Data Sheet

FEATURES

$2.8 \mathrm{~mm} \times 5.0 \mathrm{~mm}$ module with integrated optical components 660 nm LED, 880 nm IR LED, and photodiode
Fully integrated AFE, ADC, LED drivers, and timing core Custom optical package for use under a glass window Programmable 2-channel, 8.5 mA to 370 mA LED drivers Provision to use external LED emitters

Low power

Specifically designed for ultralow direct optical reflections Independent AFE settings per channel
$I^{2} \mathrm{C}$ data and control interface
Burst accumulator enabling 20 bits per sample period
Sample to sample accumulator enabling up to 27 bits per data read
16-bit or 32-bit register or FIFO readout per channel

APPLICATIONS

Optical heart rate monitoring
Reflective SpO2 measurement

GENERAL DESCRIPTION

The ADPD144RI is a highly integrated, photometric front end optimized for photoplethysmography (PPG) detection of blood oxygenation (SpO2) by synchronous detection in red and infrared wavelengths. Synchronous measurement allows rejection of both dc and ac ambient light interference with extremely low power consumption.

The module combines highly efficient, light emitting diode (LED) emitters and a sensitive 4-channel, deep diffusion photodiode (PD1 to PD4) with a custom application specific integrated circuit (ASIC) in a compact package that provides optical isolation between the integrated LED emitters and the detection photodiodes to improve through tissue, signal-tonoise ratio (SNR).

The ASIC consists of a 4-channel analog front end (AFE) with two independently configurable datapaths with separate gain and filter settings, a 14-bit analog-to-digital converter (ADC) with a burst accumulator, two flexible, independently configurable, LED drivers, and a digital control block. The digital control block provides AFE and LED timing, signal processing, and communication. Data output and functional configuration occur over a $1.8 \mathrm{~V} \mathrm{I}^{2} \mathrm{C}$ interface.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
$I^{2} \mathrm{C}$ Digital Input/Output Specifications 4
$I^{2} \mathrm{C}$ Timing Specifications 5
Absolute Maximum Ratings 6
Thermal Resistance 6
Recommended Soldering Profile6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics 8
Theory of Operation 9
Introduction 9
Optical Components 9
Sampling Operation 10
Pulse Timing 10
Time Slot Switch 11
State Machine Operation. 12
Sample Mode Operation and Data Flow..... 12
Adjustable Sampling Frequency 13
LED Driver Operation 13
$\mathrm{I}^{2} \mathrm{C}$ Serial Interface 15
Applications Information 16
Typical Connection Diagram 16
Land Pattern 16
Recommended Start-Up Sequence 16
Reading Data 17
Clocks and Timing Calibration 18
Determining Cvied 19
Determining the Average LED Current 20
Calculating the Total Power Consumption 20
Optimizing SNR per Watt 21
Mechanical Considerations for Covering the ADPD144RI. 22 22
Sample Setup File SpO2. 22
Register Listing 23
LED Control Registers 26
AFE Configuration Registers. 28
System Registers 29
ADC Registers 32
Data Registers 33
Outline Dimensions 34
Ordering Guide 34

SPECIFICATIONS

The voltage applied at the VDD1 pin and VDD2 pin $\left(\mathrm{V}_{\mathrm{DD}}\right)=1.8 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
POWER SUPPLY CURRENT Peak Supply Current Standby Mode Current Average Supply Current Supply Current 1 Pulse 10 Pulses	IVDD_PEAK IVdd_standby IVDD_Avg	VDD1, VDD2 $=1.8 \mathrm{~V}$ 4-channel operation See the Calculating the Total Power Consumption section LED offset $=25 \mu \mathrm{~s}$, LED period $=19 \mu \mathrm{~s}$, LED peak current $=25 \mathrm{~mA}, 4$ channels active 100 Hz data rate, Time Slot A only 100 Hz data rate, Time Slot B only 100 Hz data rate, Time Slot A and Time Slot B 100 Hz data rate, Time Slot A only 100 Hz data rate, Time Slot B only 100 Hz data rate, Time Slot A and Time Slot B		$\begin{aligned} & 9.3 \\ & 3.5 \\ & \\ & 106 \\ & 94 \\ & 151 \\ & 258 \\ & 246 \\ & 455 \end{aligned}$		mA $\mu \mathrm{A}$
LED SUPPLY VOLTAGE (VLed) CURRENT Average Supply Current $V_{\text {Led }}$ VLed Supply Current, Average 1 Pulse 10 Pulses	Iled_avg	See the Calculating the Total Power Consumption section Peak LED current $=100 \mathrm{~mA}$, LED pulse width $=3 \mu \mathrm{~s}$ 50 Hz data rate 100 Hz data rate 200 Hz data rate 50 Hz data rate 100 Hz data rate 200 Hz data rate		$\begin{aligned} & 15 \\ & 30 \\ & 60 \\ & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SATURATION ILLUMINANCE ${ }^{1}$	Blackbody color temperature ($\mathrm{T}=5800 \mathrm{~K})^{2}$				
Direct Illumination	Transimpedance amplifier (TIA) gain $=25 \mathrm{k} \Omega$		48		kLux
	TIA gain $=50 \mathrm{k} \Omega$		24		kLux
	TIA gain $=100 \mathrm{k} \Omega$		10		kLux
	TIA gain $=200 \mathrm{k} \Omega$		4		kLux
Through Skin	TIA gain $=25 \mathrm{k} \Omega$		140		kLux
	TIA gain $=50 \mathrm{k} \Omega$		70		kLux
	$\text { TIA gain }=100 \mathrm{k} \Omega$		31		kLux
	TIA gain $=200 \mathrm{k} \Omega$		12		kLux
DATA ACQUISITION					
ADC Resolution	Single pulse		14		Bits
Sample Width	64 pulses to 255 pulses		20		Bits
Output Data Width	64 pulses to 255 pulses, 128 samples averaged		27		Bits
Sampling Frequency ($\mathrm{f}_{\text {SAMPLE }}$)					
Lowest Setting	Adjustable via Register 0x12 setting (see Table 18)	0.122			Hz
Highest Setting	Time Slot B only, one pulse per sample, sleep time $=200 \mu \mathrm{~s}$			3.48	kHz
Minimum Sleep Time (tsleep_min)	Minimum sleep time required between samples		200		$\mu \mathrm{s}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Test Conditions/Comments \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
LEDs \\
LED Peak Current Setting \\
Dominant Wavelength Red LED (LED1) Infrared (IR) LED (LED2) \\
Radiant Flux
\end{tabular} \& \begin{tabular}{l}
Adjustable via Register 0x23 through Register 0x25 settings (see Table 14) \\
Forward current of the diode \(\left(\mathrm{l}_{\mathrm{F}}\right)=20 \mathrm{~mA}\)
\[
I_{F}=100 \mathrm{~mA}
\] \\
Red LED, \(\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}\) at \(25^{\circ} \mathrm{C}\) \\
IR LED, \(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}\) at \(25^{\circ} \mathrm{C}\)
\end{tabular} \& 8.5

9

33 \& \[
$$
\begin{aligned}
& 660 \\
& 880
\end{aligned}
$$

\] \& 370 \& | mA |
| :--- |
| nm |
| nm |
| mW |
| mW |

\hline | PHOTODIODE ${ }^{3}$ |
| :--- |
| Responsivity |
| Active Area Individual Photodiodes Total Active Area | \& | Wavelength, $\lambda=660 \mathrm{~nm}$ (Channel 1, Channel 2, Channel 3) |
| :--- |
| Wavelength, $\lambda=660 \mathrm{~nm}$ (Channel 4) |
| Wavelength, $\lambda=880 \mathrm{~nm}$ (Channel 1, Channel 2, Channel 3) |
| Wavelength, $\lambda=880 \mathrm{~nm}$ (Channel 4) |
| Per channel | \& \& \[

$$
\begin{aligned}
& 0.36 \\
& 0.31 \\
& 0.25 \\
& 0.28 \\
& 0.3 \\
& 1.2
\end{aligned}
$$

\] \& \& | A/W |
| :--- |
| A/W |
| A/W |
| A/W |
| mm^{2} |
| mm^{2} |

\hline POWER SUPPLY VOLTAGES

```
VD
V LED }\mp@subsup{}{}{4,5
Power Supply Rejection Ratio (PSRR)
``` & The ADPD144RI does not require a specific power-up sequence Applied at the VDD1 pin and VDD2 pin Applied at the VLED pin
\[
V_{D D}=1.8 \mathrm{~V}
\] & 1.7
3 & \[
\begin{aligned}
& 1.8 \\
& 3.5 \\
& -37
\end{aligned}
\] & 1.9
4.3 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~dB}
\end{aligned}
\] \\
\hline OPERATING TEMPERATURE RANGE & & -40 & & +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\({ }^{1}\) Saturation illuminance refers to the amount of light that saturates the analog signal path. Actual results may vary by factors of up to \(2 \times\) from the typical specifications. As a point of reference, Air Mass 1.5 (AM1.5) sunlight (brightest sunlight) produces 100 kLux .
\({ }^{2}\) Blackbody color temperature (\(\mathrm{T}=5800 \mathrm{~K}\)) approximates solar radiation (sunlight).
\({ }^{3}\) The photodiode layout is shown in Figure 11.
\({ }^{4} \mathrm{~V}_{\text {LED }}\) must be sufficient to source the maximum \(\mathrm{I}_{\mathrm{F}}\) required and to keep the internal driver and current sink compliance voltage at least 0.2 V above LGND. For the integrated LEDs, this voltage appears at the LEDX1 and LEDX2 pins.
\({ }^{5}\) See Figure 8 for the current limitation at the minimum V Led.

\section*{\(1^{2}\) C DIGITAL INPUT/OUTPUT SPECIFICATIONS}

Table 3.

\section*{I²C TIMING SPECIFICATIONS}

Table 4.
\begin{tabular}{l|l|ll|l}
\hline Parameter \({ }^{1,2}\) & Description & Min & Typ & Max \\
\hline \(\mathrm{f}_{\text {SCL }}\) & SCL frequency & & Unit \\
\(\mathrm{t}_{1}\) & SCL minimum pulse width high & 600 & kHz \\
\(\mathrm{t}_{2}\) & SCL minimum pulse width low & 1300 & & ns \\
\(\mathrm{t}_{3}\) & Start condition hold time & 600 & ns \\
\(\mathrm{t}_{4}\) & Start condition setup time & 600 & ns \\
\(\mathrm{t}_{5}\) & SDA setup time & 100 & ns \\
\(\mathrm{t}_{6}\) & SCL and SDA rise time & & ns \\
\(\mathrm{t}_{7}\) & SCL and SDA fall time & & \\
\(\mathrm{t}_{8}\) & Stop condition setup time & 600 & 1000 & ns \\
\hline
\end{tabular}

1
\({ }^{1}\) Guaranteed by design.
\({ }^{2}\) See Figure 2.

\section*{Timing Diagram}

Figure 2. \({ }^{1}\) C Timing Diagram

\section*{ABSOLUTE MAXIMUM RATINGS}

Table 5.
\begin{tabular}{l|l}
\hline Parameter & Rating \\
\hline VDD1, VDD2 to AGND & -0.3 V to +2.2 V \\
VDD1, VDD2 to DGND & -0.3 V to +2.2 V \\
INT to DGND & -0.3 V to +2.2 V \\
LEDX1, LEDX2 to LGND & -0.3 V to +3.6 V \\
SCL to DGND & -0.3 V to +3.6 V \\
SDA to DGND & -0.3 V to +3.6 V \\
VLED to LGND \({ }^{1}\) & -0.3 V to +4.3 V \\
ESD & 3000 V \\
\(\quad\) Human Body Model (HBM) & 1250 V \\
Charged Device Model (CDM) & 100 V \\
\(\quad\) Machine Model (MM) & \\
Solder Reflow (Pb-Free) & \(260(+0 /-5)^{\circ} \mathrm{C}\) \\
\(\quad\) Peak Temperature & \(<30 \mathrm{sec}\) \\
\(\quad\) Time at Peak Temperature & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(+105^{\circ} \mathrm{C}\) \\
\(\quad\) Powered & \(105^{\circ} \mathrm{C}\) \\
\(\quad\) Storage & \\
\hline
\end{tabular}
\({ }^{1}\) The absolute maximum voltage allowable between VLED and LGND is the voltage that causes the LEDX1 pin and the LED2X pin to reach or exceed their absolute maximum voltage.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

\section*{THERMAL RESISTANCE}

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
\(\theta_{\text {IA }}\) is necessary in a packaged IC to predict reliability and is a measure of the ability of the package to remove heat from the die. This device is a module with three separate die mounted to a substrate. Therefore, it is not possible to have one number describe the \(\theta_{\mathrm{JA}}\) of the entire assembly because the two die types used within this module have different thermal profiles, which is why a separate \(\theta_{J A}\) is given for each die type in Table 6.

Table 6. Thermal Resistance
\begin{tabular}{l|l|l|l}
\hline Package Type \(^{1}\) & Supply Pins & \(\boldsymbol{\theta}_{\mathrm{JA}}\) & Unit \\
\hline CE-12-2 & & & \\
ASIC & VDD1, VDD2 & 56 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
LED1, LED2 & VLED & 156 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}
\({ }^{1}\) Thermal impedance simulated values are based on JEDEC \(2 s 2 p\) and two thermal vias. See JEDEC JESD-51.

\section*{RECOMMENDED SOLDERING PROFILE}

Figure 3 and Table 7 provide details about the recommended soldering profile.

