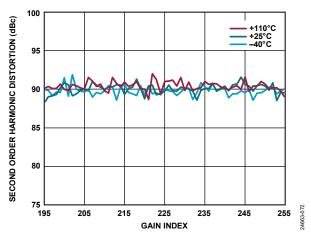


Figure 72. Receiver Second-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

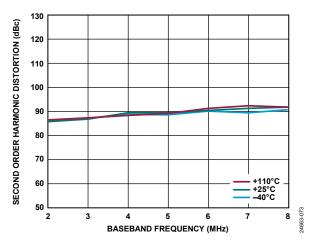


Figure 73. Receiver Second-Order Harmonic Distortion vs. Baseband Frequency, Gain Index = 255, ADC = High Performance

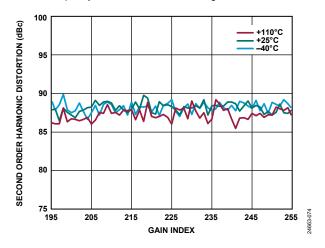


Figure 74. Receiver Second-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

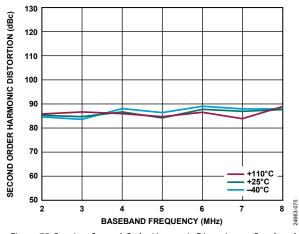
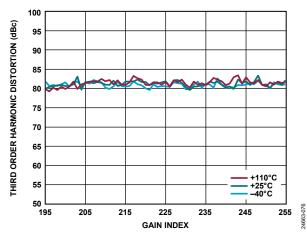
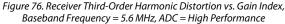
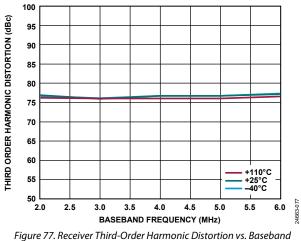





Figure 75. Receiver Second-Order Harmonic Distortion vs. Baseband Frequency, Gain Index = 255, ADC = Low Power

Frequency, Gain Index = 255, ADC = High Performance

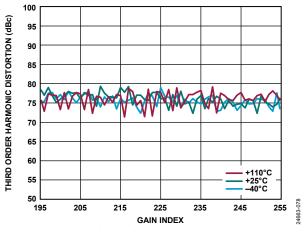
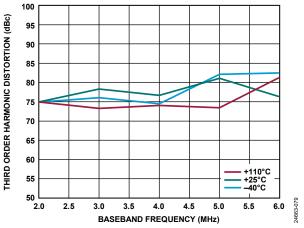
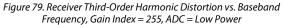




Figure 78. Receiver Third-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

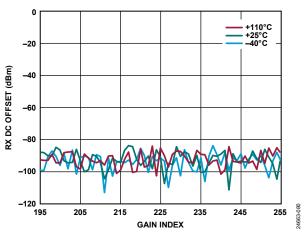


Figure 80. Receiver DC Offset vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

23.8 -110°C 23.6 +25°C –40°C 23.4 INPUT IP3 (dBm) 23.2 23.0 22.8 22.6 22.4 22.2 24663-081 2 4 6 8 10 12 14 16 BASEBAND FREQUENCY (MHz)

Figure 81. Receiver Input IP3 vs. Baseband Frequency, ADC = High Performance, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

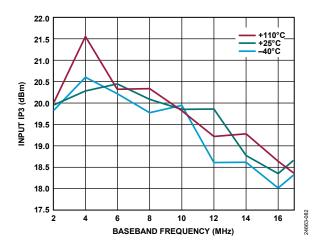


Figure 82. Receiver Input IP3 vs. Baseband Frequency, ADC = Low Power, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

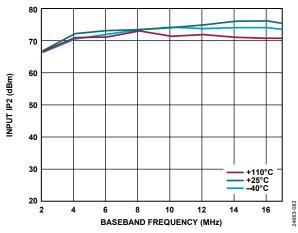


Figure 83. Receiver Input IP2 vs. Baseband Frequency, ADC = High Performance, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

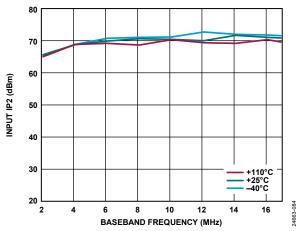


Figure 84. Receiver Input IP2 vs. Baseband Frequency, ADC = Low Power, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

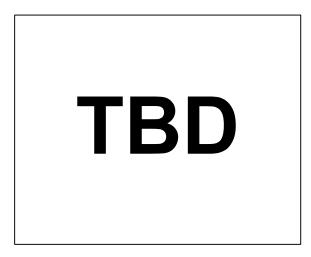


Figure 85. S11 vs. RF Frequency

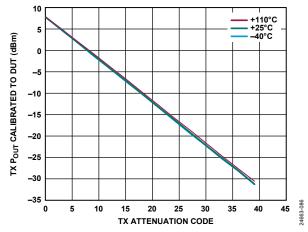
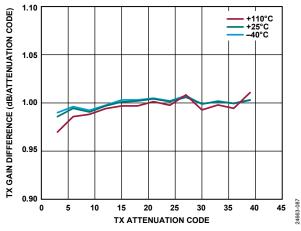
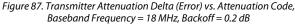




Figure 86. Transmitter Absolute Power vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

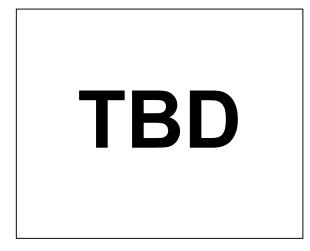


Figure 88. Transmitter Image Rejection Without Tracking Calibration vs. Attenuation Settings for Three Temperatures

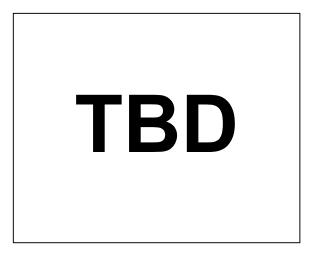


Figure 89. Transmitter Image Rejection Without Tracking Calibration vs. Baseband Frequency

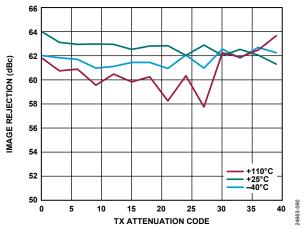


Figure 90. Transmitter Image Rejection vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

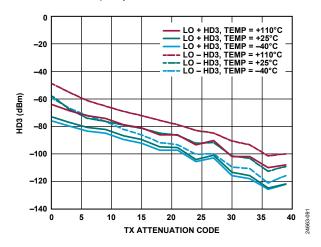


Figure 91. Transmitter HD3 vs Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

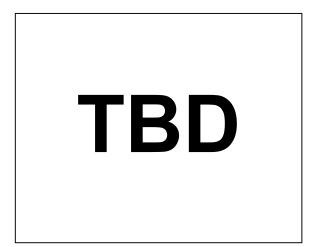


Figure 92. Transmitter HD2 with Calibration Off vs. Attenuation Setting for Three Temperatures

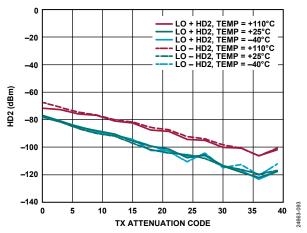


Figure 93. Transmitter HD2 vs Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

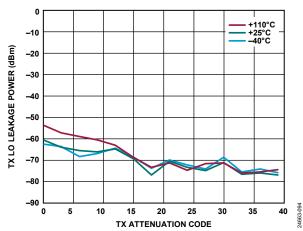


Figure 94. Transmitter LO Leakage vs Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

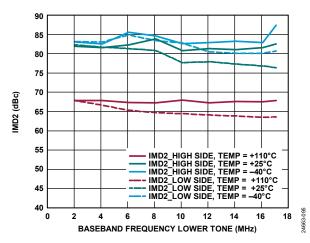


Figure 95. Transmitter IMD2 vs Baseband Frequency, Transmitter Attenuation Code = 0, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Transmitter Power = 5 dB Below Full Scale

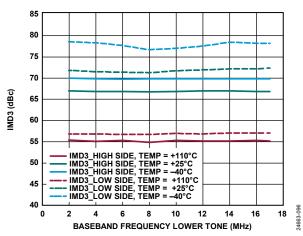


Figure 96. Transmitter IMD3 vs Baseband Frequency, Transmitter Attenuation Code = 0, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Transmitter Power = 5 dB Below Full Scale

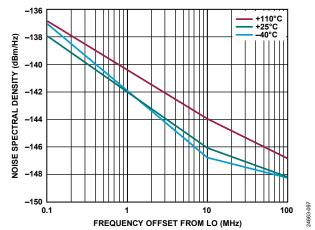


Figure 97. Transmitter Noise Spectral Density vs. Frequency Offset from LO, No RF Signal Applied, Internal LO

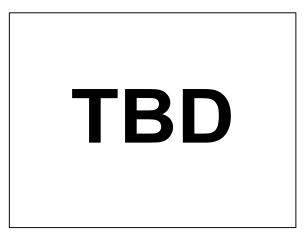


Figure 98. Transmitter Noise Spectral Density with External LO vs. Offset for Three Temperatures

2400 MHZ BAND

Temperature settings refer to the die temperature. All LO frequencies set to 2400 MHz, unless otherwise noted.

