4T4R Direct RF Receiver and Transmitter

APPLICATIONS

- Wireless communications infrastructure
- W-CDMA, LTE, LTE-A, massive multiple input multiple output (MIMO)
- Point to point microwave, E-band, and 5G mmWave
- Broadband communications systems
- DOCSIS 3.0+ cable modem termination system (CMTS)
- Communication test and measurement systems

GENERAL DESCRIPTION

The AD9988 is a highly integrated device with four 16-bit, 12 GSPS maximum sample rate, RF digital-to-analog converter (DAC) cores, and four 12-bit, 4 GSPS rate, RF analog-to-digital converter (ADC) cores. The device supports four transmitter channels and four receiver channels with a 4T4R configuration. This product is well suited for four-antenna TDD transmitter applications, where the receiver path can be shared between receiver and observation modes. The GPIO pins can be configured and toggled to support different user modes, while phase coherency is maintained. The maximum radio channel bandwidth supported is 1.2 GHz in a 4T4R configuration and a sample resolution of 16 bits. The AD9988 features a 16-lane 24.75 Gbps JESD204C or 15.5 Gbps JESD204B serial data port that allows up to eight lanes per transmitreceive link, an on-chip clock multiplier, and digital signal processing capability targeted at multiband direct to RF radio applications.

Rev. A

TABLE OF CONTENTS

Features 1
Applications 1
General Description. 1
Functional Block Diagram 3
Specifications 4
Recommended Operating Conditions 4
Power Consumption 4
DAC DC Specifications 5
ADC DC Specifications 6
Clock Inputs and Outputs 7
Clock Input and Phase-Locked Loop (PLL)
Frequency Specifications. 7
DAC Sample Rate Specifications 7
ADC Sample Rate Specifications 9
Input Data Rates Specifications 10
NCO Frequency Specifications 11
JESD204B and JESD204C Interface
Electrical and Speed Specifications. 11
CMOS Pin Specifications 14
DAC AC Specifications. 14
ADC AC Specifications 16
Timing Specifications 18
Absolute Maximum Ratings 20
Thermal Resistance 20
ESD Caution 20
Pin Configuration and Function Descriptions 21
Typical Performance Characteristics 26
DAC 26
ADC 31
Theory of Operation. 38
Applications Information 39
Outline Dimensions 40
Ordering Guide 40
Evaluation Boards 40
REVISION HISTORY
7/2021—Rev. 0 to Rev. A
Changes to Table 20 20
3/2021—Revision 0: Initial Version

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Successful DAC calibration is required during the device initialization phase that occurs shortly after power-up to ensure long-term reliability of the DAC core circuitry. Refer to UG-1578, the device user guide, for more information on device initialization.

Table 1.

Parameter	Min	Typ	Max	Unit
OPERATING JUNCTION TEMPERATURE (TJ)	-40		+120	${ }^{\circ} \mathrm{C}$
ANALOG SUPPLY VOLTAGE RANGE				
AVDD2, BVDD2, RVDD2	1.9	2.0	2.1	V
AVDD1, AVDD1_ADC, CLKVDD1, FVDD1, VDD1_NVG1	0.95	1.0	1.05	V
IGITAL SUPPLY VOLTAGE RANGE				
DVDD1, DVDD1_RT, DCLKVDD1, DAVDD1	0.95	1.0	1.05	V
DVDD1P8	1.7	1.8	2.1	V
SERIALIZER/DESERIALIZER (SERDES) SUPPLY VOLTAGE RANGE	1.9	2.0	2.1	V
SVDD2_PLL	0.95	1.0	1.05	V
SVDD1, SVDD1_PLL				

POWER CONSUMPTION

Typical at nominal supplies and maximum at 5% supplies. For the minimum and maximum values, T_{J} varies between $-40^{\circ} \mathrm{C}$ and $+120^{\circ} \mathrm{C}$. For the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.
DAC datapath with a complex I/Q data rate frequency (fiQ DATA) $=1500 \mathrm{MSPS}$, interpolation of $8 x$, and DAC frequency ($\mathrm{f}_{\text {DAC }}$) of 12 GSPS . JRx mode of $15 \mathrm{C}(\mathrm{L}=8, \mathrm{M}=8, F=2, S=1, K=128, E=1, N=16, N P=16)$.

ADC datapath with a complex $f_{Q Q _ \text {DATA }}=1500 \mathrm{MSPS}$, decimation of $2 \times$, and $f_{A D C}$ of 3 GSPS. JTx mode of $16 C(L=8, M=8, F=2, S=1, K=$ $128, E=1, N=16, N P=16$).
Note that the AD9988 does not support the option to bypass the CDUC in the transmit data path and the CDDC in the receive data path.
See the UG-1578 user guide for further information on the JESD204B and JESD204C mode configurations, and a detailed description of the settings referenced throughout this data sheet. A table showing other operational modes and the corresponding typical and maximum power consumption numbers is included.