Figure 3. Recommended Soldering Profile
Table 7. Recommended Soldering Profile
\begin{tabular}{|c|c|}
\hline Profile Feature & Conditions (Pb-Free) \\
\hline Average Ramp Rate (\(\mathrm{L}_{\mathrm{L}}\) to \(\mathrm{T}_{\mathrm{P}}\)) & \(2^{\circ} \mathrm{C} / \mathrm{sec}\) maximum \\
\hline \multicolumn{2}{|l|}{Preheat} \\
\hline Minimum Temperature (S'min \(^{\text {s }}\)) & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Temperature (\(\mathrm{T}_{\text {SMAX }}\)) & \(200^{\circ} \mathrm{C}\) \\
\hline Time, \(\mathrm{T}_{\text {smin }}\) to \(\mathrm{T}_{\text {smax }}(\mathrm{ts}\)) & 60 sec to 120 sec \\
\hline Tsmax to \(T_{L}\) Ramp-Up Rate & \(2^{\circ} \mathrm{C} / \mathrm{sec}\) maximum \\
\hline \multicolumn{2}{|l|}{Time Maintained Above Liquidous Temperature} \\
\hline Liquidous Temperature (\(\mathrm{T}_{\mathrm{L}}\)) & \(217^{\circ} \mathrm{C}\) \\
\hline Time (\(\mathrm{t}_{\mathrm{L}}\)) & 60 sec to 150 sec \\
\hline Peak Temperature (\(\mathrm{T}_{\mathrm{p}}\)) & \(+260^{\circ} \mathrm{C}(+0 /-5)^{\circ} \mathrm{C}\) \\
\hline Time Within \(5^{\circ} \mathrm{C}\) of Actual Peak Temperature (\(\mathrm{t}_{\mathrm{p}}\)) & <30 sec \\
\hline Ramp-Down Rate & \(3^{\circ} \mathrm{C} / \mathrm{sec}\) maximum \\
\hline Time from \(25^{\circ} \mathrm{C}\left(\mathrm{t}_{25^{\circ}}\right)\) to Peak Temperature & 8 minutes maximum \\
\hline
\end{tabular}

\section*{ESD CAUTION}
\begin{tabular}{l|l}
\hline & \begin{tabular}{l}
ESD (electrostatic discharge) sensitive device. \\
Charged devices and circuit boards can discharge \\
without detection. Although this product features \\
patented or proprietary protection circuitry, damage
\end{tabular} \\
may occur on devices subjected to high energy ESD. \\
Therefore, proper ESD precautions should be taken to \\
avoid performance degradation or loss of functionality.
\end{tabular}

\section*{PIN CONFIGURATION AND FUNCTION DESCRIPTIONS}
 PINS UNLESS DRIVING EXTERNAL LEDs.

Figure 4. Pin Configuration

Table 8. Pin Function Descriptions
\begin{tabular}{l|l|l|l}
\hline Pin No. & Mnemonic & Type & Description \\
\hline 1 & LGND & Supply & LED Ground. \\
2 & SDA & Digital input and output & Serial Address and Data. \\
3 & DGND & Supply & Digital Ground. \\
4 & AGND & Supply & Analog Ground. \\
5 & VDD1 & Supply & 1.8 V Supply Input. \\
6 & VREF & Analog reference & Voltage Reference. Bypass with a \(0.7 \mu \mathrm{~F}\) to \(4 \mu \mathrm{~F}\) capacitor to AGND. \\
7 & & & Recommended value is \(1 \mu F\). \\
7 & VLED & Supply & Integrated LEDs Anode Supply Voltage. \\
8 & LEDX2 & Analog output & External LED2 Cathode. Do not connect this pin unless driving external LEDs. \\
9 & LEDX1 & Analog output & External LED1 Cathode. Do not connect this pin unless driving external LEDs. \\
10 & VDD2 & Supply & 1.8 V Supply Input. \\
11 & INT & Digital input and output & Interrupt Input and Output. \\
12 & SCL & Digital input & Serial Clock for I \({ }^{2} C\) Communication. \\
\hline
\end{tabular}

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

Figure 5. Photodiode Quantum Efficiency

Figure 6.32 kHz Clock Frequency Distribution (Default Settings, Before User Calibration: Register \(0 \times 4 B=0 \times 2612\))

Figure 7. 32 MHz Clock Frequency Distribution (Default Settings, Before User Calibration: Register 0x4D \(=0 \times 425 E\))

Figure 8. Maximum Achievable LED Current (lled_PEAK) vs. Minimum \(V_{\text {LED }}\)

Figure 9. Spectral Output of LED2 (880 nm LED)

Figure 10. Spectral Output of LED1 (660 nm LED)

\section*{THEORY OF OPERATION INTRODUCTION}

The ADPD144RI is a highly integrated, optical module designed for reflective PPG measurements. The module combines red and infrared LED emitters, a four segment optical detector, and a mixed signal, photometric front end with digital control and signal processing in a compact device for optical measurements.

The ADPD144RI uses synchronous detection of optical pulses to improve the rejection of ambient light while also using much less operating power than nonsynchronous architectures. The integrated LED emitters produce light pulses synchronous with the active sampling period of the AFE. The AFE comprises a programmable TIA, a band-pass filter and an integrator. The processed analog signals are digitized by a 14 -bit ADC and summed by the 20-bit burst accumulator. Four channels of simultaneous sampling are matrixed into two independent time slots (one for each LED wavelength). The number of pulses per sample is adjustable and accumulation and averaging can be applied to multiple samples to increase the dynamic range to 27 bits.

A high speed \(\mathrm{I}^{2} \mathrm{C}\) interface allows data to be read from output registers directly or through a first in, first out (FIFO) buffer. Configuration control of the ADPD144RI is provided through the \(I^{2} \mathrm{C}\) interface.

\section*{OPTICAL COMPONENTS}

\section*{Photodiode}

The ADPD144RI integrates a \(1.2 \mathrm{~mm}^{2}\) deep-junction photodiode optimized for red and infrared sensitivity. The optical sensing area is segmented into four physical photodiodes. These diodes are multiplexed into two or four separate optical channels within the analog signal processing block. Data processing is performed on each channel independently, and output data is reported in sets of four 16-bit or 32 -bit registers (one per optical channel) or summed into a single register, depending on programmed output data format.

\section*{LEDs}

The ADPD144RI module contains two LED emitters at the optimum 660 nm red (LED1) and 880 nm IR (LED2) wavelengths for measurement of blood oxygenation (SpO2). A common anode connection to VLED supplies both integrated LEDs while the cathode of each LED is connected to a programmable current sink. The use of current sinks to pulse the LEDs allows a single supply voltage to power LEDs with different forward voltage requirements automatically compensating for the different forward voltages required by different LED families. When using the integrated LEDs, do not connect the LEDX1 and LEDX2 pins.

Figure 11. Optical Component Locations

\section*{SAMPLING OPERATION}

The ADPD144RI samples bursts of synchronous pulses in two independent time slots, Time Slot A and Time Slot B, which occur sequentially within a sample period. The entire signal path from LED stimulation to data capture and processing is executed during each time slot. Time Slot A and Time Slot B feature separate datapaths that can be configured with independent settings for the LED driver, AFE setup, and the resulting data. In a typical Sp02 application, the red and IR emitters are assigned to different time slots, allowing each wavelength independent calibration.
Each time slot can contain 1 to 255 pulses. The energy from each pulse is collected, and the total energy minus ambient light is sampled by the ADC. A burst accumulator sums the pulse energies into a 20 -bit value. The number of pulses in each time slot is set in the top octet of Register 0x31 for Time Slot A and Register 0x36 for Time Slot B. Each time slot is considered a discrete sample and the combined Time Slot A and Time Slot B, when both are used, is considered a sampling period. Flexibility in pulse number and emitter power allows the designer to choose the best balance of sampling rate, sensitivity, and power consumption for the application.

\section*{PULSE TIMING}

The pulse timing for each time slot is programmed in Register 0x30, Register 0x31, Register 0x35, and Register 0x36. Sampling starts with the pulse delay, which is the time from the acquisition start to the rising edge of the first pulse. Time Slot A and Time Slot B operate in sequence for every sampling period in which these slots are both enabled.

To calculate sample timing use the following equation:
Pulse Offset \(+(\) Pulse Count \(\times\) Pulse Period \()+\) Processing Time (1) where:
Pulse Offset is the delay before the first pulse in each sample. Pulse Count is the total number of pulses within a time slot.
Pulse Period is the time from the start of one pulse to the start of the subsequent pulse.
Processing Time is the time for the burst accumulator to sum the pulse energy and place the data on the internal bus.
The following timing calculations use the configuration detailed in Table 12.

Register 0x31 = 0x0320, Register 0x31 = 0x0818, Pulse Offset A = \(25 \mu \mathrm{~s}\), Pulse Width A \(=3 \mu \mathrm{~s}\), Pulse Period A \(=19 \mu \mathrm{~s}\), and Pulse Count \(\mathrm{A}=8\).

Time Slot \(A\left(t_{A}\right)=25 \mu \mathrm{~s}+8 \times 19 \mu \mathrm{~s}+68 \mu \mathrm{~s}=245 \mu \mathrm{~s}\) Register 0x31 \(=0 \times 0320\), Register 0x31 \(=0 \times 0818\), Pulse Offset \(B\) \(=25 \mu \mathrm{~s}\), Pulse Width B \(=3 \mu \mathrm{~s}\), Pulse Period B \(=19 \mu \mathrm{~s}\), and Pulse count \(\mathrm{B}=8\).
\[
\text { Time Slot } B\left(t_{B}\right)=25 \mu \mathrm{~s}+8 \times 19 \mu \mathrm{~s}+20 \mu \mathrm{~s}=197 \mu \mathrm{~s}
\]

Processing time for Time Slot A (\(\mathrm{t}_{1}\)) is fixed at \(68 \mu \mathrm{~s}\) and Time Slot B (\(\mathrm{t}_{2}\)) is fixed at \(20 \mu \mathrm{~s}\).
Note that \(n_{A}\) is the number of pulses for Time Slot \(A\), and \(n_{B}\) is the number of pulses for Time Slot B.

The minimum sleep time (\(\mathrm{t}_{\text {slefe_min }}\)) between samples is \(200 \mu \mathrm{~s}\) but can be longer depending on the \(\mathrm{f}_{\text {SAMPLE }}\), see Register 0x12, Bits[15:0].

Figure 12. Time Slot Timing Diagram
Table 9. Recommended AFE and LED Timing Configuration
\begin{tabular}{l|l|l}
\hline Register Name & Address & Recommended Setting \\
\hline SLOTA_LEDMODE & \(0 \times 30\) & \(0 \times 0319\) \\
SLOTB_LEDMODE & \(0 \times 35\) & \(0 \times 0319\) \\
SLOTA_AFEMODE & \(0 \times 39\) & \(0 \times 21 \mathrm{F3}\) \\
SLOTB_AFEMODE & \(0 \times 3 \mathrm{~B}\) & \(0 \times 21 \mathrm{F3}\) \\
\hline
\end{tabular}

Figure 13. Example of a PPG Signal Sampled at a Data Rate of 10 Hz Using Five Pulses per Sample

\section*{TIME SLOT SWITCH}

Two different input configurations can be used with the foursegment optical detector. The photodiodes can be assigned to their own AFE channel to increase dynamic range or can be summed to reduce noise. Photodiode outputs are assigned depending on the settings of Register 0x14 (see Figure 14). Both configurations are available and can be set independently for Time Slot A and Time Slot B.
See Table 10 for the time slot switch register settings. For situations requiring high dynamic range where all four channels are needed, configure the channels such that each of the photodetector segments is routed to its own channel. For lower light conditions, the two pairs of the segments can each be summed into a single channel as shown in Figure 14. Using only half of the amplifiers increases the signal to noise ratio by approximately a factor of \(\sqrt{ } 2\) but sacrifices saturation headroom.

Figure 14. Input Configurations

Table 10. Time Slot Switch (Register 0x14)
\begin{tabular}{l|l|l|l}
\hline Address & Bits & Name & Description \\
\hline \(0 \times 14\) & {\([11: 8]\)} & SLOTB_PD_SEL & \begin{tabular}{l}
Selects connection of PD1, PD2, PD3, or PD4 for Time Slot B, as shown in Figure 14. \\
\\
\end{tabular} \\
& & \begin{tabular}{l}
0x1: Channel 3 and Channel 4 are connected during Time Slot B. \\
0x4: Channel 1, Channel 2, Channel 3, and Channel 4 are connected during Time Slot B. \\
Other: reserved.
\end{tabular} \\
\cline { 3 - 4 } & & & \\
& & & \begin{tabular}{l}
Selects connection of PD1, PD2, PD3, or PD4 for Time Slot A, as shown in Figure 14. \\
0x1: Channel 3 and Channel 4 are connected during Time Slot A.
\end{tabular} \\
& & \begin{tabular}{ll}
0x4: Channel 1, Channel 2, Channel 3, and Channel 4 are connected during Time Slot A. \\
Other: reserved.
\end{tabular} \\
\hline
\end{tabular}

\section*{STATE MACHINE OPERATION}

During each time slot, the ADPD144RI operates according to a state machine. The state machine operates in the following sequence (see Figure 15).

Figure 15. State Machine Operation Flowchart
The ADPD144RI operates in one of three modes: standby, program, and sample.

Standby mode is a power saving mode in which no data collection occurs. All register values are retained in this mode. To place the device in standby mode, write \(0 \times 0\) to Register 0x10, Bits[1:0]. The device powers up in standby mode.

Program mode is used for programming registers. Always cycle the ADPD144RI through program mode when writing registers or changing modes. Because no power cycling occurs in this mode, the device may consume higher current in program mode than in normal operation. To place the device in program mode, write 0x1 to Register 0x10, Bits[1:0].

In normal operation (sample mode), the ADPD144RI pulses light and collects data. Power consumption in this mode depends on the pulse count and data rate. To place the device in sample mode, write 0x2 to Register 0x10, Bits[1:0].

\section*{SAMPLE MODE OPERATION AND DATA FLOW}

In sample mode, the ADPD144RI follows a specific pattern that is set up by the state machine. This pattern is shown in the corresponding data flow diagram in Figure 16. The pattern is as follows:
1. LED pulse and sample. The ADPD144RI pulses an LED emitter. The response of a photodiode or photodiodes to the reflected light is measured by the ADPD144RI. Each data sample is constructed from the sum of \(n\) individual pulses, where \(n_{\text {PULSE }}\) is user configurable between 1 and 255 .
2. Intersample averaging. If desired, the logic can average N -samples, from 2 to 128 in powers of 2, to produce output data. New output data is saved to the output registers every N samples.
3. Data read. The host processor reads the converted results from the data register or the FIFO.
4. Repeat. The sequence has a few different loops that enable different types of averaging while keeping both time slots close in time relative to each other.