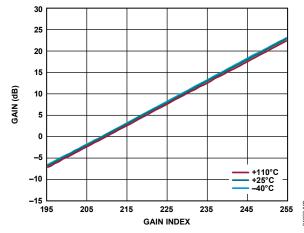


Figure 99. Receiver Absolute Gain (Complex) vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance, Pout = 2 dBm

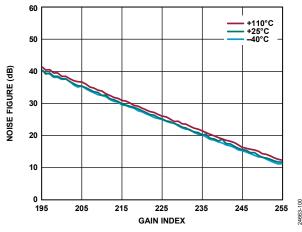


Figure 100. Receiver Noise Figure vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

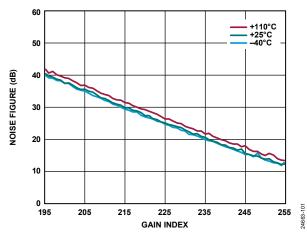


Figure 101. Receiver Noise Figure vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

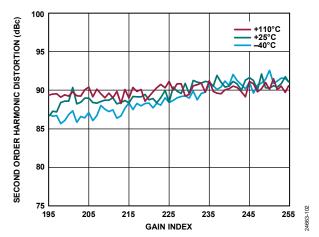


Figure 102. Receiver Second-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

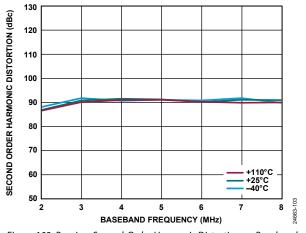
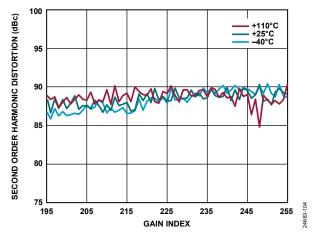
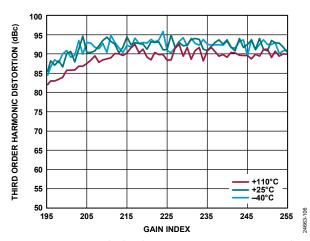
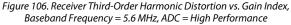
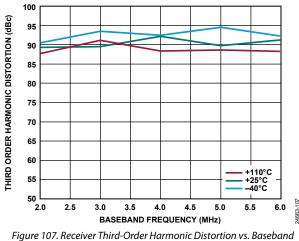


Figure 103. Receiver Second-Order Harmonic Distortion vs. Baseband Frequency, Gain Index = 255, ADC = High Performance


Figure 104. Receiver Second-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

130 SECOND ORDER HARMONIC DISTORTION (dBc) 120 110 100 90 80 70 110°C 60 +25°C -40°C 50 24663-105 2 3 4 5 6 7 8 BASEBAND FREQUENCY (MHz)

Figure 105. Receiver Second-Order Harmonic Distortion vs. Baseband Frequency, Gain Index = 255, ADC = Low Power

Frequency, Gain Index = 255, ADC = High Performance

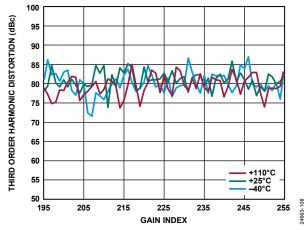


Figure 108. Receiver Third-Order Harmonic Distortion vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = Low Power

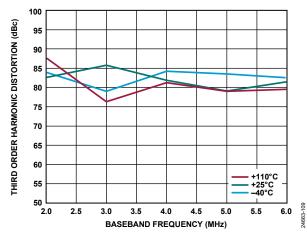


Figure 109. Receiver Third-Order Harmonic Distortion vs. Baseband Frequency, Gain Index = 255, ADC = Low Power



Figure 110. Receiver DC Offset vs. Gain Index, Baseband Frequency = 5.6 MHz, ADC = High Performance

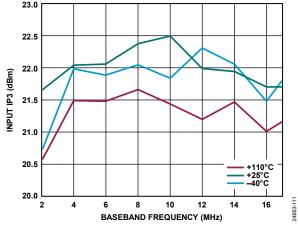


Figure 111. Receiver Input IP3 vs. Baseband Frequency, ADC = High Performance, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

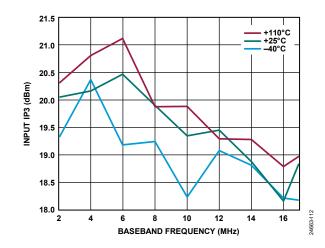


Figure 112. Receiver Input IP3 vs. Baseband Frequency, ADC = Low Power, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

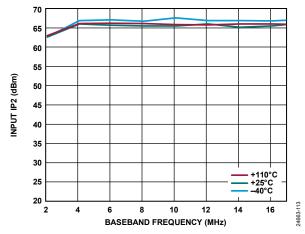


Figure 113. Receiver Input IP2 vs. Baseband Frequency, ADC = High Performance, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

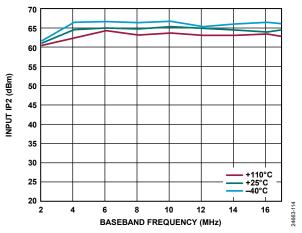


Figure 114. Receiver Input IP2 vs. Baseband Frequency, ADC = Low Power, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Gain Index = 255

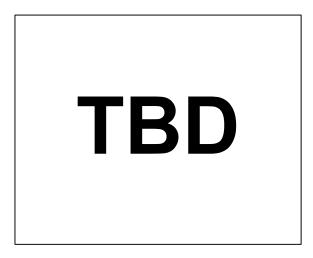


Figure 115. S11 vs. RF Frequency

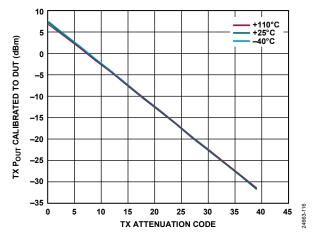


Figure 116. Transmitter Absolute Power vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

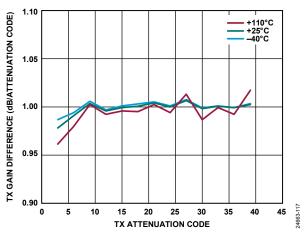


Figure 117. Transmitter Attenuation Delta (Error) vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

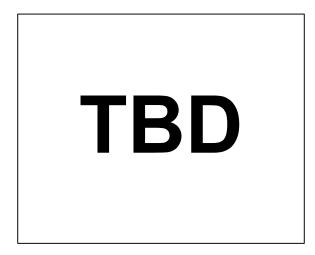


Figure 118. Transmitter Image Rejection Without Tracking Calibration vs. Attenuation Settings for Three Temperatures

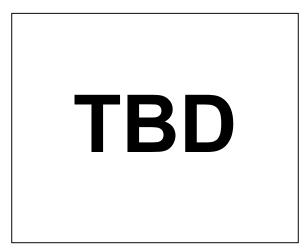


Figure 119. Transmitter Image Rejection Without Tracking Calibration vs. Baseband Frequency

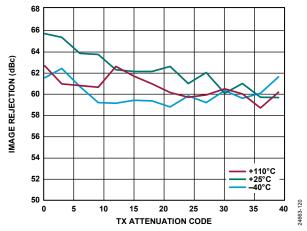


Figure 120. Transmitter Image Rejection vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

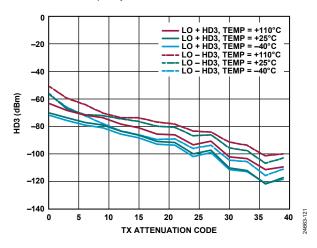


Figure 121. Transmitter HD3 vs Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

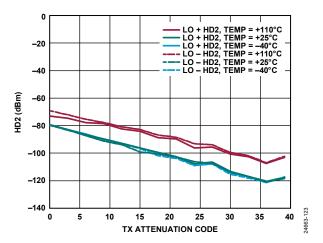


Figure 122. Transmitter HD2 vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

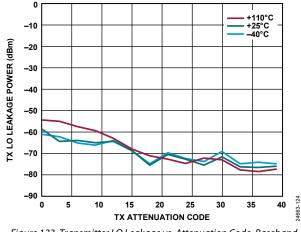


Figure 123. Transmitter LO Leakage vs. Attenuation Code, Baseband Frequency = 18 MHz, Backoff = 0.2 dB

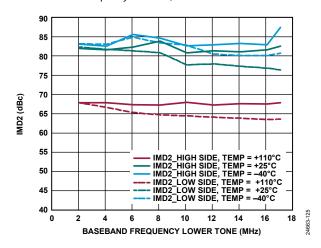


Figure 124. Transmitter IMD2 vs. Baseband Frequency, Transmitter Attenuation Code = 0, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Transmitter Power = 5 dB Below Full Scale