Figure 16. ADPD144RI Data Flow

\section*{ADJUSTABLE SAMPLING FREQUENCY}

Register \(0 \times 12\) sets a divider from the 32 kHz clock that determines the sampling frequency of the ADPD144RI. The maximum sampling frequency (\(\mathrm{f}_{\text {SAMPLE, MAX }}\)) is determined by the sample periods for Time Slot A and Time Slot B plus the minimum sleep time.
\[
\begin{equation*}
f_{\text {SAMPLE, } M A X}=1 /\left(t_{A}+t_{l}+t_{B}+t_{2}+t_{\text {SLEEP_MIN }}\right) \tag{2}
\end{equation*}
\]
where \(t_{\text {SLEEP_MIN }}\) is the minimum sleep time required between samples.

See the Pulse Timing section for the definitions of \(\mathrm{t}_{\mathrm{A}}, \mathrm{t}_{1}, \mathrm{t}_{\mathrm{B}}\), and \(\mathrm{t}_{2}\).
If a given time slot is not in use, elements from that time slot do not factor into the calculation. For example, if Time Slot A is not in use, \(t_{A}\) and \(t_{1}\) do not add to the sampling period, and the maximum sampling frequency is calculated as follows:
\[
\begin{equation*}
f_{\text {SAMPLE, MAX }}=1 /\left(t_{B}+t_{2}+t_{\text {SLEEP_MIN }}\right) \tag{3}
\end{equation*}
\]

\section*{External Sync for Sampling}

The ADPD144RI provides an option to use an external sync signal to trigger the sampling periods. This external sample sync signal is provided on the INT pin. This functionality is controlled by Register 0x4F, Bits[2:1]. When enabled, a rising edge on the selected input specifies when the next sample cycle occurs. When triggered, there is a delay of one to two internal sampling clock (32 kHz) cycles, and then the normal start-up sequence occurs. This sequence is the same as if the normal sample timer provided the trigger. To enable the external sync signal feature, use the following procedure:
1. Write \(0 \times 1\) to Register \(0 \times 10\) to enter program mode.
2. Write 1 to Register 0x4F, Bit 2 to select the external sync using the INT pin. Enable the INT pin input buffer by writing 1 to Register 0x4F, Bit 1.
3. Write \(0 \times 4000\) to Register \(0 \times 38\).
4. Write \(0 \times 0002\) to Register \(0 \times 10\) to start the sampling operations.
5. Apply the external sync signal on the INT pin at the desired rate (sampling occurs at that rate). As with normal sampling operations, read the data using the FIFO or the data registers.

The maximum frequency constraints (\(\mathrm{f}_{\text {SAMPLE, MAX }}\)) still apply when externally triggering the sample function.

\section*{LED Pulse and Sample}

At each sampling period, the selected LED driver drives a series of LED pulses in each time slot as shown in Figure 13. The magnitude, duration, and number of pulses are programmable over the \(\mathrm{I}^{2} \mathrm{C}\) interface. Each LED pulse coincides with a sensing period of the AFE. During the AFE sensing period, the charge acquired on the photodiode from ambient light is subtracted from the photodiode charge of the synchronous LED pulse. The combined signals effectively null the contribution of ambient light.
During each pulse period, the photodiode output is integrated and converted to a digital value by the 14 -bit ADC. Each subsequent conversion within a time slot is summed with the previous result. Up to 255 pulse values from the ADC can be summed in an individual time slot up to a maximum of 20 bits.

\section*{LED DRIVER OPERATION}

\section*{Integrated LEDs}

The ADPD144RI features integrated 660 nm (LED1) and 880 nm (LED2) LED emitters optimized for SpO 2 measurement. The anodes of the integrated LEDs require connection to a power supply via the VLED pin, which allows flexibility of the supply voltage for the LEDs as well as decoupling. A capacitor (\(\mathrm{C}_{\text {vLed }}\)), placed close to the VLED pin, provides additional pulse current to the LEDs in pulse mode. Without this capacitor, output impedance of the LED supply can adversely affect the pulsed performance of the LEDs. Selection of the correct Cvied value is covered in the Determining CVLED section.

The LEDX1 and LEDX2 pins are external connections to the LED drivers and cannot be connected when using the integrated LED emitters. It is not possible to combine integrated and external LEDs.

\section*{External LEDs}

External LEDs can be driven for applications beyond SpO 2 or for use in transmission PPG. Leaving the VLED pin unconnected effectively disables the integrated LED emitters on the ADPD144RI. The external LED anodes require connection to an external LED supply, Vxied. The cathodes of the external LEDs are connected to the LEDX1 and LEDX2 pins.

NOTES
1. NC = NO CONNECT.

Figure 17. Connection of External LEDs
The ADPD144RI LED drivers are pulsed current sinks, which allows programming of the LED pulse currents without concern for LED supply voltage or LED technology as long as the LEDX1 and LEDX2 voltages stay within the working envelope of the current sinks, \(0.2 \mathrm{~V}>3.6 \mathrm{~V}\) above LGND. Below 0.2 V , the LED driver performance cannot be guaranteed. The LED drivers have an absolute maximum voltage rating of 3.6 V . Any voltage exposure over this rating affects the reliability of the device operation and, in certain circumstances, causes the device to completely cease proper operation.
The voltage that is presented to the LEDX1 and LEDX2 pins when using the external LEDs is the \(\mathrm{V}_{\text {xLed }}\) supply voltage minus the forward voltage drop across the diode plus the voltage drop of any resistance in line with the LED. The operating forward voltage for an LED depends on the type and technology of the LED and varies only a small amount over the operating range of the LED. Forward voltage is typically 1.3 V for an 880 nm LED1 and 1.8 V for a 660 nm LED2, while shorter wavelengths operate at higher forward voltages. Voltage drop across any resistance in series with the LED varies with instantaneous current and must be considered when calculating the voltage at LEDX1 and LEDX2. Even though the average current through the LED is small, the pulsed current is high enough to be affected by series resistance, and care in the layout to reduce series inductance and resistance in the circuit path between the VxLED supply through the external LED and into the LEDX1 and LEDX2 driver pins is recommended.

\section*{Multiple Sample Averaging and Accumulation}

The ADPD144RI digital processing block can provide sample accumulation and averaging to increase signal resolution and improve signal noise shaping.
As shown in Figure 16, pulses acquired by the AFE (\(\mathrm{n}_{\mathrm{A}}\) or \(\mathrm{n}_{\mathrm{B}}\)) are summed and clipped to 20-bit samples at the output of the burst accumulator. The effective gain and dynamic range of the AFE can be further extended to 27 bits by summing multiple samples (\(\mathrm{N}_{\mathrm{A}}\) or \(\mathrm{N}_{\mathrm{B}}\)) in the sample accumulator at the expense of the effective sampling rate.
The 27 -bit values are padded up to 32 -bit words and can be read out directly by using the 32 -bit output registers or the 32 -bit FIFO configuration. New data is written to the registers at the rate of \(\mathrm{f}_{\text {SAMPLie }} / \mathrm{N}\) every \(\mathrm{N}^{\text {th }}\) sample. The 16 -bit registers remain active during 32-bit sample accumulation. Data from the sample accumulator is decimated and clipped to prevent overrun of the 16 -bit output registers. Sample averaging can be used to integrate the noise while maintaining 16-bit resolution.
Writing 0 to Register 0x11, Bit 13 places the digital decimation filter into the datapath of the 32 -bit registers. This provides 20 -bit average data to the 32 -bit registers. When using the averaging feature, samples can be averaged by powers of 2 . The user can select from 2, 4, \(8 \ldots\) up to 128 samples to be averaged.

\section*{Data Read}

The host processor reads output data from the ADPD144RI, via the \(\mathrm{I}^{2} \mathrm{C}\) protocol, from the data registers or from the FIFO. New output data is made available every N samples, where N is the user configured averaging factor. The averaging factors for Time Slot A and Time Slot B are configurable independently of each other. If the time slots are the same, both time slots can be configured to save data to the FIFO. If the two averaging factors are different, only one time slot can save data to the FIFO. Data from the other time slot can be read from the output registers.
The data read operations are described in more detail in the Reading Data section.

\section*{I \({ }^{2}\) C SERIAL INTERFACE}

The ADPD144RI supports an \(I^{2} \mathrm{C}\) serial interface via the SDA (data) pin and the SCL (clock) pin. All internal registers are accessed through the \(\mathrm{I}^{2} \mathrm{C}\) interface.
The ADPD144RI conforms to the UM10204 I²C-Bus Specification and User Manual, Rev. 05-9 October 2012, available from NXP Semiconductors. The ADPD144RI supports fast mode (400 kbps) data transfer. Register read and write operations are supported, as shown in Figure 18. Figure 2 shows the timing diagram for the \(\mathrm{I}^{2} \mathrm{C}\) interface. The 7 -bit \(\mathrm{I}^{2} \mathrm{C}\) slave address for the device is \(0 \times 64\).

Figure 18 illustrates the ADPD144RI I \({ }^{2} \mathrm{C}\) write and read operations. Single word and multiword read operations are supported. For a single register read, the host sends a no acknowledge (NACK) after the second data byte is read and a new register address is needed for each access.

For multiword operations, each pair of data bytes is followed by an acknowledge (ACK) from the host until the last byte of the last word is read. The host indicates the last read word by sending a NACK. When reading from the FIFO (Register 0x60), the data is automatically advanced to the next word in the FIFO, and the space is freed. When reading from other registers, the register address is automatically advanced to the next register, allowing the user to read without readdressing each register and thereby reducing the amount of overhead required to read multiple registers. This auto-increment does not apply to the register that precedes the FIFO, Register 0x5F, or the last data register, Register 0x7F.

All register writes are single word only and require 16 bits (one word) of data.

Table 11. Definitions of \(\mathrm{I}^{2} \mathrm{C}\) Terminology
\begin{tabular}{l|l}
\hline Term & Description \\
\hline SCL & Serial clock. \\
SDA & Serial address and data. \\
Master & The device that initiates a transfer, generates clock signals, and terminates a transfer. \\
Slave & The device addressed by a master. The ADPD144RI operates as a slave device. \\
Start (S) & A high to low transition on the SDA line while SCL is high. All transactions begin with a start condition. \\
Start (Sr) & A repeated start condition. \\
Stop (P) & A low to high transition on the SDA line while SCL is high. A stop condition terminates all transactions. \\
ACK & During the acknowledge (ACK) or no acknowledge (NACK) clock pulse, the SDA line is pulled low and remains low. \\
NACK & During the ACK or NACK clock pulse, the SDA line remains high. \\
Slave Address & After a start (S), a 7-bit slave address is sent, which is followed by a data direction bit (read or write). \\
Read (R) & A 1 indicates a request for data. \\
Write (W) & A 0 indicates a transmission. \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION \\ TYPICAL CONNECTION DIAGRAM}

Figure 19 illustrates the recommended connection diagram for the ADPD144RI. The \(1.8 \mathrm{~V} \mathrm{I}^{2} \mathrm{C}\) communication lines, SCL and SDA, along with the INT line, connect to a system microprocessor or sensor hub. A level translator may be necessary if the \(\mathrm{I}^{2} \mathrm{C}\) lines from the microprocessor are not 1.8 V logic.

Provide the 1.8 V supply, tied to VDD1 and VDD2. Use standard regulator circuits according to the peak current requirements specified in Table 1 and calculated in the Calculating the Total Power Consumption section.
For best noise performance, connect AGND, DGND, and LGND together at a large conductive surface such as a ground plane, ground pour, or large ground trace.

Figure 19. Connection Diagram

\section*{LAND PATTERN}

Figure 20 shows the recommended PCB footprint (land pattern). Table 7 and Figure 3 provide the recommended soldering profile.

Figure 20. Land Pattern

\section*{RECOMMENDED START-UP SEQUENCE}

The ADPD144RI does not require a particular power-up sequence. The device powers up in standby mode (Register \(0 \times 10=\) 0x0000).

From standby mode, to begin measurement, initiate the ADPD144RI as follows:
1. Write \(0 \times 0001\) to Register \(0 \times 10\) to force the device into program mode.
2. Registers must be written while the device is in program mode. Registers may be written in any order.
3. Set SAMPLE_CLK, Register 0x4B, Bit 7 (CLK32K_EN) to start the sample clock (32 kHz clock). This step must be done only once after power-up of the device. However, writing to the bit more than once does not cause a problem.
4. Write \(0 \times 0002\) to Register \(0 \times 10\) to force the device to normal operation.

The ADPD144RI is now sampling and data can be read from the output register and/or FIFO depending on set configuration.
To place the ADPD144RI into standby mode:
1. Write \(0 \times 0001\) to Register \(0 \times 10\) to force the device into program mode.
2. If desired, write registers in any order while the device is in program mode.
3. Write 0 x 00 FF to Register 0 x 00 to clear all interrupts. If desired, clear the FIFO as well by setting DATA_ACCESS_CTL, Register 0x5F, Bit 0 (FIFO_ACCESS_ENA) and writing 0x80FF to Register \(0 \times 00\). Reset Register 0x5F, Bit 0 back to 0 when this step is complete.
4. Write \(0 \times 0000\) to Register \(0 \times 10\) to force the device into standby mode.
5. This step is optional. For absolute minimum standby power consumption, disable the 32 kHz clock by setting SAMPLE_CLK, Register 0x4B, Bit 7 (CLK32K_EN) to 0. This must be written when the device is in standby mode (Register 0x10 \(=0 \times 0\)).

The ADPD144RI is now in standby mode.
Warning: if 0 is written to Register 0x4B, Bit 7 (CLK32K_EN) while in program mode or normal mode, the device is unable to transition into any other mode, including standby mode. As a result, the power consumption in what appears to be standby mode is greatly elevated. Due to the low current draw of the 32 kHz clock while in operation, it is recommended, from an ease of use perspective, to keep the 32 kHz clock running after the clock is turned on.