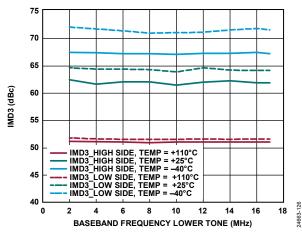


Figure 125. Transmitter IMD3 vs Baseband Frequency, Transmitter Attenuation Code = 0, F1 = Baseband Frequency, F2 = Baseband Frequency + 1 MHz, Transmitter Power = 5 dB Below Full Scale

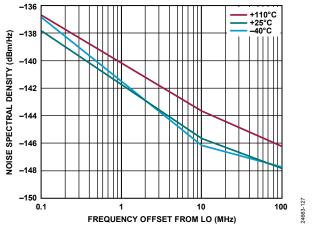


Figure 126. Transmitter Noise Spectral Density vs. Frequency Offset from LO, No RF Signal Applied, Internal LO

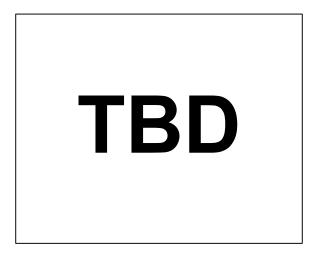


Figure 127. Transmitter Noise Spectral Density with External LO vs. Offset for Three Temperatures

3500 MHZ BAND

The temperature settings refer to the die temperature. All LO frequencies set to 3500 MHz, unless otherwise noted.

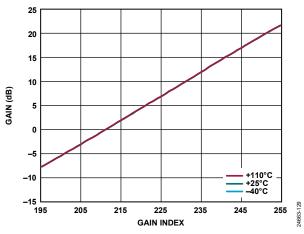


Figure 128. Receiver Absolute Gain vs. Gain Index for Three Temperatures

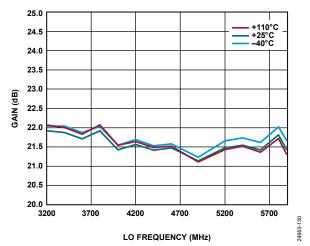


Figure 129. Receiver Absolute Gain vs. LO Frequency for Three Temperatures

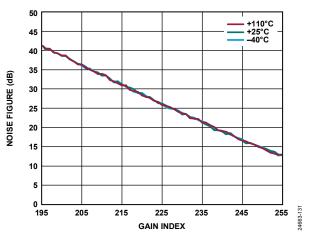


Figure 130. Receiver NF with High Performance ADC vs. Gain Index for Three Temperatures

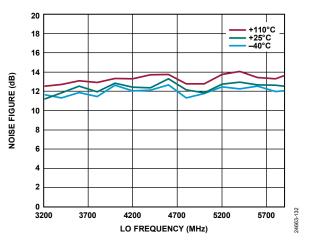


Figure 131. Receiver NF with High Performance ADC vs. LO Frequency for Three Temperatures

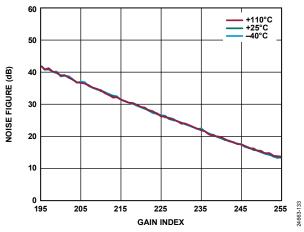


Figure 132. Receiver NF with Low Power ADC vs. Gain Index for Three Temperatures

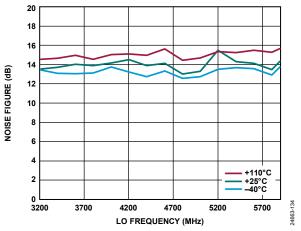


Figure 133. Receiver NF with Low Power ADC vs. LO Frequency for Three Temperatures

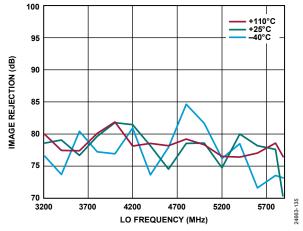


Figure 134. Receiver Image Rejection with High Performance ADC vs. LO Frequency for Three Temperatures

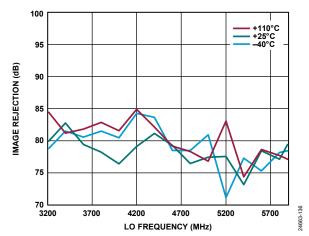


Figure 135. Receiver Image Rejection with Low Power ADC vs. LO Frequency for Three Temperatures

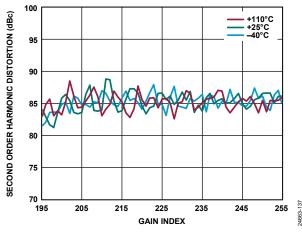


Figure 136. Receiver HD2 with High Performance ADC vs. Gain Index for Three Temperatures

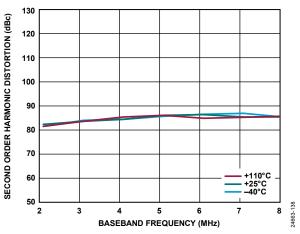


Figure 137. Receiver HD2 with High Performance ADC vs. Base Band Frequency for Three Temperatures

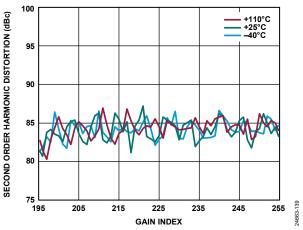


Figure 138. Receiver HD2 for Low Power ADC vs. Gain Index for Three Temperatures

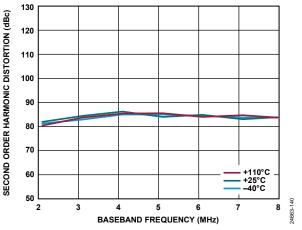


Figure 139. Receiver HD2 for Low Power ADC vs. Baseband Frequency for Three Temperatures

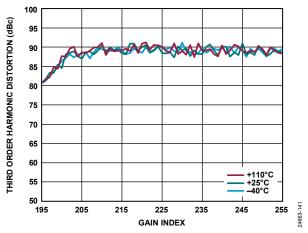


Figure 140. Receiver HD3 for High Performance ADC vs. Gain Index for Three Temperatures

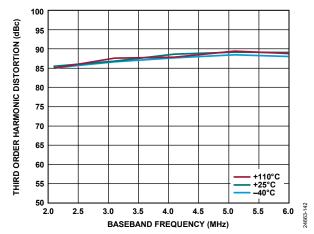


Figure 141. Receiver HD3 for High Performance ADC vs. Baseband Frequency for Three Temperatures

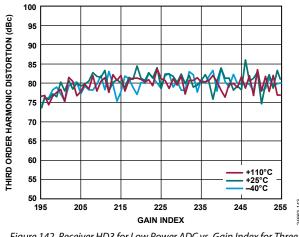


Figure 142. Receiver HD3 for Low Power ADC vs. Gain Index for Three Temperatures

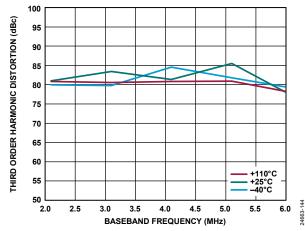
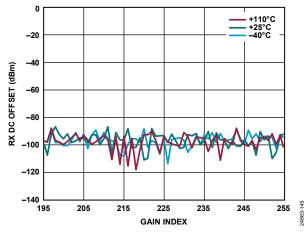



Figure 143. Receiver HD3 for Low Power ADC vs. Baseband Frequency for Three Temperatures

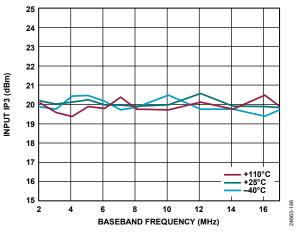


Figure 145. Receiver Input IP3 for High Performance ADC vs. Baseband Frequency for Three Temperatures. F1 = 15 MHz, F2 = 16 MHz

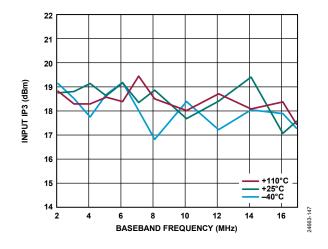


Figure 146. Receiver Input IP3 for Low Power ADC vs. Baseband Frequency for Three Temperatures. F1 = 15 MHz, F2 = 16 MHz

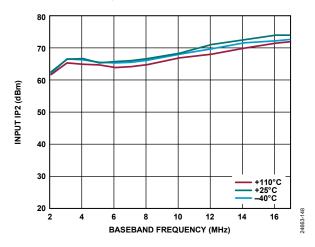


Figure 147. Receiver Input IP2 for High Performance ADC vs. Baseband Frequency for Three Temperatures. F1 = 15 MHz, F2 = 16 MHz

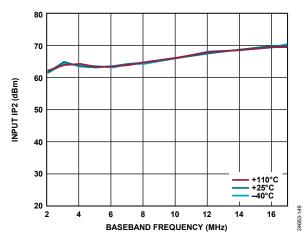


Figure 148. Receiver Input IP2 for Low Power ADC vs. Baseband Frequency for Three Temperatures. F1 = 15 MHz, F2 = 16 MHz

Figure 149. S11 vs. RF Frequency

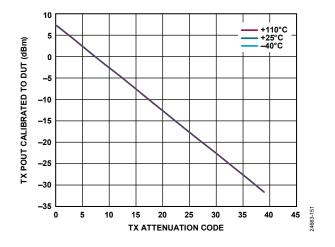


Figure 150. Transmitter Absolute Power vs. Attenuation Setting for Three Temperatures

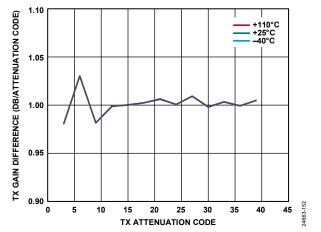


Figure 151. Transmitter Attenuation Step delta vs. Attenuation Setting for Three Temperatures

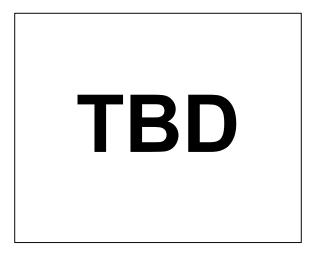


Figure 152. Transmitter Image Rejection Without Tracking Calibration vs. Attenuation Settings for Three Temperatures

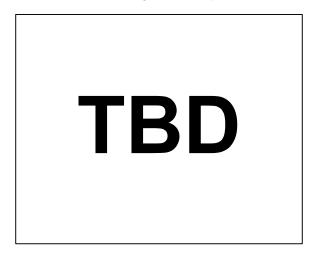


Figure 153. Transmitter Image Rejection Without Tracking Calibration vs. Baseband Frequency

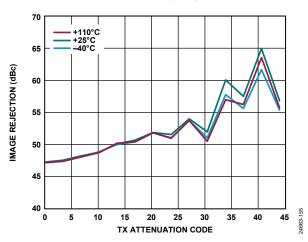


Figure 154. Transmitter Image Rejection with Tracking Calibration vs. Attenuation Settings for Three Temperatures

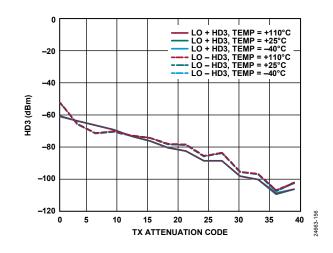


Figure 155. Transmitter HD3 vs. Attenuation Setting for Three Temperatures

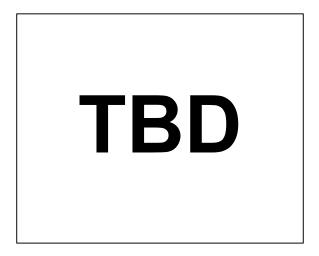


Figure 156. Transmitter HD2 with Calibration Off vs. Attenuation Setting for Three Temperatures

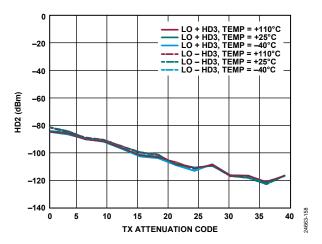


Figure 157. Transmitter HD2 with Calibration On vs. Attenuation Setting for Three Temperatures

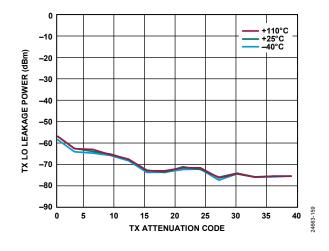


Figure 158. Transmitter LO Leakage vs. Attenuation Setting for Three Temperatures

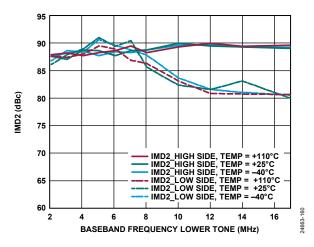


Figure 159. Transmitter IMD2 vs. Baseband Frequency. F1 = 17 MHz, F2 = 18 MHz, Transmitter Power = 5 dB Below Full Scale

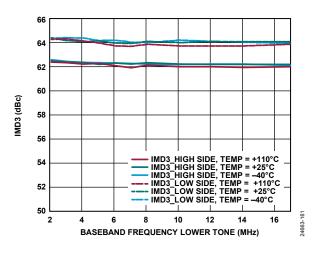


Figure 160. Transmitter IMD3 vs. Baseband Frequency. F1 = 17 MHz, F2 = 18 MHz, Transmitter Power = 5 dB Below Full Scale

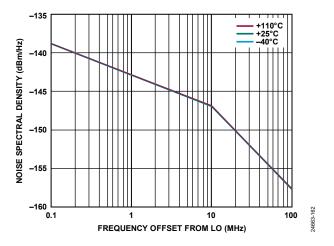


Figure 161. Transmitter Noise Spectral Density with Internal LO vs. Offset for Three Temperatures

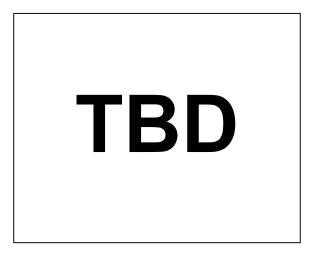


Figure 162. Transmitter Noise Spectral Density with External LO vs. Offset for Three Temperatures

5800 MHZ BAND

The temperature settings refer to the die temperature. All LO frequencies set to 5800 MHz, unless otherwise noted.

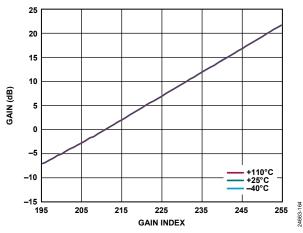


Figure 163. Receiver Absolute Gain vs. Gain Index for Three Temperatures

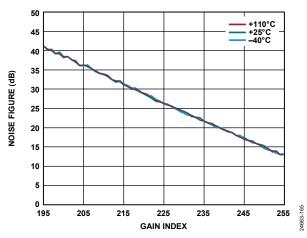


Figure 164. Receiver NF with High Performance ADC vs. Gain Index for Three Temperatures

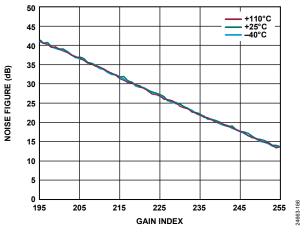


Figure 165. Receiver NF with Low Power ADC vs. Gain Index for Three Temperatures

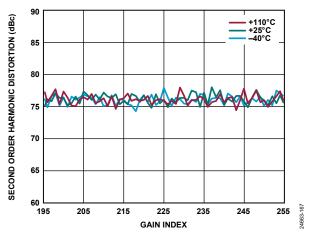


Figure 166. Receiver HD2 with High Performance ADC vs. Gain Index for Three Temperatures.

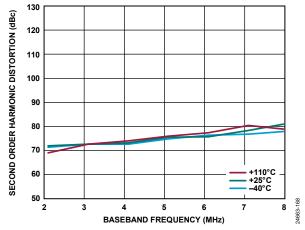


Figure 167. Receiver HD2 with High Performance ADC vs. Base Band Frequency for Three Temperatures.

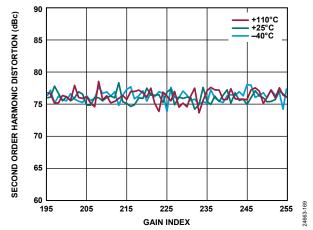
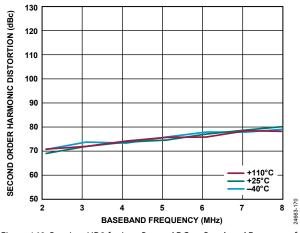
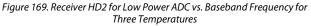




Figure 168. Receiver HD2 for Low Power ADC vs. Gain Index for Three Temperatures

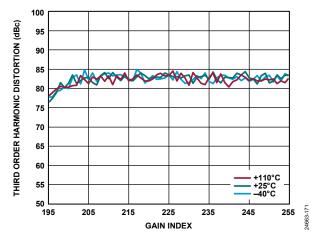
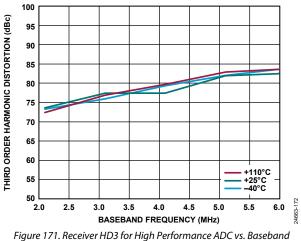



Figure 170. Receiver HD3 for High Performance ADC vs. Gain Index for Three Temperatures

Frequency for Three Temperatures

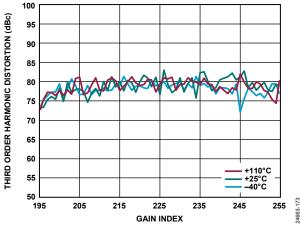


Figure 172. Receiver HD3 for Low Power ADC vs. Gain Index for Three Temperatures

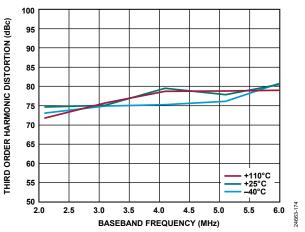
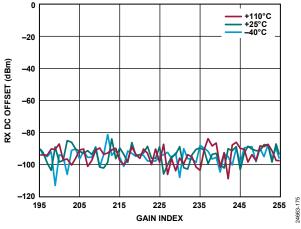
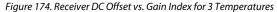
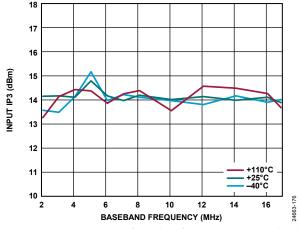
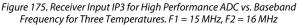