\section*{READING DATA}

The ADPD144RI provides multiple methods for accessing the sample data. Each time slot can be independently configured to provide data access using the FIFO or the data registers. Interrupt signaling is also available to simplify timely data access. The FIFO is available to loosen the system timing requirements for data accesses.

\section*{Reading Data Using the FIFO}

The ADPD144RI includes a 128-byte FIFO memory buffer that can be configured to store data from either or both time slots. Register 0x11 selects the kind of data from each time slot to be written to the FIFO. Note that both time slots can be enabled to use the FIFO, but only if the output data rate of the time slots is the same.
\[
\begin{equation*}
\text { Output Data Rate }=f_{\text {SAMPLE }} / N_{X} \tag{4}
\end{equation*}
\]
where:
\(N_{X}\) is the averaging factor for each time slot (\(N_{A}\) for Time Slot A and \(N_{B}\) for Time Slot B). \(N_{A}=N_{B}\) must be true to store data from both time slots in the FIFO.
Data packets are written to the FIFO at the output data rate. A data packet for the FIFO consists of a complete sample for each enabled time slot. Data for each photodiode channel can be stored as either 16 or 32 bits. Each time slot can store 2, 4, 8, or 16 bytes of data per sample, depending on the mode and data format. To ensure that data packets are intact, new data is only written to the FIFO if there is sufficient space for a complete packet. Any new data that arrives when there is not enough space is lost. The FIFO continues to store data when sufficient space exists. Always read FIFO data in complete packets to ensure that data packets remain intact.
The number of bytes currently stored in the FIFO is available in Register 0x00, Bits[15:8]. A dedicated FIFO interrupt is also available and automatically generates when a specified amount of data is written to the FIFO.

To read data from the FIFO using an interrupt-based method, use the following procedure:
1. In program mode, configure time slots as required.
2. Set data format for each time slot in Register 0x11.
3. Set FIFO_THRESH in Register 0x06, Bits[13:8] to the interrupt threshold. A recommended value for this is the number of
16 -bit words in a data packet, minus 1 . Setting
FIFO_THRESH generates an interrupt when there is at least one complete packet in the FIFO.
4. Enable the FIFO interrupt by writing a 0 to FIFO_INT_MASK in Register 0x01, Bit 8. Configure the interrupt pin (INT) by writing the appropriate value to the bits in Register 0x02.
5. Enter normal operation mode by setting Register \(0 \times 10\) to \(0 \times 2\).
6. When an interrupt occurs, complete the following steps:
a. There is no requirement to read the FIFO_SAMPLES register because the interrupt is generated only if there is one or more full packet. Optionally, the interrupt routine can check for the presence of more than one available packet by reading this register.
b. Write 1 to FIFO_ACCESS_ENA, Register 0x5F, Bit 0 twice in two consecutive write operations.
c. Read a complete packet using one or more multiword accesses using Register 0x60. Reading the FIFO automatically frees the space for new samples.
d. Write 0 to FIFO_ACCESS_ENA, Register 0x5F, Bit 0.

The interrupt automatically clears when enough data is read from the FIFO to bring the data level below the threshold.
To read data from the FIFO in a polling method, use the following procedure:
1. In program mode, set the configuration of the time slots as desired for operation.
2. Write Register 0x11 with the desired data format for each time slot.
3. Enter normal operation mode by setting Register \(0 \times 10\) to 0x02.

Next, begin the polling operations using the following procedure:
1. Wait for the polling interval to expire.
2. Read the FIFO_SAMPLES bits (Register 0x00, Bits[15:8]).
3. If FIFO_SAMPLES \(\geq\) the packet size, read a packet using the following steps:
a. Write 1 to FIFO_ACCESS_ENA, Register 0x5F, Bit 0 twice in two consecutive write operations.
b. Read a complete packet using one or more multiword accesses via Register 0x60. Reading the FIFO automatically frees the space for new samples.
c. Write 0 to FIFO_ACCESS_ENA, Register 0x5F, Bit 0 .
d. Repeat Step 1.

When a mode change is required, or any other disruption to normal sampling is necessary, the FIFO must be cleared. Use the following procedure to clear the state and empty the FIFO:
1. Enter program mode by setting Register \(0 \times 10\) to \(0 \times 1\).
2. Write 1 to FIFO_ACCESS_ENA, Register 0x5F, Bit 0 twice in two consecutive write operations.
3. Write 1 to Register 0x00, Bit 15.
4. Write 0 to FIFO_ACCESS_ENA, Register 0x5F, Bit 0 .

\section*{Reading Data from Registers Using Interrupts}

The latest sample data is always available in the data registers and is updated simultaneously at the end of each time slot. The data value for each photodiode channel is available as a 16 -bit value in Register 0x64 through Register 0x67 for Time Slot A, and Register 0x68 through Register 0x6B for Time Slot B. If allowed to reach their maximum value, Register 0x64 through Register 0x6B clip. If Register 0x64 through Register 0x6B saturate, the unsaturated (up to 27 bits) values for each channel are available in Register 0x70 through Register 0x77 for Time Slot A and Register 0x78 through Register 0x7F for Time Slot B. Sample interrupts are available to indicate when the registers are updated and can be read. To use the interrupt for a given time slot, use the following procedure:
1. Enable the sample interrupt by writing a 0 to the appropriate bit in Register 0x01. To enable the interrupt for Time Slot A, write 0 to Bit 5 . To enable the interrupt for Time Slot B, write 0 to Bit 6. Either or both interrupts can be set. An interrupt is generated when the data registers are updated.
2. Configure the INT pin by writing the appropriate value to the bits in Register 0x02.
3. The interrupt handler must perform the following: a. Read Register 0x00 and observe Bit 5 or Bit 6 to confirm which interrupt has occurred. This step is not required if only one interrupt is in use.
b. Read the data registers before the next sample can be written. The system must have an interrupt latency and service time that is short enough to respond before the next data update, based on the output data rate.
c. Write a 1 to Bit 5 or Bit 6 in Register \(0 x 00\) to clear the interrupt.

If both time slots are in use, it is possible to use only the Time Slot B interrupt to signal when all registers can be read. It is recommended to use the multiword read to transfer the data from the data registers.

\section*{Reading Data from Registers Without Interrupts}

If the system interrupt response is not fast or predictable enough to use the interrupt method, or if the INT pin is not used, it is possible to obtain reliable data access by using the data hold mechanism. To guarantee that the data read from the registers is from the same sample time, it is necessary to prevent the update of samples while reading the current values.

The method for performing register reads without interrupt timing is as follows:
1. Write a 1 to SLOTA_DATA_HOLD or SLOTB_DATA_ HOLD bits, Register 0x5F, Bit 1 and Bit 2, respectively, for the time slot requiring access (both time slots can be accessed). This write prevents sample updates.
2. Read the registers as desired.
3. Write a 0 to the SLOTA_DATA_HOLD or SLOTB_ DATA_HOLD bits, Register 0x5F, Bit 1 and Bit 2, respectively. Sample updates are allowed again.

Because a new sample may arrive while the reads are occurring, this method prevents the new sample from partially overwriting the data being read.

\section*{CLOCKS AND TIMING CALIBRATION}

The ADPD144RI uses two internal time bases. A 32 kHz clock provides master timing for the state machine, sets the sample timing, and determines the output data rate. A separate 32 MHz clock controls the digital processing engine of the ASIC. Both clocks are internally generated and exhibit device to device variation of approximately \(10 \%\) (typical).
Both clocks can be calibrated to provide accurate timing for applications that require precise timing reference.

\section*{Calibrating the \(\mathbf{3 2} \mathbf{~ k H z}\) Clock}

The 32 kHz clock provides the coarse timing reference for sampling time and output data rate. For applications where an accurate time reference is important, such as heart rate measurements, calibrate the 32 kHz clock. To calibrate the clock, take the following steps:
1. Set the sampling frequency to the highest the system can handle, such as 2000 Hz . Because the 32 kHz clock controls sample timing, its frequency is readily accessible via the INT pin. Configure the interrupt by writing 0 xC 0 FF to Register 0x02 and set the interrupt to occur at the sampling frequency by writing 0 to Register 0x01, Bit 5. Monitor the INT pin. The INT pin then pulses at \(1 / 4\) the sample frequency.
2. If the monitored interrupt frequency \(\times 4\) is less than the set sampling frequency, increase the CLK32K_ADJUST bits, Register 0x4B, Bits[5:0]. If the monitored interrupt frequency \(\times 4\) is larger than the set sampling frequency, decrease the CLK32K_ADJUST bits.

Repeat Step 2 until the monitored interrupt signal frequency is close enough to the set sampling frequency. Note that the resolution of the 32 kHz clock adjust is 0.6 kHz per LSB.

\section*{Calibrating the \(\mathbf{3 2} \mathbf{~ M H z ~ C l o c k ~}\)}

The 32 MHz clock calibrates items associated with fine timing within a sample period, such as LED pulse width and spacing. Only calibrate the 32 MHz clock after the 32 kHz clock is calibrated. To calibrate the 32 MHz clock, take the following steps:
1. Write \(0 \times 1\) to Register 0x5F, Bit 0 (FIFO_ACCESS_ENA).
2. Enable the CLK_RATIO calculation by writing \(0 \times 1\) to Register 0x50, Bit 5 (CLK32M_CAL_EN). This function counts the number of 32 MHz clock cycles in two cycles of the 32 kHz clock. With this function enabled, this cycle value is stored in Register 0x0A, Bits[11:0], and nominally this ratio is 0x7D0.
3. Calculate the 32 MHz clock error as follows:
\[
\begin{equation*}
\text { Clock Error }=32 \mathrm{MHz} \times\left(1-C L K _R A T I O / 2000\right) \tag{5}
\end{equation*}
\]
4. Adjust the frequency by setting Bits[7:0] in Register 0x4D per the following equation:
CLK32M_ADJUST = Clock Error \(/ 109 \mathrm{kHz}\)
5. Write \(0 \times 0\) to Register 0x50, Bit 5 (CLK32M_CAL_EN) to reset the CLK_RATIO function.

Repeat Step 2 through Step 5 until the desired accuracy is achieved.
Write \(0 x 0\) to Register 0 x 5 F , Bit 0 and set the INT pin back to the mode desired for normal operation.

\section*{DETERMINING Cvied}

The synchronous excitation of the ADPD144RI LED emitters is provided by pulsed current sinks. A pulsed signal greatly reduces the average power requirement of the \(V_{\text {LED }}\) supply but requires that the \(\mathrm{V}_{\text {LED }}\) supply provide a high dynamic current to satisfy the pulse current. Output impedance, PCB trace resistance and parasitic inductances affect the ability to supply the instantaneous current necessary to maintain the forward voltage across the LED. The Cvied capacitor provides a local, low impedance current source that reduces the dynamic requirements on the \(V_{\text {LED }}\) supply.
A properly sized Cvied typically has a sufficient storage capacity to prevent the forward voltage on the LED from dropping less than the minimum voltage required for the maximum pulse current. To calculate the recommended minimum value for the \(\mathrm{C}_{\text {VLED }}\), use the following equation:
\[
\begin{equation*}
C_{V L E D}=\frac{t_{\text {LED_PULSE }} \times I_{F_{-P E A K}}}{V_{\text {LED_MIN }}-\left(V_{F_{-} P E A K}+0.2\right)} \tag{7}
\end{equation*}
\]
where:
\(C_{\text {VLED }}\) is the minimum size of capacitor in Farads.
\(t_{\text {LED_PULSE }}\) is the LED pulse width.
\(I_{F_{-} P E A K}\) is the maximum forward-bias current on the LED used in operating the device.
\(V_{\text {LED_MIN }}\) is the voltage from the \(\mathrm{V}_{\text {Led }}\) supply under \(\mathrm{I}_{\text {F-peak. }}\).
\(V_{F_{-} \text {PEAK }}\) is the maximum forward-bias voltage required on the LED to achieve \(\mathrm{I}_{\mathrm{E}_{-} \text {Peak. }}\)

Figure 8 shows the LED forward-bias voltage drop vs. the LED driver current settings for the integrated LED emitters. To determine the C CVIED value, determine the peak forward-bias voltage, \(\mathrm{V}_{\mathrm{F}_{-} \text {PEAK }}\) of the LED in operation. For example, the 660 nm LED requires a forward voltage (\(\mathrm{V}_{\mathrm{F}}\)) of approximately 3.5 V to drive a forward current \(\left(\mathrm{I}_{\mathrm{F}}\right)\) of 150 mA . If 150 mA is the highest power used in the design, \(\mathrm{V}_{\text {F_Peak }}=3.5 \mathrm{~V}\).

Figure 21. LED Forward-Bias Voltage Drop vs. LED Driver Current Setting for the Integrated LED Emitters

The numerator of the Cvled equation sets up the total discharge amount in coulombs from the bypass capacitor to satisfy a single programmed LED pulse at the maximum current. The denominator represents the difference between the lowest voltage from the \(\mathrm{V}_{\text {LED }}\) supply and the LED required voltage plus the 0.2 V compliance necessary for the driver.
For a typical ADPD144RI example, assume that the lowest value for the \(\mathrm{V}_{\text {LED }}\) supply is 4.0 V and that the peak current is 150 mA for the 660 nm LED (LED1). The minimum value for Clled \(^{\text {is }}\) then equal to \(1.5 \mu \mathrm{~F}\).
\[
\begin{equation*}
C_{V L E D}=\left(3 \times 10^{-6} \times 0.150\right) /(4.0-(3.5+0.2))=1.5 \mu \mathrm{~F} \tag{8}
\end{equation*}
\]

In addition, consider the effect of \(\mathrm{V}_{\text {LED }}\) output impedance and parasitic impedance from the traces. As shown in Equation 8, as the supply voltage drops close to the minimum required anode voltage, the demands on C CVLED become greater, forcing the capacitor value higher. Therefore, adding margin on CvLED is strongly recommended. It is also recommended to place C Cvied close to the VLED pin to optimize optical pulse quality.