Figure 173. Receiver HD3 for Low Power ADC vs. Baseband Frequency for Three Temperatures

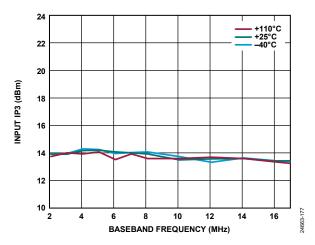
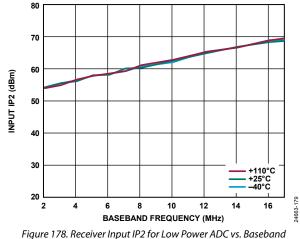



Figure 176. Receiver Input IP3 for Low Power ADC vs. Baseband Frequency for Three Temperatures. F1 = 15 MHz, F2 = 16 MHz

Figure 177. Receiver Input IP2 for High Performance ADC vs. Baseband Frequency for Three Temperatures. F1 = 15 MHz, F2 = 16 MHz

Frequency for Three Temperatures. F1 = 15 MHz, F2 = 16 MHz

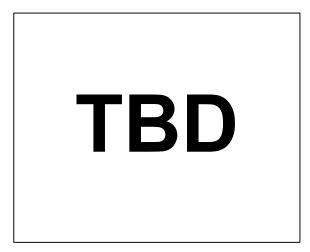


Figure 179. S11 vs. RF Frequency

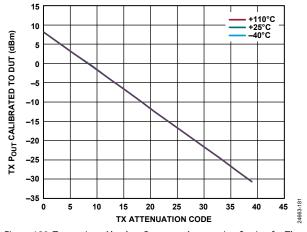


Figure 180. Transmitter Absolute Power vs. Attenuation Setting for Three Temperatures

Figure 181. Transmitter Attenuation Step Delta vs. Attenuation Setting for Three Temperatures

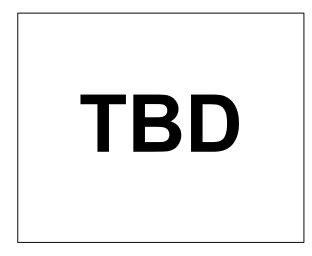


Figure 182. Transmitter Image Rejection Without Tracking Calibration vs. Attenuation Settings for Three Temperatures

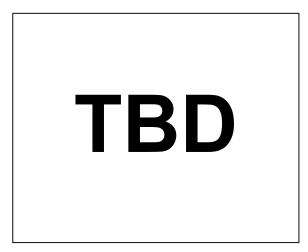


Figure 183. Transmitter Image Rejection Without Tracking Calibration vs. Baseband Frequency

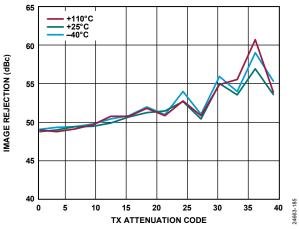


Figure 184. Transmitter Image Rejection with Tracking Calibration vs. Attenuation Settings for Three Temperatures

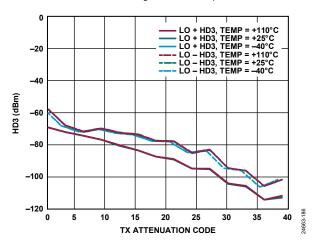


Figure 185. Transmitter HD3 vs. Attenuation Setting for Three Temperatures

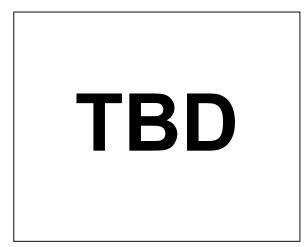


Figure 186. Transmitter HD2 with Calibration Off vs. Attenuation Setting for Three Temperatures

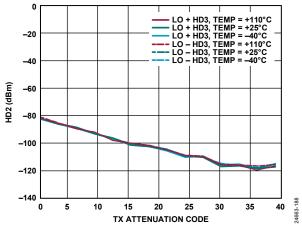


Figure 187. Transmitter HD2 with Calibration Nn vs. Attenuation Setting for Three Temperatures

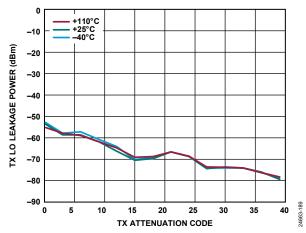


Figure 188. Transmitter LO Leakage vs. Attenuation Setting for Three Temperatures

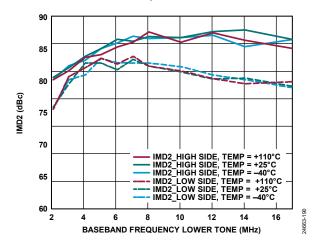


Figure 189. Transmitter IMD2 vs. Baseband Frequency. F1 = 17 MHz, F2 = 18 MHz, Transmitter Power = 5 dB Below Full Scale

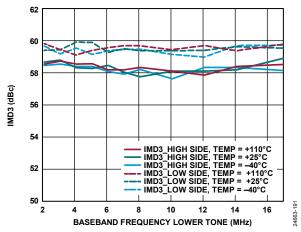


Figure 190. Transmitter IMD3 vs. Baseband Frequency. F1 = 17 MHz, F2 = 18 MHz, Transmitter Power = 5 dB Below Full Scale

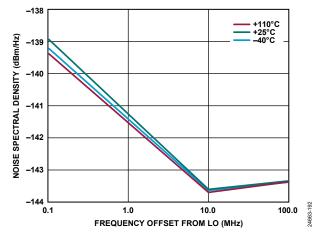
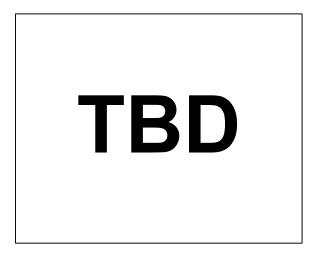
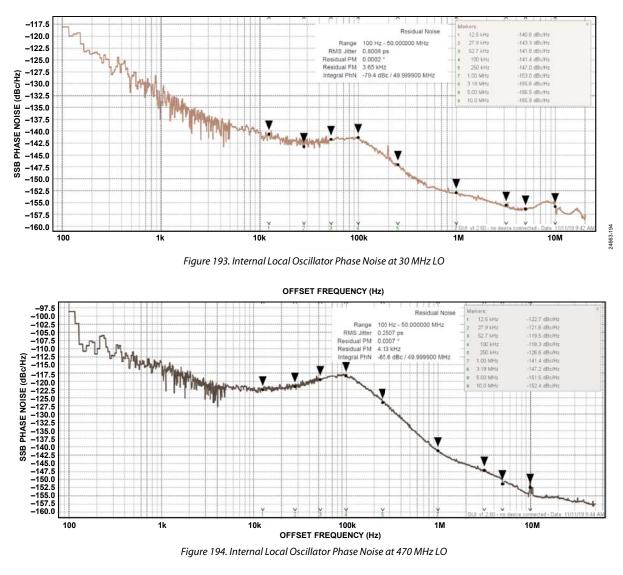
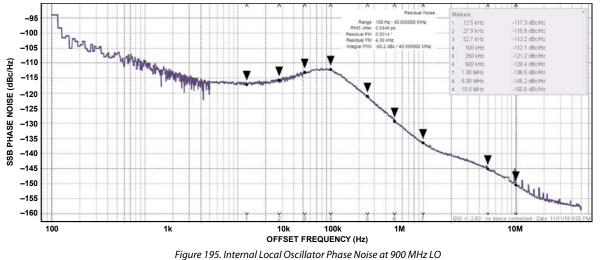


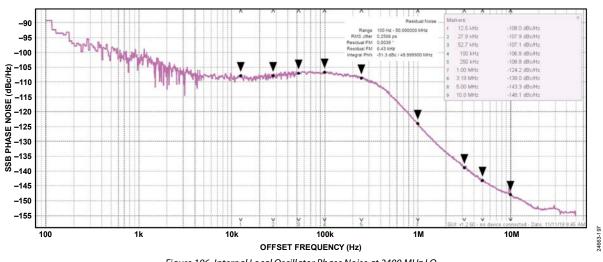
Figure 191. Transmitter Noise Spectral Density with Internal LO vs. Offset for Three Temperatures

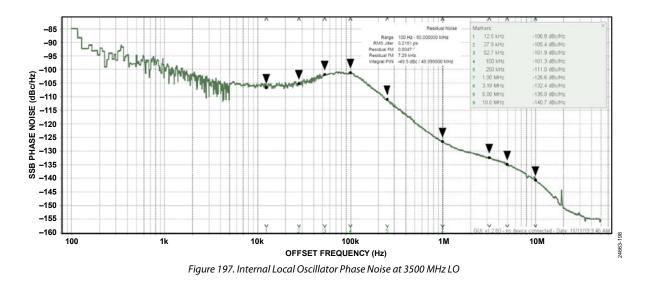




Figure 192. Transmitter Noise Spectral Density with External LO vs. Offset for Three Temperatures

24663-196

PHASE NOISE


PLL bandwidth = 300 kHz. DEV_CLK = 38.4 MHz, a high performance, low noise Wenzel type oscillator is used as a reference clock.



Rev. PrA | Page 60 of 71

ADRV9002

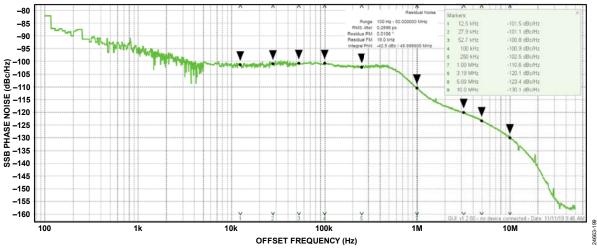


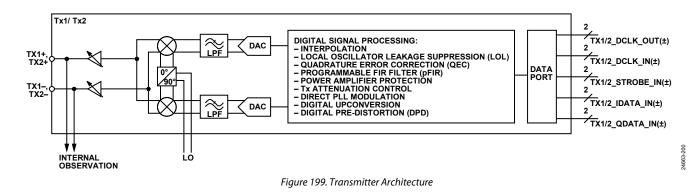
Figure 198. Internal Local Oscillator Phase Noise at 5800 MHz LO

Rev. PrA | Page 61 of 71

THEORY OF OPERATION

The ADRV9002 is a highly integrated RF transceiver that can be configured for a wide range of applications. The device integrates all RF, mixed-signal, and digital blocks necessary to provide transmit and receive functions in a single device. Programmability allows the two receiver channels and two transmitter channels to be used in TDD and FDD systems for mobile radio and cellular standards.

The ADRV9002 contains serial interface links that consist of LVDS and CMOS synchronous serial interface (CSSI). Both receiver and transmitter channels provide low pin count and reliable data interface to a field-programmable gate array (FPGA) or other integrated baseband solutions.


The ADRV9002 provides self calibration for dc offset, LO leakage, and QEC using an integrated microcontroller core to maintain a high performance level under varying temperatures and input signal conditions. Firmware is supplied with the device to schedule all calibrations with no user interaction.

TRANSMITTER

The ADRV9002 uses a direct conversion transmitter architecture that consists of two identical and independently controlled channels that provide all digital processing, mixed signals, PLLs, and RF blocks necessary to implement a direct conversion system. Refer to Figure 199 for the transmitter data path overview.

The ADRV9002 has an optional, fully programmable, 128-tap FIR. The FIR output is sent to a series of interpolation filters that provide additional filtering and data rate interpolation prior to reaching the DAC. Each DAC has an adjustable sample rate and is linear up to full scale.

The DAC output produces baseband analog signals. The inphase (I) and quadrature (Q) signals are first filtered to remove sampling artifacts and then fed to the upconversion mixers. At the mixer stage, the I/Q signals are recombined and modulated onto the carrier frequency for transmission to the output stage. Each transmit chain provides a wide attenuation adjustment range with fine granularity to help designers optimize signal-tonoise ratio (SNR).

RECEIVER

Figure 200 shows a simplified block diagram of the ADRV9002 receiver. It is a fully integrated, direct conversion, low IF receiver signal chain. The receiver subsystem consists of a resistive input network for gain control followed by a current mode passive mixer. The output current of the mixer is converted to a voltage by a transimpedance amplifier and then digitized. There are two sets of ADCs, a high performance Σ - Δ ADC and a low power ADC. The digital baseband that provides the required filtering and decimation follows these ADCs.

There are two RF inputs for each receiver to match to different bands in one reference design. The mixer architecture is linear and inherently wideband, which facilitates impedance matching. The differential input impedance of the receiver inputs is 100Ω .

To achieve gain control, a programmed gain index map is implemented. This gain map distributes attenuation among the various receiver blocks for optimal performance at each power level. The gain range is 36 dB with 0.5 dB steps. Additional support is available for both automatic and manual gain control modes.

The receive LPFs can be reconfigured to help provide antialias filtering and improve out of band blockers. The ADRV9002 is a wideband architecture transceiver that relies on the ADC high dynamic range to receive signal and interference at the same time. Filtering provided by the receive LPF attenuates ADC alias images. The receive LPF characteristic is flat and not intended to provide rejection of close in blockers. The baseband filter supports a baseband bandwidth from 5 MHz to 50 MHz. The receiver includes two ADC pairs. One pair is of high performance Σ - Δ ADCs to provide maximum interferer tolerance and the second pair is of ADCs for significant power reduction. The extra pair of ADCs allow a smart tradeoff between power and performance.

The ADC output can be conditioned further by a series of decimation filters and a fully programmable, 128-tap FIR filter with additional decimation settings. The sample rate of each digital filter block automatically adjusts with each change of the decimation factors to produce the desired output data rate.

For standards that demand low phase noise performance, the ADRV9002 can operate in low-IF mode. The ADRV9002 can receive signals offset from the carrier, as with an IF downconversion scheme. A digital NCO and mixer that follow the analog receive path can downconvert the IF signal to baseband. Downconverting the signal down to baseband allows a lower sample rate on the data bus. The ADRV9002 makes no assumptions about high-side or low-side injection.

Monitor Mode

The ADRV9002 receive signal chain can be configured to monitor the radio channel signal level in duty cycle detection and sleep fashion. Monitor mode allows the digital baseband processor to power down until the ADRV9002 detect a signal. Monitor mode provides overall system power saving. The timing of detection and sleep mode is fully programmable. Alternatively, the ADRV9002 can be under full control of the baseband processor during monitor mode.

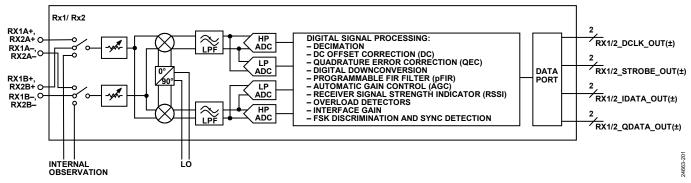


Figure 200. Receiver Architecture

DPD

The ADRV9002 provides a fully integrated DPD function that alters the digital waveform to compensate for nonlinearities in the power amplifier response, which linearizes the output of the power amplifier of the transmit system. The internal DPD block is optimized for both narrowband and wideband signals. The DPD actuator and coefficient calculation engine are both integrated. This functionality uses the receive channel to monitor the output of the power amplifier and calculates the appropriate predistortion to linearize the output. The integrated DPD capability allows the system to drive the power amplifier closer to saturation, enabling a higher efficiency power amplifier while maintaining linearity.

Receiver as an Observation Receiver

In FDD type applications where only one receiver is used or in the TDD type applications during transmitter time slots, unused receiver inputs can be used to perform transmitter observation. The observation receiver operates in a similar manner to the main receivers.

Use the observation receiver channel for the following:

- Monitor the transmitter channels and implement transmitter LOL correction and transmitter QEC.
- Monitor signal levels after the power amplifier output. This data can be used by a fully integrated low power DPD block. The integrated DPD is optimized for both narrowband and wideband signals and enables linearization of high efficiency power amplifiers.
- Monitor signal levels after the power amplifier output for further data processing in the external baseband processor.

In cases where the observation receiver path is used for DPD operation, there is a limit to the maximum bandwidth of the transmitter signal the DPD can support. For example, if the DPD observation factor is 5×, the transmitter signal bandwidth is limited to 1/5 of the DPD observation BANDWIDTH. When utilizing the ADRV9002 internal DPD block, because of the large internal DPD observation bandwidth of 100 MHz, the largest transmitter bandwidth that the internal DPD can support is 20 MHz. When external DPD is used, the largest DPD observation bandwidth. 40 MHz is largest RF bandwidth that can be received and sent over digital data port to the baseband processor, which implies that 8 MHz represents the largest transmitter bandwidth that the DPD implemented externally to the ADRV9002 can support.

CLOCK INPUT

The reference clock inputs provide a low frequency clock from which all internal ADRV9002 clocks for the are derived. The ADRV9002 offers multiple reference input clocking options. The reference input clock pins on the device are labeled DEV_CLK_IN±.

For optimal performance, drive the reference clock differentially via an external source or from an external crystal. If a differential input clock is provided, the clock signal must be ac-coupled with the input range limited from 10 MHz to 1 GHz. The ADRV9002 can also accept an external crystal (XTAL) as a clock source. The frequency range of the supported crystal is between 20 MHz to 80 MHz. The external crystal connection must be dc-coupled.