\section*{DETERMINING THE AVERAGE LED CURRENT}

When the ADPD144RI drives an LED, the ADPD144RI drives the LED in a series of short pulses. Figure 22 shows the typical ADPD144RI configuration of a LED pulse burst sequence. In this sequence, the LED pulse width, \(\mathrm{t}_{\text {LED_pulse, }}\) is \(3 \mu \mathrm{~s}\), and the LED pulse period, tebd_period, is \(19 \mu \mathrm{~s}\). The goal of C Cled is to buffer the LED between individual pulses. In the worst case scenario, where the pulse train shown in Figure 22 is a continuous sequence of short pulses, the \(\mathrm{V}_{\text {LED }}\) supply must supply the average current. Therefore, calculate Iled_average as follows:
\[
\begin{equation*}
I_{\text {LED_AVERAGE }}=\left(t_{\text {LED_PULSE }} / t_{\text {LED_PERIOD }}\right) \times I_{\text {LED_PEAK }} \tag{9}
\end{equation*}
\]
where:
\(I_{L E D_{-} A V E R G E}\) is the average current needed, per pulse, from the \(\mathrm{V}_{\text {LED }}\) supply, and \(I_{\text {LED_AVERAGE }}\) is also the \(\mathrm{V}_{\text {Led }}\) supply current rating. \(I_{L E D _P E A K}\) is the peak current setting of the LED.
For the numbers shown in Figure 22, Iled_average \(=3 / 19 \times\) I \(_{\text {Led_peak. }}\) For typical LED timing, the average \(\mathrm{V}_{\text {led }}\) supply current is \(3 / 19 \times 250 \mathrm{~mA}=39.4 \mathrm{~mA}\), indicating that the \(\mathrm{V}_{\text {LED }}\) supply must support a dc current of 40 mA .

Figure 22. Typical Configuration of a LED Pulse Burst Sequence

\section*{CALCULATING THE TOTAL POWER CONSUMPTION}

The current consumption of the ADPD144RI depends on the user selected operating configuration, as described in the following equations.

\section*{Total Power Consumption}

To calculate the total power consumption, use the following equation:
\[
\begin{align*}
\text { Total Power }= & I_{V D D _A V G} \times I_{\text {LEDA_AVG }} \times V_{\text {LEDA }}+ \\
& I_{\text {LEDB_AVG }} \times V_{\text {LEDB }} \tag{10}
\end{align*}
\]

See the following sections for the definitions of these variables.

\section*{Average VDD Supply Current}

To calculate the average \(\mathrm{V}_{\mathrm{DD}}\) supply current, use the following equation:
\[
\begin{align*}
& I_{V D D_{-} A V G}=D R \times\left(\left(I_{A F E _A} \times t_{\text {SLOTA }}\right)+\left(I_{A F E _B} \times t_{\text {SLOTB }}\right)+Q_{\text {PROC }}\right)+ \\
& I_{\text {VDD_STANDBY }} \tag{11}
\end{align*}
\]
where:
\(D R\) is the data rate in Hz .
\(Q_{\text {PROC }}\) is an average charge associated with a processing time. \(Q_{P R O C}=0.64 \times 10^{-3} \mathrm{mC}\) for Time Slot A enabled), \(0.51 \times 10^{-3}\) mC for Time Slot B enabled, and \(0.69 \times 10^{-3} \mathrm{mC}\) for Time Slot A and Time Slot B enabled.
\(I_{V D D_{-} \text {STANDBY }}=3.5 \times 10^{-3} \mathrm{~mA}\).
\[
\begin{align*}
& I_{A F E_{-} x}(\mathrm{~mA})=8.9+\left(L E D x_{\text {PEAK }}-25\right) / 225 \tag{12}\\
& \mathrm{t}_{\text {sLoTx }}(\mathrm{sec})=\text { LEDx_OFFSET }+ \text { LEDx_PERIOD } \times \\
& \text { PULSE_COUNT } \tag{13}
\end{align*}
\]
where:
\(L E D x_{\text {PEAK }}\) is the coarse LED current setting in Register 0x23 and Register 0x24, Bits[3:0], respectively, expressed in mA. \(L E D x_{-} O F F S E T\) is the pulse start time offset expressed in seconds.
\(L E D x_{-} P E R I O D\) is the pulse period expressed in seconds. PULSE_COUNT is the number of pulses.

Note that if either Time Slot A or Time Slot B is disabled, \(\mathrm{I}_{\text {AFE- }}=0\) for that respective time slot.

\section*{Average \(V_{\text {LedA }}\) Supply Current}

To calculate the average \(V_{\text {LED }}\) supply current (\(\mathrm{I}_{\text {LEDA_AVG }}\)) for Time Slot A, use the following equation:
\[
\begin{align*}
& I_{L E D A _A V G}=\left(S L O T A _L E D _W I D T H / 1 \times 10^{6}\right) \times L^{2} D A_{\text {PEAK }} \times \\
& D R \times P U L S E _C O U N T \tag{14}
\end{align*}
\]
where:
SLOTA_LED_WIDTH is the width of the LED pulse assigned to Time Slot A.
\(L^{2} D A_{\text {peak }}\) is LED \(1_{\text {peak }}\) or LED2 peak, , expressed in mA , for whichever LED is selected for Time Slot A.

\section*{Average \(V_{\text {LedB }}\) Supply Current}

To calculate the average \(V_{\text {LED }}\) supply current (\(\mathrm{I}_{\text {LEDB_AVG }}\)) for Time Slot B , use the following equation:
\[
\begin{align*}
& I_{L E D B _A V G}=\left(S L O T B _L E D _W I D T H / 1 \times 10^{6}\right) \times L E D B_{\text {PEAK }} \times \\
& D R \times P U L S E _C O U N T \tag{15}
\end{align*}
\]
where:
SLOTB_LED_WIDTH is the width of the LED pulse assigned to Time Slot B.
\(L E D B_{\text {PEAK }}\) is LED \(1_{\text {PEAK }}\) or LED \(2_{\text {PEAK }}\), expressed in mA , for whichever LED is selected for Time Slot B.

\section*{OPTIMIZING SNR PER WATT}

The ADPD144RI offers a variety of parameters that the user can adjust to achieve the best signal. One of the key goals of system performance is to obtain the best system SNR for the lowest total power, which is often referred to as optimizing SNR per watt. In systems where SNR is the primary design goal and power is a secondary concern, there may be a configuration that achieves the same SNR for an overall lower system power.

\section*{Optimizing for Peak SNR}

The first step in optimizing for peak SNR is to find a TIA gain and LED level that gives the best performance where the number of LED pulses remains constant. It is important to note that the SNR improves as a square root of the number of pulses averaged together, whereas LED power consumed is directly proportional to the number of LED pulses. For every doubling of the LED pulse count, there is a doubling of the LED power consumed and a 3 dB SNR improvement. As a result, avoid any change in the gain configuration that provides less than 3 dB of improvement for a \(2 \times\) power penalty. Any TIA gain configuration that provides more than 3 dB of improvement for a \(2 \times\) power penalty is recommended. If peak SNR is the goal and there is no issue saturating the photodiode with LED current at any gain, the 50,000 TIA gain setting is an optimal choice. After the SNR per pulse per channel is optimized, the user can then increase the number of pulses to achieve the desired system SNR.

\section*{Optimizing SNR per Watt in a Signal Limited System}

In practice, optimizing for peak SNR is not always practical. One scenario in which the PPG signal has a poor SNR is the signal limited regime. In this scenario, the LED current reaches an upper limit before the desired dc return level is achieved.
Tuning in this case starts where the peak SNR tuning stops. The starting point is nominally a 50,000 gain, as long as the lowest LED current setting of 8 mA does not saturate the photodiode and the 50,000 gain provides enough protection against intense background light. In these cases, use a 25,000 gain as the starting point.
The goal of the tuning process is to bring the dc return signal to a specific ADC range, such as \(50 \%\) or \(60 \%\). The ADC range choice is a function of the margin of headroom needed to prevent saturation as the dc level fluctuates over time. The SNR of the PPG waveform is always some percentage of the dc level. If the target level cannot be achieved at the base gain, increase the gain and repeat the procedure. The tuning system may need to place an upper limit on the gain to prevent saturation from ambient signals.

\section*{Tuning the Pulse Count}

After the LED peak current and TIA gain are optimized, increasing the number of pulses per sample increases the SNR by the square root of the number of pulses. There are two ways to increase the pulse count. The pulse count registers (Register 0x31, Bits[15:8], and Register 0x36, Bits [15:8]) change the number of pulses per internal sample. Register 0x15, Bits[6:4] and Bits[10:8], controls the number of internal samples that are averaged together before the data is sent to the output. Therefore, the number of pulses per sample is the pulse count register multiplied by the number of subsequent samples being averaged. In general, the internal sampling rate increases as the number of internal sample averages increase to maintain the desired output data rate. The SNR per watt is most optimal with pulse count values of 16 or less. Above pulse count values of 16, the square root relationship does not hold in the pulse count register. However, this relationship continues to hold when averaged between samples using Register 0x15.

Note that increasing the LED peak current increases SNR almost directly proportional to LED power, whereas increasing the number of pulses by a factor of n puLSe results in only a nominal \(\sqrt{ }\) (nPULSE) increase in SNR.
When using the sample sum and average function (Register 0x15), the output data rate decreases by the number of summed samples. To maintain a static output data rate, increase the sample frequency (Register 0x12) by the same factor as that selected in Register 0x15. For example, for a 100 Hz output data rate and a sample sum and average of four samples, set the sample frequency to 400 Hz .

\section*{TIA ADC Mode}

The device can be placed in TIA ADC mode, which ties the TIA directly to the ADC, bypassing the analog ambient light rejection block. TIA ADC mode provides a relative measure of the amount of background light present at the input of the device. This mode only measures dc light and does not measure the light returned from the LED pulse. To enter TIA ADC mode, write \(0 \times B 065\) to Register \(0 \times 45\) and write \(0 \times 0000\) to the ADC offset registers, Register 0x18 through Register 0x21. Increasing light causes a decrease in the output values because the TIA is an inverting stage. The data registers then read a relative amount of dc light. On this device, use TIA ADC mode only as a relative measurement. This test looks for devices that have a high resistance between inputs due to solder flux because this resistance manifests itself as an elevated dc current.

\section*{MECHANICAL CONSIDERATIONS FOR COVERING THE ADPD144RI}

In some applications, it may be necessary to cover the ADPD144RI to protect the device from moisture. The ADPD144RI is designed with this necessity in mind. The unique cross section of the device, as shown in Figure 11, prevents light from going directly from the LED to the detector even with a reasonably thick window. The window thickness must be less than 1 mm .

\section*{SAMPLE SETUP FILE SpO2}

The following sequence of register writes configures the device for optimal reading of the SpO 2 levels in reflectance mode using the integrated 660 nm (LED1) and 880 nm (LED2) LED emitters. In this setup, all four photodiodes are connected to Channel 3 and Channel 4 for best SNR. Eight LED pulses per slot and eight samples per average. The optical data rate is set to 100 data reads per second for Time Slot A and Time Slot B. Unwritten registers are set to their default values at power up and stay that way unless written to.

Figure 23 shows the reflectance PPG taken when using the example setup file detailed in Table 12 programmed through Analog Devices, Inc., Wavetool software available on the ADPD144RI product page.

Figure 23. Reflectance PPG Taken Using the Example SpO2 Setup File (see Table 12) Programmed Through Analog Devices Wavetool Software