If a differential clock is not available, a single ended ac-coupled V pk-pk (maximum) CMOS signal can be applied to the DEV_CLK_IN+ pin with the DEV_CLK_IN- pin unconnected. The maximum clock frequency in this mode is limited to 80 MHz.

SYNTHESIZERS

The ADRV9002 offers two distinct PLL paths, an RF PLL for the high frequency RF path and a baseband PLL for the digital and sampling clocks of the data converters.

RF PLL

The PLL structure in the ADRV9002 is quite unique in the sense that instead of having one dedicated PLL for the receive and a dedicated PLL for the transmit, two RF PLLs are in the device and both PLLs can source the receiver, the transmitter, both paths, or neither. This flexibility enables the ADRV9002 to meet various applications that require versatility.

The RF PLL supports the use of both internal and external LO signals. The internal LO is generated by an on-chip VCO, which is tunable over a frequency range of 6.5 GHz to 13 GHz. The output of the VCO is phase-locked to an external reference clock through a fractional-N PLL that is programmable through the API command. The VCO outputs are steered through a combination of frequency dividers to produce in-phase and quadrature phase LO signals in the 30 MHz to 6 GHz frequency range.

Alternatively, an external 2× or more LO signal can be applied to the external LO inputs of the ADRV9002 to generate the LO signals in quadrature for the RF path. If the external LO path is chosen, the input frequency range is between 60 MHz to 12 GHz.

PLL synthesizers are fractional-N designs that incorporate completely integrated VCOs and loop filters. In TDD operation, LO distribution paths and receive/transmit data paths turn on and off as appropriate for the receive and transmit frames. In FDD mode, the transmit PLL and the receive PLL can be activated simultaneously. These PLLs require no external components. The RF LO generation circuits enable the user to choose between a high performance or low power mode of operation.



Figure 201. ADRV9002 RF LO

The ADRV9002 supports various forms of fast frequency hopping (FFH) with the main distinguishing factor between these forms being frequency transition time. The RF PLL phase noise and the QEC and LOL algorithm performance degrade as a function of decreasing frequency transition times. FFH mode supports hop frequencies that are preloaded at power-up or streamed by the user onto the ADRV9002. Hopping between the frequencies in FFH mode can be triggered via a GPIO pin toggle or an API command execution.

Baseband PLL (PLL)

The ADRV9002 contains a baseband PLL synthesizer that generates all baseband and data port related clocks. Two options are provided for a high performance baseband PLL and a low power baseband PLL. A high performance baseband PLL offers a greater flexibility in generating clocks to support a wider range of sample rates. A low power baseband PLL has a limitation in supporting certain sample rates but consumes less power. Both high performance and low power baseband PLLs are automatically programmed based on the data rate and sample rate requirements of the system.

SPI INTERFACE

The ADRV9002 uses an SPI to communicate with the baseband processor. This interface can be configured either as a 4-wire interface with dedicated receive and transmit ports, or as a 3-wire interface with a bidirectional data communications port. This bus allows the baseband processor to set all device control parameters using a simple address data serial bus protocol.

Write commands follow a 24-bit format. The first bit sets the bus direction of the bus transfer. The next 15 bits set the address where data is written. The final eight bits contain the data transferred to the specific register address. Read commands follow a similar format with the exception that the first 16 bits are transferred on the SDIO pin and the final eight bits are read from the ADRV9002 either on the SDO pin in 4wire mode or on the SDIO pin in 3-wire mode.

GPIO PINS

Digital GPIO Inputs/Outputs (DGPIO)

The ADRV9002 GPIO signals referenced to the VDIGIO_1P8 supply are intended to interface with digital circuitry and can be configured for numerous functions. Some of these pins, when configured as outputs, are used by the baseband processor as real-time signals to provide a number of internal settings and measurements. This configuration allows the baseband processor to monitor receiver performance in different situations. Signals used for manual gain mode, calibration flags, state machine states, and various receiver parameters are among the outputs that can be monitored on these pins. In addition, certain pins can be configured as inputs and used in various functions such as setting the receiver gain or transmitter attenuation in real time.

Analog GPIO Inputs/Outputs (AGPIO)

The AGPIO pins are intended to interface with system blocks that perform analog function. The AGPIO pins referenced to the VAGPIO_1P8 supply provide control signals to the external components such as low noise amplifier (LNA) or digital step attenuator (DSA). Selected AGPIO pins provide an alternate auxiliary DAC functionality. See Table 18 for more details on pin mapping.

AUXILLARY CONVERTERS Auxiliary ADC Inputs (AUXADC_x)

The ADRV9002 contains four auxiliary ADCs with the corresponding inputs connected to four dedicated input pins (AUXADC_x). This block can monitor system voltages without additional components. The auxiliary ADC is 12 bits with an input voltage range of 0.05 V to 0.95 V. When enabled, the auxiliary ADC is free running. API function allows the user to read back the last value latched by the ADC.

Auxiliary DACs Outputs (AUXDAC x)

The ADRV9002 contains four identical auxiliary DACs (AUXDAC_x) that can supply bias voltages, analog control voltages, or other system functionality. The auxiliary DACs (AUXDAC_0 to AUXDAC_3) are multiplexed with the AGPIO_xx pins according to Table 18. The auxiliary DACs are 12 bits and have an output voltage range of approximately 0.05 V to VDDA_1P8 - 0.05V and have a current drive of 10 mA. The auxiliary DACs generate ramp up and down patterns that can be loaded into the ADRV9002 and then triggered based on state of dedicated DGPIO pin.

JTAG BOUNDARY SCAN

The ADRV9002 provides support for a JTAG boundary scan. There are five dual function pins associated with the JTAG interface. These pins, as shown in Table 19, are used to access the on-chip test access port. To enable the JTAG functionality, set the DGPIO_8 through DGPIO_11 pins and the MODE pin as shown in Table 19.

Table 18. Pin Number to AGPIO_xx Mapping and AUXDAC_x					
Pin Number	Primary Function	Alternate Function			
E12	AGPIO_0	AUXDAC_0			
F10	AGPIO_1	AUXDAC_1			
E3	AGPIO_2	AUXDAC_2			
F5	AGPIO_3	AUXDAC_3			
F4	AGPIO_4	Not applicable			
G4	AGPIO_5	Not applicable			
G6	AGPIO_6	Not applicable			
H6	AGPIO_7	Not applicable			
G9	AGPIO_8	Not applicable			
H9	AGPIO_9	Not applicable			
F11	AGPIO_10	Not applicable			
G11	AGPIO_11	Not applicable			

. Ta

Table 19. Pin Number to DGPIO_xx Mapping and JTAG Function

Pin Number	Primary Function	JTAG Function, Boundary Scan CMOS Mode	JTAG Function, Boundary Scan LVDS Mode		
K6	DGPIO_0	Not applicable	Not applicable		
K7	DGPIO_1	Not applicable	Not applicable		
K8	DGPIO_2	Not applicable	Not applicable		
K9	DGPIO_3	TDO	TDO		
K10	DGPIO_4	TRST	TRST		
K11	DGPIO_5	TDI	TDI		
L4	DGPIO_6	TMS	TMS		
L5	DGPIO_7	TCLK	TCLK		
L6	DGPIO_8	User sets to 0	User sets to 1		
L9	DGPIO_9	User sets to 0	User sets to 0		
L10	DGPIO_10	User sets to 0	User sets to 0		
L11	DGPIO_11	User sets to 0	User sets to 0		
M9	DGPIO_12/TX1_DCLK_OUT-	Not applicable	Not applicable		
M10	DGPIO_13/TX1_DCLK_OUT+	Not applicable	Not applicable		
M6	DGPIO_14/TX2_DCLK_OUT-	Not applicable	Not applicable		
M5	DGPIO_15/TX2_DCLK_OUT+	Not applicable	Not applicable		
L13	MODE Pin	User sets to 1	User sets to 1		

APPLICATIONS INFORMATION POWER SUPPLY SEQUENCE

The ADRV9002 requires a specific power-up sequence to avoid undesired power-up currents. The optimal power-on sequence requires VDD_1P0 to power up first. The VDDA_1P3 and VDDA_1P8 supplies must then power up after the VDD_1P0 supply. If VDDA_1P0 is utilized, it must be powered up after VDDA_1P3 and VDDA_1P8 are enabled.

The user must toggle the RESET signal after power has stabilized prior to configuration.

DIGITAL DATA INTERFACE

The ADRV9002 data interface supports both CMOS and LVDS electrical interfaces. The CSSI is intended for narrow RF signal bandwidths and the LVDS synchronous serial interface (LSSI) can support the full RF bandwidth of the ADRV9002. Table 20 provides high level overview. For more details, refer to the ADRV9001 System Development User Guide. All signal lanes support both electrical interfaces, but concurrent operation of both interfaces is not supported. Additionally, each receive and transmit channel has a dedicated set of lanes for transferring information. The receive and transmit channels cannot be reconfigured to an alternative ball configuration that is different from how it has been assigned by design.

CSSI

The CSSI supports two modes of operation, 1-lane serialized data or a 4-lane data mode. In either case, the maximum clock frequency supported by the CMOS configuration is 80 MHz.