Table 12. Example SpO2 Setup File
\begin{tabular}{|c|c|c|c|}
\hline Register & Value & Register Name & Description \\
\hline 0x10 & 0x0001 & Mode & Set this register to 0001 to write to registers. \\
\hline \(0 \times 02\) & 0x0005 & INT_IO_CTL & Enables the interrupt drive, low active. \\
\hline \(0 \times 11\) & 0x30A9 & SLOT_EN & If FIFO full drop package, Time Slot \(\mathrm{A}=\) sample mode, Time Slot \(\mathrm{B}=\) sample mode, Time Slot \(\mathrm{A}=\) 32-bit sum, and Time Slot \(B=32\)-bit sum. \\
\hline \(0 \times 12\) & 0x000A & F_SAMPLE & Sample rate \(=800 \mathrm{~Hz}\). \\
\hline 0x14 & \(0 \times 0116\) & PD_LED_SELECT & PD1, PD2, PD3, and PD4 into Channel 3 and Channel 4, Time Slot A and Time Slot B active, pulse LED2 Time Slot A, and pulse LED1 Time Slot B. See Figure 14. \\
\hline \(0 \times 15\) & 0x0330 & NUM_AVG & Average samples for Time Slot \(\mathrm{A}=8\), and average samples for Time Slot \(\mathrm{B}=8\). \\
\hline \(0 \times 18\) & 0x3FFF & SLOTA_CH1_OFFSET & 16,383 not used. \\
\hline \(0 \times 19\) & \(0 \times 3 F F F\) & SLOTA_CH2_OFFSET & 16,383 not used. \\
\hline \(0 \times 1 \mathrm{~A}\) & 0x1FF0 & SLOTA_CH3_OFFSET & 8,176 half scale. \\
\hline \(0 \times 1 \mathrm{~B}\) & 0x1FF0 & SLOTA_CH4_OFFSET & 8,176 half scale. \\
\hline \(0 \times 1 \mathrm{E}\) & 0x3FFF & SLOTB_CH1_OFFSET & 16,383 not used. \\
\hline \(0 \times 1 \mathrm{~F}\) & 0x3FFF & SLOTB_CH2_OFFSET & 16,383 not used. \\
\hline \(0 \times 20\) & 0x1FF0 & SLOTB_CH3_OFFSET & 8,176 half scale. \\
\hline \(0 \times 21\) & 0x1FF0 & SLOTB_CH4_OFFSET & 8,176 half scale. \\
\hline \(0 \times 23\) & 0x3005 & ILED1_COARSE & Scale 100\% and driver current \(=100 \mathrm{~mA}\). \\
\hline \(0 \times 24\) & \(0 \times 3007\) & ILED2_COARSE & Scale 100\% and driver current \(=130 \mathrm{~mA}\). \\
\hline \(0 \times 25\) & \(0 \times 0207\) & ILED_FINE & LED1 \(=593.75 \mathrm{~ns}\) and LED2 \(=593.75 \mathrm{~ns}\). \\
\hline \(0 \times 30\) & \(0 \times 0319\) & SLOTA_LEDMODE & Pulse Offset \(\mathrm{A}=25 \mu \mathrm{~s}\) and pulse width \(=3 \mu \mathrm{~s}\). \\
\hline 0x31 & 0x0813 & SLOTA_NUMPULSES & Pulse Period \(\mathrm{A}=19 \mu\) and Pulse Count \(\mathrm{A}=8\). \\
\hline 0x35 & \(0 \times 0319\) & SLOTB_LEDMODE & Pulse Offset \(B=25 \mu \mathrm{~s}\) and pulse width \(=3 \mu \mathrm{~s}\). \\
\hline \(0 \times 36\) & 0x0813 & SLOTB_NUMPULSES & Pulse Period \(B=19 \mu\) and Pulse Count \(A=8\). \\
\hline 0x39 & 0x21F3 & SLOTA_AFEMODE & Time Slot A AFE fine offset \(=593.75 \mathrm{~ns}(19 \times 31.25 \mathrm{~ns})\), AFE offset \(=15 \mu \mathrm{~s}\), and AFE width \(=4 \mu \mathrm{~s}\). \\
\hline 0x3B & \(0 \times 21 \mathrm{~F} 3\) & SLOTB_AFEMODE & Time Slot A AFE fine offset \(=593.75 \mathrm{~ns}(19 \times 31.25 \mathrm{~ns})\), AFE offset \(=15 \mu \mathrm{~s}\), and AFE width \(=4 \mu \mathrm{~s}\). \\
\hline 0x42 & 0x1C36 & SLOTA_GAIN & Time Slot A TIA \(=50,000\), band-pass filter \(=390 \mathrm{kHz} / 100 \mathrm{kHz}, \mathrm{VREF}=1.265 \mathrm{~V}\), and integrator \(=\) 200,000/6.33 pF. \\
\hline 0x44 & 0x1C36 & SLOTB_GAIN & Time Slot B TIA \(=50,000\), band-pass filter \(=390 \mathrm{kHz} / 100 \mathrm{kHz}\), VREF \(=1.265 \mathrm{~V}\), and integrator \(=\) 200,000/6.33 pF. \\
\hline 0x4E & 0x0040 & ADC_TIMING & The ADC clock only pulses during conversion. \\
\hline 0x10 & 0x0002 & Mode & Set this register to 0002 to run the device. \\
\hline
\end{tabular}

\section*{REGISTER LISTING}

Table 13. Register Map

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Addr} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Bits} & Bit 15 & Bit 14 & Bit \(13 \quad\) Bit 12 & Bit 11 & Bit 10 & Bit 9 & Bit 8 & \multirow[b]{2}{*}{Reset} & \multirow[b]{2}{*}{R/W \({ }^{1}\)} \\
\hline & & & Bit 7 & Bit 6 & Bit \(5 \times 1\) & Bit 3 & Bit 2 & Bit 1 & Bit 0 & & \\
\hline \multirow[t]{2}{*}{0x34} & \multirow[t]{2}{*}{LED_DISABLE} & [15:8] & \multicolumn{5}{|c|}{Reserved} & \begin{tabular}{l}
SLOTB \\
LED_DIS
\end{tabular} & SLOTA LED_DIS & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & \multicolumn{7}{|c|}{Reserved} & & \\
\hline \multirow[t]{2}{*}{0x35} & \multirow[t]{2}{*}{SLOTB LEDMODE} & [15:8] & \multicolumn{7}{|c|}{SLOTB_LEDMODE[15:8]} & \multirow[t]{2}{*}{0x0320} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & \multicolumn{7}{|c|}{SLOTB_LEDMODE[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x36} & \multirow[t]{2}{*}{SLOTB NUMPULSES} & [15:8] & \multicolumn{7}{|c|}{SLOTB_NUMPULSES} & \multirow[t]{2}{*}{0x0818} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & \multicolumn{7}{|c|}{Reserved (write 0x13)} & & \\
\hline \multirow[t]{2}{*}{0x38} & \multirow[t]{2}{*}{EXT_SYNC_ STARTUP} & [15:8] & Reserved & EXT_SYNC_ENA & \multicolumn{5}{|c|}{Reserved} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & \multicolumn{7}{|c|}{Reserved} & & \\
\hline \multirow[t]{2}{*}{0x39} & \multirow[t]{2}{*}{SLOTA_ AFEMODE} & [15:8] & \multicolumn{7}{|c|}{SLOTA_AFEMODE[15:8]} & \multirow[t]{2}{*}{0x22FC} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & \multicolumn{7}{|c|}{SLOTA_AFEMODE[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x3B} & \multirow[t]{2}{*}{SLOTB AFEMODE} & [15:8] & \multicolumn{7}{|c|}{SLOTB_AFEMODE[15:8]} & \multirow[t]{2}{*}{0x22FC} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & \multicolumn{7}{|c|}{SLOTB_AFEMODE[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x42} & \multirow[t]{2}{*}{SLOTA_GAIN} & [15:8] & \multicolumn{7}{|c|}{Reserved} & \multirow[t]{2}{*}{0x1C38} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & Reserved & \[
\begin{aligned}
& \text { SLOTA_TIA_ } \\
& \text { IND_EN }
\end{aligned}
\] & Reserved (write 0x03) & \multicolumn{2}{|r|}{Reserved (write 0x1)} & \multicolumn{2}{|l|}{SLOTA_TIA_GAIN} & & \\
\hline \multirow[t]{2}{*}{0×43} & \multirow[t]{2}{*}{SLOTA_AFE_CON} & [15:8] & \multicolumn{7}{|c|}{SLOTA_AFE_CON[15:8]} & \multirow[t]{2}{*}{0xADA5} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & \multicolumn{7}{|c|}{SLOTA_AFE_CON[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x44} & \multirow[t]{2}{*}{SLOTB_GAIN} & [15:8] & \multicolumn{7}{|c|}{Reserved} & \multirow[t]{2}{*}{0x1C38} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & Reserved & \[
\begin{aligned}
& \text { SLOTB_TIA_ } \\
& \text { IND_EN }
\end{aligned}
\] & Reserved (write 0x03) & \multicolumn{2}{|l|}{Reserved (write 0x1)} & \multicolumn{2}{|l|}{SLOTB_TIA_GAIN} & & \\
\hline \multirow[t]{2}{*}{0x45} & \multirow[t]{2}{*}{SLOTB_AFE_CON} & [15:8] & \multicolumn{7}{|c|}{SLOTB_AFE_CON[15:8]} & \multirow[t]{2}{*}{0xADA5} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & \multicolumn{7}{|c|}{SLOTB_AFE_CON[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x4B} & \multirow[t]{2}{*}{SAMPLE_CLK} & [15:8] & \multicolumn{7}{|c|}{Reserved} & \multirow[t]{2}{*}{0x2612} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & \[
\begin{aligned}
& \text { CLK32K_ } \\
& \text { EN }
\end{aligned}
\] & Reserved & \multicolumn{5}{|c|}{CLK32K_ADJUST} & & \\
\hline \multirow[t]{2}{*}{0x4D} & \multirow[t]{2}{*}{CLK32M_ADJUST} & [15:8] & \multicolumn{7}{|c|}{Reserved} & \multirow[t]{2}{*}{0x425E} & \multirow[t]{2}{*}{R/W} \\
\hline & & [7:0] & & & CLK32M_A & JJUST & & & & & \\
\hline 0x4E & ADC_TIMING & [15:8] & & & ADC_TIMI & [15:8] & & & & 0x0060 & R/W \\
\hline & & [7:0] & & & ADC_TIM & 7:0] & & & & & \\
\hline 0x4F & EXT_SYNC_SEL & [15:8] & & & Reser & & & & & 0x2090 & R/W \\
\hline & & [7:0] & & & Reserved & & \[
\begin{aligned}
& \text { EXT__ }_{\text {SYNC_SEL }}
\end{aligned}
\] & INT_IE & Reserved & & \\
\hline 0x50 & CLK32M_CAL_EN & [15:8] & & & Reser & & & & & 0x0000 & R/W \\
\hline & & [7:0] & & Reserved & \[
\begin{aligned}
& \text { CLK32M_ } \\
& \text { CAL_EN }
\end{aligned}
\] & & Reserv & & & & \\
\hline 0x55 & TIA_INDEP_GAIN & [15:8] & & Rese & rved & SLOTB & TIA_GAIN_4 & SLOTB & A_GAIN_3 & 0x0000 & R/W \\
\hline & & [7:0] & SLOTB & B_TIA_GAIN_2 & SLOTA_TIA_GAIN_4 & SLOTA & TIA_GAIN_3 & SLOTA & A_GAIN_2 & & \\
\hline 0x5F & DATA_ACCESS_ & [15:8] & & & Reser & & & & & 0x0000 & R/W \\
\hline & CTL & [7:0] & & & Reserved & & & & FIFO ACCESS ENA & & \\
\hline 0x60 & FIFO_ACCESS & [15:8] & & & FIFO_DAT & [15:8] & & & & 0x0000 & R \\
\hline & & [7:0] & & & FIFO_DA & [7:0] & & & & & \\
\hline 0x64 & SLOTA_PD1_16BIT & [15:8] & & & SLOTA_PD1_ & BIT [15:8] & & & & 0x0000 & R \\
\hline & & [7:0] & & & SLOTA_PD1_ & 6BIT [7:0] & & & & & \\
\hline 0x65 & SLOTA_PD2_16BIT & [15:8] & & & SLOTA_PD2_ & BIT [15:8] & & & & 0x0000 & R \\
\hline & & [7:0] & & & SLOTA_PD2 & 6BIT [7:0] & & & & & \\
\hline 0x66 & SLOTA_PD3_16BIT & [15:8] & & & SLOTA_PD3_ & BIT [15:8] & & & & 0x0000 & R \\
\hline & & [7:0] & & & SLOTA_PD3 & 6BIT [7:0] & & & & & \\
\hline 0x67 & SLOTA_PD4_16BIT & [15:8] & & & SLOTA_PD4_ & BIT [15:8] & & & & 0x0000 & R \\
\hline & & [7:0] & & & SLOTA_PD4_ & 6BIT [7:0] & & & & & \\
\hline 0x68 & SLOTB_PD1_16BIT & [15:8] & & & SLOTB_PD1_ & BIT [15:8] & & & & 0x0000 & R \\
\hline & & [7:0] & & & SLOTB_PD1_ & 6BIT [7:0] & & & & & \\
\hline 0x69 & SLOTB_PD2_16BIT & [15:8] & & & SLOTB_PD2_ & BIT [15:8] & & & & 0x0000 & R \\
\hline & & [7:0] & & & SLOTB_PD2_ & 6BIT [7:0] & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Addr} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Bits} & Bit 15 & Bit 14 & Bit 13 & Bit 12 & Bit 11 & Bit 10 & Bit 9 & Bit 8 & \multirow[b]{2}{*}{Reset} & \multirow[b]{2}{*}{R/W \({ }^{1}\)} \\
\hline & & & Bit 7 & Bit 6 & Bit 5 & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 & & \\
\hline \multirow[t]{2}{*}{0x6A} & \multirow[t]{2}{*}{SLOTB_PD3_16BIT} & [15:8] & \multicolumn{8}{|c|}{SLOTB_PD3_16BIT [15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTB_PD3_16BIT [7:0]} & & \\
\hline \multirow[t]{2}{*}{0x6B} & \multirow[t]{2}{*}{SLOTB_PD4_16BIT} & [15:8] & \multicolumn{8}{|c|}{SLOTB_PD4_16BIT [15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTB_PD4_16BIT [7:0]} & & \\
\hline \multirow[t]{2}{*}{0x70} & \multirow[t]{2}{*}{A_PD1_LOW} & [15:8] & \multicolumn{8}{|c|}{SLOTA_PD1_LOW[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTA_PD1_LOW[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x71} & \multirow[t]{2}{*}{A_PD2_LOW} & [15:8] & \multicolumn{8}{|c|}{SLOTA_PD2_LOW[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTA_PD2_LOW[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x72} & \multirow[t]{2}{*}{A_PD3_LOW} & [15:8] & \multicolumn{8}{|c|}{SLOTA_PD3_LOW[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTA_PD3_LOW[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x73} & \multirow[t]{2}{*}{A_PD4_LOW} & [15:8] & \multicolumn{8}{|c|}{SLOTA_PD4_LOW[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTA_PD4_LOW[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x74} & \multirow[t]{2}{*}{A_PD1_HIGH} & [15:8] & \multicolumn{8}{|c|}{SLOTA_PD1_HIGH[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTA_PD1_HIGH[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x75} & \multirow[t]{2}{*}{A_PD2_HIGH} & [15:8] & \multicolumn{8}{|c|}{SLOTA_PD2_HIGH[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTA_PD2_HIGH[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x76} & \multirow[t]{2}{*}{A_PD3_HIGH} & [15:8] & \multicolumn{8}{|c|}{SLOTA_PD3_HIGH[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTA_PD3_HIGH[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x77} & \multirow[t]{2}{*}{A_PD4_HIGH} & [15:8] & \multicolumn{8}{|c|}{SLOTA_PD4_HIGH[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTA_PD4_HIGH[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x78} & \multirow[t]{2}{*}{B_PD1_LOW} & [15:8] & & & & OTB_PD1 & W[15:8 & & & & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & & & & OTB_PD & OW[7:0] & & & & & \\
\hline \multirow[t]{2}{*}{0x79} & \multirow[t]{2}{*}{B_PD2_LOW} & [15:8] & \multicolumn{8}{|c|}{SLOTB_PD2_LOW[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTB_PD2_LOW[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x7A} & \multirow[t]{2}{*}{B_PD3_LOW} & [15:8] & & & & OTB_PD3 & W[15:8 & & & & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTB_PD3_LOW[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x7B} & \multirow[t]{2}{*}{B_PD4_LOW} & [15:8] & & & & OTB_PD & W[15:8 & & & & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{\multirow[b]{2}{*}{SLOTB PD1 HIGH[15:8]}} & & \\
\hline \multirow[t]{2}{*}{0x7C} & \multirow[t]{2}{*}{B_PD1_HIGH} & [15:8] & & & & & & & & & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTB_PD1_HIGH[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x7D} & \multirow[t]{2}{*}{B_PD2_HIGH} & [15:8] & & & & OTB_PD2 & GH[15:8 & & & & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & & & & & IGH[7:0] & & & & & \\
\hline \multirow[t]{2}{*}{0x7E} & \multirow[t]{2}{*}{B_PD3_HIGH} & [15:8] & \multicolumn{8}{|c|}{SLOTB_PD3_HIGH[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTB_PD3_HIGH[7:0]} & & \\
\hline \multirow[t]{2}{*}{0x7F} & \multirow[t]{2}{*}{B_PD4_HIGH} & [15:8] & \multicolumn{8}{|c|}{SLOTB_PD4_HIGH[15:8]} & \multirow[t]{2}{*}{0x0000} & \multirow[t]{2}{*}{R} \\
\hline & & [7:0] & \multicolumn{8}{|c|}{SLOTB_PD4_HIGH[7:0]} & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) RW1C means write 1 to clear.
}