In the 1-lane data configuration, 16-bits of I data and 16-bits of Q data (a total of 32 data bits) are serialized onto a single lane. Figure 202 shows a graphical overview of 1-lane data port mode.

In the CSSI with 4-lane data mode, the I and Q digital data is spread across four data lanes. The 16-bits of I data and 16-bits of Q data are split in to 8 bits and sent over one of four data lanes. For example, Lane 0 would have 8 LSB bits of I data, Lane 1 would have 8 MSB bits of I data, Lane 2 would have 8 LSB bits of Q data, and Lane 3 would have 8 MSB bits of Q data.

The CSSI with 4-lane data mode supports both a full rate clock and a double data rate clock. The double data rate clock mode allows data to be latched on both the rising and falling edges, which enables twice the available RF bandwidth, as shown in Figure 203.

CSSI Receive

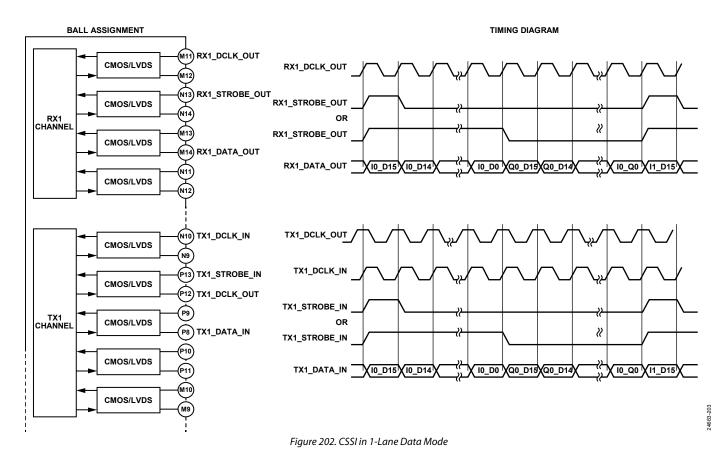
In the receive CMOS configuration, two additional signal lanes are required for the strobe and clock signals in addition to the data lanes as described in the CSSI in 1-lane mode and CSSI in 4-lane mode, which gives a total of three signal lanes for CSSI in 1-lane data mode and six total signal lanes for the CSSI in 4lane data mode.

RX1/2_DCLK_OUT is an output clock signal that synchronizes the data and strobe output signals. RX1/2_STROBE_OUT is a strobe output signal that indicates the first bit of the serial data stream. The RX1/2_STROBE_OUT signal can be configured to indicate the start of the I/Q samples. For a 16-bit data sample, the RX1/2_STROBE_OUT signal is high for one clock cycle and low for 31 clock cycles. Alternatively, the RX1/2_STROBE_OUT signal can be configured to be high for I data duration and low for Q data duration. In this case, for a 16-bit data sample, the RX1/2_STROBE_OUT signal is high for 16 clock cycles (I data) and low for 16 clock cycles (Q data).

CSSI Transmit

For the transmit CMOS configuration, three additional signal lanes are required for the strobe, clock input, and clock output in addition to the data lane requirement as described for the CSSI with 1-lane data and the CSSI with 4-lane data, which gives a total of four signal lanes for the CSSI in 1-lane data mode and seven total signal lanes for the CSSI in 4-lane data mode.

TX1/2_DCLK_IN is an input clock to the ADRV9002 that synchronizes to the data inputs (TX1/2_DATA_IN) and strobe inputs (TX1/2_STROBE_IN). TX1/2_STROBE_IN is an input signal that indicates the first bit of the serial data sample. Similar to the receive path, the transmit strobe has two configuration options. The TX1/2_DCLK_OUT is an output clock from the ADRV9002 to the external baseband device to generate the TX1/2_DCLK_IN, TX1/2_STROBE_IN, and TX1/2_DATA_IN signals.


LSSI

The LSSI supports the higher RF channel bandwidths and requires differential signal pairs. In LSSI mode, there are two data transfer formats, 1-lane data mode where both the I and Q data are serialized on a single differential pair or 2-lane data mode where the I and Q data occupy separate differential pairs. The selection of either 1-lane or 2-lane mode depends on the RF channel bandwidth. To capture the maximum 40 MHz RF bandwidth of the ADRV9002, select the LSSI in 2-lane mode. In either case, the maximum clock frequency supported by the LSSI configuration is 491.52 MHz and the clock type is DDR. Refer to Figure 204 for more details.

Table 20. ADRV9002 Data Port Interface Modes

Interface Mode	Data Lanes per Channel	Serialization Factor per Data Lane	Maximum Data Lane Rate (MHz)	Maximum Clock Rate (MHz)	Maximum RF Bandwidth (MHz)	Sample Rate for I/Q Data (MHz)	Data Type ¹	Figure Reference
CSSI with 1 Lane	1	32	80	80	1.25	2.5	Normal	Figure 202
CSSI – 1 Lane	1	32	160	80	2.5	5	DDR	-
CSSI – 4 Lane	4	8	80	80	5	10	Normal	-
CSSI – 4 Lane	4	8	160	80	10	20	DDR	Figure 203
LSSI – 1 Lane	1	32	983.04	491.52	20	30.72	DDR	-
LSSI – 2 Lane	2	16	983.04	491.52	40	61.44	DDR	Figure 204
LSSI – 2 Lane	2	12	737.28	368.64	40	61.44	DDR	-

¹Normal data type refers to data on rising edges and DDR is double data rate, where data is available on rising and falling edges of the input clock.

ADRV9002

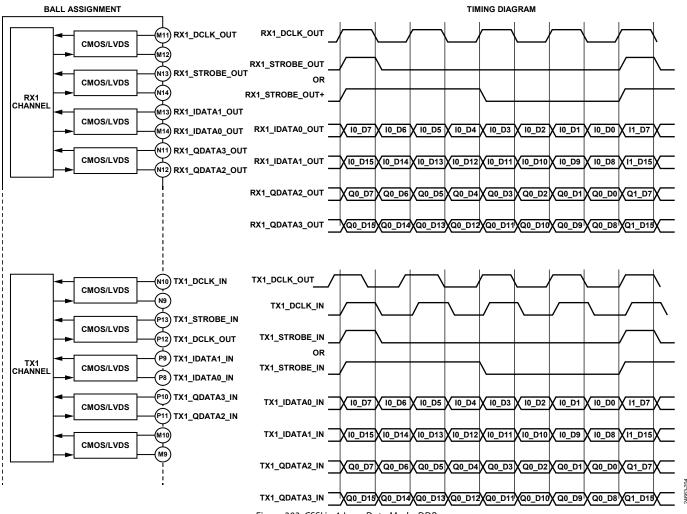


Figure 203. CSSI in 4-Lane Data Mode, DDR

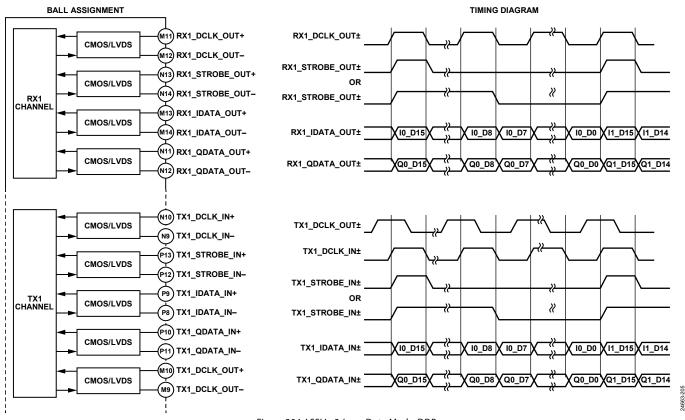
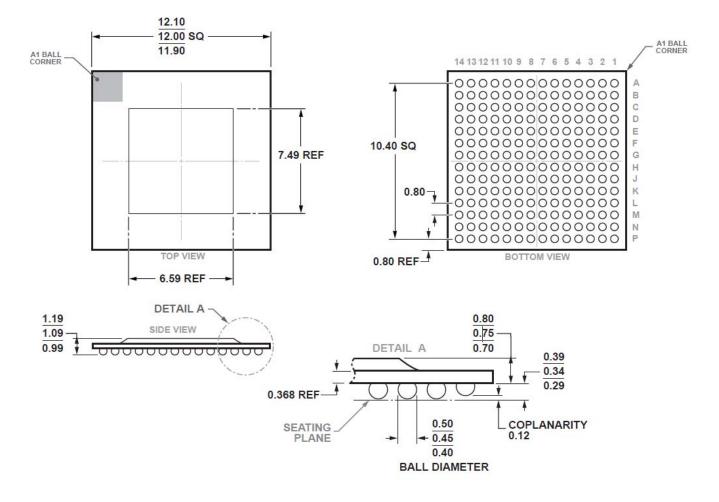



Figure 204. LSSI in 2-Lane Data Mode, DDR

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-275-GGAB-1

Figure 205. 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA] (BC-196-14) Dimensions shown in millimeters

www.analog.com

©2020 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR24663-7/20(PrA)