\section*{LED CONTROL REGISTERS}

Table 14. LED Control Registers
\begin{tabular}{l|l|l|l|l|l}
\hline \multirow{3}{*}{\begin{tabular}{ll}
Address \\
Dit
\end{tabular}} & \begin{tabular}{l}
Default \\
Value
\end{tabular} & Access & Name & Description
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Address & Data Bit & Default Value & Access & Name & Description \\
\hline \multirow[t]{5}{*}{0x24} & [15:14] & 0x0 & R/W & Reserved & \\
\hline & 13 & 0x1 & R/W & ILED2_SCALE & \begin{tabular}{l}
LED2 current scale factor. \\
1: 100\% strength. \\
0: 40\% strength (recommended operation setting). \\
LED2 Current Scale \(=0.4+0.6 \times(\) Register 0x24, Bit 13)
\end{tabular} \\
\hline & 12 & 0x1 & R/W & Reserved & \\
\hline & [11:4] & 0x0 & R/W & Reserved & Write 0x03. \\
\hline & [3:0] & 0x0 & R/W & ILED2_COARSE & \begin{tabular}{l}
LED2 coarse current setting. Coarse current sink target value of LED2 in standard operation. See Register 0x23, Bits[3:0] for values.
\[
L E D 2_{\text {PEAK }}=L E D 2_{\text {COARSE }} \times \text { LED2 }_{\text {FINE }} \times L E D 2_{\text {SCALE }}
\] \\
where: \\
LED2 Peak is the LED2 peak target value (mA). \\
LED2 \(_{\text {COARSE }}=28+15.5 \times(\) Register 0x24, Bits[3:0] \()\). \\
LED2 \(_{\text {FINE }}=0.71+0.024 \times\) (Register 0x25, Bits[10:6]). \\
LED2 \({ }_{\text {SCALE }}=0.4+0.6 \times(\) Register 0x24, Bit 13 \()\).
\end{tabular} \\
\hline \multirow[t]{4}{*}{0x25} & [15:11] & 0xC & R/W & Reserved & \\
\hline & [10:6] & 0xC & R/W & ILED2_FINE & LED2 fine adjust. Current adjust multiplier for LED2. LED2 Fine Adjust \(=0.71+0.024 \times(\) Register 0×25, Bits[10:6]) See Register \(0 \times 24\), Bits[3:0], for the full LED2 formula. \\
\hline & 5 & 0x0 & R/W & Reserved & \\
\hline & [4:0] & 0xC & R/W & ILED1_FINE & LEDX1 fine adjust. Current adjust multiplier for LEDX1. LEDX1 Fine Adjust \(=0.71+0.024 \times\) (Register 0x25, Bits[4:0]) See Register 0x23, Bits[3:0], for the full LEDX1 formula. \\
\hline 0x30 & [15:0] & 0x0320 & R/W & SLOTA_LEDMODE & LED configuration for Time Slot A. Recommended setting: write 0x0319. \\
\hline \multirow[t]{2}{*}{0x31} & [15:8] & 0x08 & R/W & SLOTA_NUMPULSES & LED Time Slot A pulse count. nA: number of LED pulses in Time Slot A, typically LEDX1. A setting of six pulses (0x06) is typical. \\
\hline & [7:0] & 0x18 & R/W & Reserved (write 0x13) & Write 0x13. \\
\hline \multirow[t]{4}{*}{0x34} & [15:10] & 0x00 & R/W & Reserved & \\
\hline & 9 & 0x0 & R/W & SLOTB_LED_DIS & \begin{tabular}{l}
Time Slot B LED disable. 1: disables the LED that is assigned to Time Slot B. Register 0x34 keeps the drivers active and prevents them from pulsing current to the LEDs. Disabling both LEDs via this register is often used to measure the dark level. \\
Use Register 0x11 instead to enable or disable the actual time slot usage and not the LED only.
\end{tabular} \\
\hline & 8 & 0x0 & R/W & SLOTA_LED_DIS & Time Slot A LED disable. 1: disables the LED that is assigned to Time Slot A. Use Register 0x11 instead to enable or disable the actual time slot usage and not the LED only. \\
\hline & [7:0] & 0x00 & R/W & Reserved & \\
\hline 0x35 & [15:0] & 0x0320 & R/W & SLOTB_LEDMODE & LED configuration for Time Slot B. Recommended setting: write 0x0319. \\
\hline \multirow[t]{2}{*}{0x36} & [15:8] & 0x08 & R/W & SLOTB_NUMPULSES & LED Time Slot B pulse count. nв: number of LED pulses in Time Slot B, typically LED2. A setting of six pulses (0x06) is typical. \\
\hline & [7:0] & 0x18 & R/W & Reserved (write 0x13) & Write 0x13. \\
\hline
\end{tabular}

\section*{AFE CONFIGURATION REGISTERS}

Table 15. AFE Configuration Registers, Time Slot A
\begin{tabular}{|c|c|c|c|c|c|}
\hline Address & Data Bit & Default Value & Access & Name & Description \\
\hline 0x39 & [15:0] & 0x22FC & R/W & SLOTA_AFEMODE & AFE configuration for Time Slot A. Recommended setting: write 0x21F4. \\
\hline \multirow[t]{5}{*}{0x42} & [15:7] & 0x038 & R/W & Reserved & \\
\hline & 6 & 0x0 & R/W & SLOTA_TIA_IND_EN & \begin{tabular}{l}
Enable Time Slot A TIA gain individual settings. When this bit is enabled, Channel 1 receives the TIA gain from Register 0×42, Bits[1:0], and Channel 2 to Channel 4 receive the settings from Register 0x55, Bits[5:0]. 0 : disable TIA gain individual setting. \\
1: enable TIA gain individual setting.
\end{tabular} \\
\hline & [5:4] & 0x3 & R/W & Reserved & Write 0x03. \\
\hline & [3:2] & 0x2 & R/W & Reserved & Write 0x1. \\
\hline & [1:0] & 0x0 & R/W & SLOTA_TIA_GAIN & TIA gain for Time Slot A. When SLOTA_TIA_IND_EN is enabled, this value is for Time Slot A Channel 1 TIA gain. When SLOTA_TIA_IND_EN is disabled, it is for all four Time Slot A channel TIA gain settings.
\[
\begin{aligned}
& 0: 200 \mathrm{k} \Omega . \\
& 1: 100 \mathrm{k} \Omega . \\
& \text { 2: } 50 \mathrm{k} \Omega . \\
& 3: 25 \mathrm{k} \Omega .
\end{aligned}
\] \\
\hline 0x43 & [15:0] & 0xADA5 & R/W & SLOTA_AFE_CON & \begin{tabular}{l}
AFE connection in Time Slot A. 0xADA5: analog full path mode. 0xB065: TIA ADC mode. \\
Others: reserved.
\end{tabular} \\
\hline \multirow[t]{6}{*}{0x55} & [15:12] & 0x0 & R/W & Reserved & \\
\hline & [11:10] & 0x0 & R/W & SLOTB_TIA_GAIN_4 & TIA gain for Time Slot B Channel 4.
\[
\begin{aligned}
& 0: 200 \mathrm{k} \Omega . \\
& 1: 100 \mathrm{k} \Omega . \\
& \text { 2: } 50 \mathrm{k} \Omega . \\
& 3: 25 \mathrm{k} \Omega .
\end{aligned}
\] \\
\hline & [9:8] & 0x0 & R/W & SLOTB_TIA_GAIN_3 & TIA gain for Time Slot B Channel 3.
\[
\begin{aligned}
& 0: 200 \mathrm{k} \Omega . \\
& \text { 1: } 100 \mathrm{k} \Omega . \\
& \text { 2: } 50 \mathrm{k} \Omega . \\
& 3: 25 \mathrm{k} \Omega .
\end{aligned}
\] \\
\hline & [7:6] & 0x0 & R/W & SLOTB_TIA_GAIN_2 & TIA gain for Time Slot B Channel 2.
\[
\begin{aligned}
& 0: 200 \mathrm{k} \Omega . \\
& \text { 1: } 100 \mathrm{k} \Omega . \\
& \text { 2: } 50 \mathrm{k} \Omega . \\
& 3: 25 \mathrm{k} \Omega .
\end{aligned}
\] \\
\hline & [5:4] & 0x0 & R/W & SLOTA_TIA_GAIN_4 & TIA gain for Time Slot A Channel 4.
\[
\begin{aligned}
& \text { 0: } 200 \mathrm{k} \Omega . \\
& \text { 1: } 100 \mathrm{k} \Omega . \\
& \text { 2: } 50 \mathrm{k} \Omega . \\
& 3: 25 \mathrm{k} \Omega .
\end{aligned}
\] \\
\hline & [3:2] & 0x0 & R/W & SLOTA_TIA_GAIN_3 & TIA gain for Time Slot A Channel 3.
\[
\begin{aligned}
& 0: 200 \mathrm{k} \Omega . \\
& \text { 1: } 100 \mathrm{k} \Omega . \\
& \text { 2: } 50 \mathrm{k} \Omega . \\
& \text { 3: } 25 \mathrm{k} \Omega .
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l|l}
\hline Address & \begin{tabular}{l}
Data \\
Bit
\end{tabular} & \begin{tabular}{l}
Default \\
Value
\end{tabular} & Access & Name & Description \\
\hline & {\([1: 0]\)} & \(0 \times 0\) & R/W & SLOTA_TIA_GAIN_2 & TIA gain for Time Slot A Channel 2. \\
& & & & & \(0: 200 \mathrm{k} \Omega\). \\
& & & & & \(1: 100 \mathrm{k} \Omega\). \\
& & & & & \(2: 50 \mathrm{k} \Omega\). \\
& & & & & \\
& & & & \\
\hline
\end{tabular}

Table 16. AFE Configuration Registers, Time Slot B
\begin{tabular}{l|l|l|l|l|l}
\hline \multirow{3}{*}{ Address } & \begin{tabular}{l}
Data \\
Bit
\end{tabular} & \begin{tabular}{l}
Default \\
Value
\end{tabular} & Access & Name & Description
\end{tabular}

\section*{SYSTEM REGISTERS}

Table 17. System Registers
\begin{tabular}{|c|c|c|c|c|c|}
\hline Address & \begin{tabular}{l}
Data \\
Bit
\end{tabular} & Default & Access & Name & Description \\
\hline \multirow[t]{5}{*}{0x00} & [15:8] & 0x00 & R/W & FIFO_SAMPLES & FIFO status. Number of available bytes to be read from the FIFO. When comparing this to the FIFO length threshold (Register 0x06, Bits[13:8]), note that the FIFO status value is in bytes and the FIFO length threshold is in words, where one word = two bytes. With the FIFO_ACCESS_ENA bit set, write 1 to Bit 15 of FIFO_SAMPLES to clear the contents of the FIFO. \\
\hline & 7 & 0x00 & R/W & Reserved & \\
\hline & 6 & 0x00 & R/W & SLOTB_INT & Time Slot B interrupt. Describes the type of interrupt event. A 1 indicates an interrupt of a particular event type has occurred. Write a 1 to clear the corresponding interrupt. After clearing the interrupt, the register goes to 0 . Writing a 0 to this register has no effect. \\
\hline & 5 & 0x00 & R/W & SLOTA_INT & Time Slot A interrupt. Describes the type of interrupt event. A 1 indicates an interrupt of a particular event type has occurred. Write a 1 to clear the corresponding interrupt. After clearing the interrupt, the register goes to 0 . Writing a 0 to this register has no effect. \\
\hline & [4:0] & 0x00 & R/W & Reserved & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Address & Data Bit & Default & Access & Name & Description \\
\hline \multirow[t]{6}{*}{0x01} & [15:9] & 0x00 & R/W & Reserved & \\
\hline & 8 & 0x00 & R/W & FIFO_INT_MASK & Sends an interrupt when the FIFO data length has exceeded the FIFO length threshold in Register 0x06, Bits[13:8]. A 0 enables the interrupt. \\
\hline & 7 & 0x1 & R/W & Reserved & \\
\hline & 6 & 0x1 & R/W & SLOTB_INT_MASK & Sends an interrupt on the Time Slot B sample. A 0 enables the interrupt. \\
\hline & 5 & 0x1 & R/W & SLOTA_INT_MASK & Sends an interrupt on the Time Slot A sample. A 0 enables the interrupt. \\
\hline & [4:0] & 0x1F & R/W & Reserved & \\
\hline \multirow[t]{4}{*}{0x02} & [15:3] & 0x0000 & R/W & Reserved & \\
\hline & 2 & 0x0 & R/W & INT_ENA & \begin{tabular}{l}
INT enable. \\
0 : disable the INT pin. The INT pin floats regardless of interrupt status. The status register (Address 0x00) remains active. \\
1: enable the INT pin.
\end{tabular} \\
\hline & 1 & 0x0 & R/W & INT_DRV & \begin{tabular}{l}
INT drive. \\
0 : the INT pin is always driven. \\
1: the INT pin is driven when the interrupt is asserted. Otherwise, it is left floating and requires a pull-up or pull-down resistor, depending on polarity (operates as open-drain). Use this setting if multiple devices need to share the INT pin.
\end{tabular} \\
\hline & 0 & 0x0 & R/W & INT_POL & \begin{tabular}{l}
INT polarity. \\
0 : the INT pin is active high. \\
1: the INT pin is active low.
\end{tabular} \\
\hline \multirow[t]{3}{*}{0x06} & [15:14] & 0x0 & R/W & Reserved & \\
\hline & [13:8] & 0x00 & R/W & FIFO_THRESH & FIFO length threshold. An interrupt is generated when the number of data words in the FIFO exceeds the value in FIFO_THRESH. The interrupt pin automatically deasserts when the number of data words available in the FIFO no longer exceeds the value in FIFO_THRESH. \\
\hline & [7:0] & 0x00 & R/W & Reserved & \\
\hline 0x08 & [15:0] & 0x0416 & R & DEV_ID & Device ID. \\
\hline \multirow[t]{2}{*}{0x0A} & [15:12] & 0x0 & R & Reserved & \\
\hline & [11:0] & 0x000 & R & CLK_RATIO & When the CLK32M_CAL_EN bit (Register 0x50, Bit 5) is set, the device calculates the number of 32 MHz clock cycles in two cycles of the 32 kHz clock. The result, nominally 2000 (\(0 \times 07 \mathrm{DO}\)), is stored in the CLK_RATIO bits. \\
\hline \multirow[t]{2}{*}{0x10} & [15:2] & 0x000 & R/W & Reserved & \\
\hline & [1:0] & 0x0 & R/W & Mode & \begin{tabular}{l}
Determines the operating mode of the ADPD144RI. 0x0: standby. \\
0x1: program. \\
0x2: sample.
\end{tabular} \\
\hline \multirow[t]{4}{*}{0x11} & [15:14] & 0x1 & R/W & Reserved & \\
\hline & 13 & 0x0 & R/W & RDOUT_MODE & \begin{tabular}{l}
Readback data mode for extended data registers. \(0 \times 0\) : block sum of N samples. \\
\(0 \times 1\) : block average of N samples.
\end{tabular} \\
\hline & 12 & 0x1 & R/W & FIFO_OVRN_PREVENT & \(0 \times 0\) : wrap around FIFO, overwriting old data with new. \(0 \times 1\) : new data if FIFO is not full (recommended setting). \\
\hline & [11:9] & 0x0 & R/W & Reserved & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Address & Data Bit & Default & Access & Name & Description \\
\hline \multirow[t]{3}{*}{0x4F} & [15:3] & \(0 \times 0412\) & R/W & Reserved & Write 0x0412. \\
\hline & 2
1 & \[
\begin{aligned}
& 0 \times 0 \\
& 0 \times 0
\end{aligned}
\] & \begin{tabular}{l}
R/W \\
R/W
\end{tabular} & \begin{tabular}{l}
EXT_SYNC_SEL \\
INT IE
\end{tabular} & \begin{tabular}{l}
Sample sync select. \\
0 : use the internal 32 kHz clock with FSAMPLE to select sample timings. \\
1: use the INT pin to trigger the sample cycle. \\
INT pin input enable.
\end{tabular} \\
\hline & 0 & \(0 \times 0\) & R/W & Reserved & Write 0x0. \\
\hline \multirow[t]{3}{*}{0x50} & [15:6] & 0x000 & R/W & Reserved & \\
\hline & 5 & \(0 \times 0\) & R/W & CLK32M_CAL_EN & \begin{tabular}{l}
As part of the 32 MHz clock calibration routine, write 1 to begin the clock ratio calculation. Read the result of this calculation from the CLK_RATIO bits in Register 0x0A. \\
Reset this bit to 0 prior to reinitiating the calculation.
\end{tabular} \\
\hline & [4:0] & 0x0 & R/W & Reserved & \\
\hline
\end{tabular}

\section*{ADC REGISTERS}

Table 18. ADC Registers
\begin{tabular}{|c|c|c|c|c|c|}
\hline Address & Data Bits & Default & Access & Name & Description \\
\hline 0x12 & [15:0] & 0x0028 & R/W & FSAMPLE & Sampling frequency: \(\mathrm{fsAMPLE}=32 \mathrm{kHz} /(\) Register 0x12, Bits[15:0] \(\times 4)\). For example, \(100 \mathrm{~Hz}=0 \times 0050,200 \mathrm{~Hz}=0 \times 0028\). \\
\hline \multirow[t]{5}{*}{0x15} & [15:11] & 0x0 & R/W & Reserved & \\
\hline & [10:8] & 0x6 & R/W & SLOTB_NUM_AVG & \begin{tabular}{l}
Sample sum/average for Time Slot B. Specifies the averaging factor, \(\mathrm{N}_{\mathrm{B}}\), which is the number of consecutive samples that is summed and averaged after the ADC. Register 0x70 to Register 0x7F hold the data sum. Register 0x64 to Register 0x6B and the data buffer in Register 0x60 hold the data average, which can increase SNR without clipping, in 16-bit registers. The data rate is decimated by the value of the SLOTB_NUMB_AVG bits. 0: 1. \\
1: 2. \\
2: 4. \\
3: 8. \\
4: 16. \\
5: 32. \\
6: 64. \\
7: 128.
\end{tabular} \\
\hline & 7 & 0x0 & R/W & Reserved & \\
\hline & [6:4] & 0x0 & R/W & SLOTA_NUM_AVG & Sample sum/average for Time Slot A. \(\mathrm{N}_{\mathrm{A}}\) : same as Bits[10:8] but for Time Slot A. See description in Register 0x15, Bits[10:8]. \\
\hline & [3:0] & 0x0 & R/W & Reserved & \\
\hline 0x18 & [15:0] & 0x2000 & R/W & SLOTA_CH1_OFFSET & Time Slot A Channel 1 ADC offset. The value to subtract from the raw ADC value. A value of \(0 \times 2000\) is typical. \\
\hline 0x19 & [15:0] & 0x2000 & R/W & SLOTA_CH2_OFFSET & Time Slot A Channel 2 ADC offset. The value to subtract from the raw ADC value. A value of \(0 \times 2000\) is typical. \\
\hline 0x1A & [15:0] & 0x2000 & R/W & SLOTA_CH3_OFFSET & Time Slot A Channel 3 ADC offset. The value to subtract from the raw ADC value. A value of \(0 \times 2000\) is typical. \\
\hline 0x1B & [15:0] & 0x2000 & R/W & SLOTA_CH4_OFFSET & Time Slot A Channel 4 ADC offset. The value to subtract from the raw ADC value. A value of \(0 \times 2000\) is typical. \\
\hline 0x1E & [15:0] & 0x2000 & R/W & SLOTB_CH1_OFFSET & Time Slot B Channel 1 ADC offset. The value to subtract from the raw ADC value. A value of \(0 \times 2000\) is typical. \\
\hline 0x1F & [15:0] & 0x2000 & R/W & SLOTB_CH2_OFFSET & Time Slot B Channel 2 ADC offset. The value to subtract from the raw ADC value. A value of \(0 \times 2000\) is typical. \\
\hline 0x20 & [15:0] & 0x2000 & R/W & SLOTB_CH3_OFFSET & Time Slot B Channel 3 ADC offset. The value to subtract from the raw ADC value. A value of \(0 \times 2000\) is typical. \\
\hline 0x21 & [15:0] & 0x2000 & R/W & SLOTB_CH4_OFFSET & Time Slot B Channel 4 ADC offset. The value to subtract from the raw ADC value. A value of \(0 \times 2000\) is typical. \\
\hline
\end{tabular}

\section*{DATA REGISTERS}

Table 19. Data Registers
\begin{tabular}{|c|c|c|c|c|}
\hline Address & Data Bits & Access & Name & Description \\
\hline \multirow[t]{4}{*}{0x5F} & [15:3] & R/W & Reserved & \\
\hline & 2 & R/W & SLOTB_DATA_HOLD & Setting this bit prevents an update of the data registers corresponding to Time Slot B. Set this bit to ensure that unread data registers are not updated, guaranteeing a contiguous set of data from all four photodiode channels. \\
\hline & 1 & R/W & SLOTA_DATA_HOLD & Setting this bit prevents an update of the data registers corresponding to Time Slot A. Set this bit to ensure that unread data registers are not updated, guaranteeing a contiguous set of data from all four photodiode channels. \\
\hline & 0 & R/W & FIFO_ACCESS_ENA & Set to 1 twice to enable FIFO access. It is necessary to write 1 to the FIFO_ACCESS_ENA bit in two consecutive write operations to read data from the FIFO. For power savings, reset to 0 when FIFO access is complete. This bit also turns on the 32 MHz clock so that calibration can occur. \\
\hline 0x60 & [15:0] & R & FIFO_DATA & Next available word in FIFO. Prior to reading this register, set the FIFO_ACCESS_ENA bit (Register 0x5F, Bit 0) twice. Reset this bit to 0 when the FIFO access sequence is complete. \\
\hline 0x64 & [15:0] & R & SLOTA_PD1_16BIT & 16-bit value of Photodiode 1 in Time Slot A. \\
\hline 0x65 & [15:0] & R & SLOTA_PD2_16BIT & 16 -bit value of Photodiode 2 in Time Slot A. \\
\hline 0x66 & [15:0] & R & SLOTA_PD3_16BIT & 16 -bit value of Photodiode 3 in Time Slot A. \\
\hline 0x67 & [15:0] & R & SLOTA_PD4_16BIT & 16 -bit value of Photodiode 4 in Time Slot A. \\
\hline 0x68 & [15:0] & R & SLOTB_PD1_16BIT & 16-bit value of Photodiode 1 in Time Slot B. \\
\hline 0x69 & [15:0] & R & SLOTB_PD2_16BIT & 16-bit value of Photodiode 2 in Time Slot B. \\
\hline 0x6A & [15:0] & R & SLOTB_PD3_16BIT & 16-bit value of Photodiode 3 in Time Slot B. \\
\hline 0x6B & [15:0] & R & SLOTB_PD4_16BIT & 16-bit value of Photodiode 4 in Time Slot B. \\
\hline 0x70 & [15:0] & R & SLOTA_PD1_LOW & Low data-word for Photodiode 1 in Time Slot A. \\
\hline 0x71 & [15:0] & R & SLOTA_PD2_LOW & Low data-word for Photodiode 2 in Time Slot A. \\
\hline 0x72 & [15:0] & R & SLOTA_PD3_LOW & Low data-word for Photodiode 3 in Time Slot A. \\
\hline 0x73 & [15:0] & R & SLOTA_PD4_LOW & Low data-word for Photodiode 4 in Time Slot A. \\
\hline 0x74 & [15:0] & R & SLOTA_PD1_HIGH & High data-word for Photodiode 1 in Time Slot A. \\
\hline 0x75 & [15:0] & R & SLOTA_PD2_HIGH & High data-word for Photodiode 2 in Time Slot A. \\
\hline 0x76 & [15:0] & R & SLOTA_PD3_HIGH & High data-word for Photodiode 3 in Time Slot A. \\
\hline 0x77 & [15:0] & R & SLOTA_PD4_HIGH & High data-word for Photodiode 4 in Time Slot A. \\
\hline 0x78 & [15:0] & R & SLOTB_PD1_LOW & Low data-word for Photodiode 1 in Time Slot B. \\
\hline 0x79 & [15:0] & R & SLOTB_PD2_LOW & Low data-word for Photodiode 2 in Time Slot B. \\
\hline 0x7A & [15:0] & R & SLOTB_PD3_LOW & Low data-word for Photodiode 3 in Time Slot B. \\
\hline 0x7B & [15:0] & R & SLOTB_PD4_LOW & Low data-word for Photodiode 4 in Time Slot B. \\
\hline 0x7C & [15:0] & R & SLOTB_PD1_HIGH & High data-word for Photodiode 1 in Time Slot B. \\
\hline 0x7D & [15:0] & R & SLOTB_PD2_HIGH & High data-word for Photodiode 2 in Time Slot B. \\
\hline 0x7E & [15:0] & R & SLOTB_PD3_HIGH & High data-word for Photodiode 3 in Time Slot B. \\
\hline 0x7F & [15:0] & R & SLOTB_PD4_HIGH & High data-word for Photodiode 4 in Time Slot B. \\
\hline
\end{tabular}

\section*{OUTLINE DIMENSIONS}

Figure 24. 12-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]
\(2.8 \mathrm{~mm} \times 5.0 \mathrm{~mm}\) Body
(CE-12-2)
Dimensions shown in millimeters

\section*{ORDERING GUIDE}
\begin{tabular}{l|l|l|l}
\hline Model \({ }^{1,2}\) & \begin{tabular}{l}
Temperature \\
Range
\end{tabular} & Package Description & \begin{tabular}{l}
Package \\
Option
\end{tabular} \\
\hline ADPD144RI-ACEZ-RL & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 12 -Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV], 13"Tape and Reel & CE-12-2 \\
ADPD144RI-ACEZ-RL7 & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 12-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV], 7"Tape and Reel & CE-12-2 \\
EVAL-ADPD144RIZ-SF & & Small Form Factor Evaluation Board, Suitable for Earbud and Patch Applications & \\
\hline
\end{tabular}
\({ }^{1} \mathrm{Z}=\) RoHS Compliant Part.
\({ }^{2}\) To use the EVAL-ADPD144RIZ-SF, the EVAL-ADPDUCZ microcontroller board must also be used.
\(1^{2} \mathrm{C}\) refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).```