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CURRENTS					
AVDD2 (IAVDD2)	2.0 V supply		190	205	mA
BVDD2 (IVVDD2) + RVDD2 (${ }_{\text {RVVD2 }}$)	2.0 V supply		295	350	mA
	2.0 V supply		45	55	mA
Power Dissipation for 2 V Supplies	2.0 V supply total power dissipation		1.06	1.22	W
PLLCLKVDD1 (lpllclkvdi)	1.0 V supply		15	25	mA
AVDD1 ($\mathrm{I}_{\text {AVDD1 }}$) + DCLKVDD1 ($\mathrm{l}_{\text {DCLKVDD1 }}$)	1.0 V supply		1000	1185	mA
AVDD1_ADC (${ }_{\text {aVDD1_ADC }}$)	1.0 V supply		1620	1900	mA
CLKVDD1 (ICLKVDD1)	1.0 V supply		60	110	mA
FVDD1 (lividi)	1.0 V supply		45	65	mA
VDD1_NVG (lvDD1_NVG)	1.0 V supply		280	345	mA
DAVDD1 ($\mathrm{I} A V D D 1$)	1.0 V supply		1590	1835	mA
DVDD1 (lovDD1)	1.0 V supply		2780	3805	mA
DVDD1_RT (lovDD1_RT)	1.0 V supply		565	690	mA
SVDD1 (${ }_{\text {SVDD1 }}$) + SVDD1_PLL ($\mathrm{ISVDD1}^{\text {PlLL }}$)	1.0 V supply		1920	2570	mA
Power Dissipation for 1 V Supplies	1.0 V supply total power dissipation		9.88	12.53	W

SPECIFICATIONS

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DVDD1P8 (lovDD1P8)	1.8 V supply	7	10	mA	
Total Power Dissipation	Total power dissipation of 2 V and 1 V supplies	10.95	13.77	W	

DAC DC SPECIFICATIONS

Nominal supplies with DAC output full-scale current (loutrs) $=26 \mathrm{~mA}$, unless otherwise noted. ADC setup in 4 GSPS, full BW mode (all digital downconverters bypassed). For the minimum and maximum values, $\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$, and for the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3. DAC DC Specifications

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Test Conditions/Comments \& Min \& Typ \& Max \& Unit \\
\hline DAC RESOLUTION \& \& 16 \& \& \& Bit \\
\hline \begin{tabular}{l}
DAC ACCURACY \\
Gain Error \\
Gain Matching Integral Nonlinearity (INL) Differential Nonlinearity (DNL)
\end{tabular} \& Shuffling disabled Shuffling disabled \& \& \[
\begin{aligned}
\& 1.5 \\
\& 0.7 \\
\& 8.0 \\
\& 3.5
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \text { \%FSR } \\
\& \text { \%FSR } \\
\& \text { LSB } \\
\& \text { LSB }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DAC ANALOG OUTPUTS \\
Full-Scale Output Current Range \\
AC Coupling \\
DC Coupling \\
DC Coupling \\
Full-Scale Sinewave Output Power with AC Coupling \({ }^{2}\) \\
\(I_{\text {OUTFS }}=26 \mathrm{~mA}\) \\
\(l_{\text {OUTFS }}=40 \mathrm{~mA}\) \\
Common-Mode Output Voltage (VCM OUt) \\
AC Coupling \\
DC Coupling
\end{tabular} \& \begin{tabular}{l}
DACxP and DACxN \\
AC coupling, setting resistance \(\left(R_{\text {SET }}\right)=5 \mathrm{k} \Omega\) \\
Output common-mode voltage \(\left(\mathrm{V}_{\mathrm{CM}}\right)=0 \mathrm{~V}\) \\
\(50 \Omega\) shunt to a negative supply, forcing \(\mathrm{V}_{C M}=0 \mathrm{~V}\) \\
\(50 \Omega\) shunt to GND , forcing \(\mathrm{V}_{\mathrm{CM}}=0.3 \mathrm{~V}\) \\
Ideal 2:1 balun interface to \(50 \Omega\) \\
Bias each output to GND across a shunt inductor \\
Bias each output to a negative voltage rail across a \(25 \Omega\) to \(200 \Omega\) resistor, selected such that \(\mathrm{VCM}_{\text {OUT }}=0 \mathrm{~V} ; \mathrm{VCM}_{\text {OUT }}=0.3 \mathrm{~V}\) is with a \(25 \Omega\) resistor to \(G N D\) and \(\mathrm{I}_{\mathrm{FSC}}=20 \mathrm{~mA}\)
\end{tabular} \& \[
\begin{aligned}
\& 6.43 \\
\& 6.43 \\
\& 6.43
\end{aligned}
\] \& 26.5

3.3
7
0
0

0 \& \[
$$
\begin{aligned}
& 37.75 \\
& 37.75 \\
& 20^{1}
\end{aligned}
$$

\] \& | mA |
| :--- |
| mA |
| mA |
| dBm |
| dBm |
| V |
| V |
| V |

\hline Differential Resistance \& \& \& 100 \& \& Ω

\hline
\end{tabular}

1 For dc-coupled applications, the maximum full-scale output current is limited by the maximum $\mathrm{VCM}_{\text {OUT }}$ specification.
2 The actual measured full-scale power is frequency dependent due to DAC sinc response, impedance mismatch loss, and balun insertion loss.

SPECIFICATIONS

ADC DC SPECIFICATIONS

Nominal supplies with DAC output full-scale current (loutrs) $=26 \mathrm{~mA}$, unless otherwise noted. ADC setup in 4 GSPS, full BW mode (all digital downconverters bypassed). For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$, and for the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4. ADC DC Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
ADC RESOLUTION		12			Bit
ADC ACCURACY No Missing Codes Offset Error Offset Matching Gain Error Gain Matching DNL INL			$\begin{aligned} & \text { Guaranteed } \\ & -0.20 \\ & +0.05 \\ & -0.71 \\ & +1.2 \\ & \pm 1.9 \\ & \pm 0.5 \end{aligned}$		$\begin{aligned} & \text { \%FSR } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
ADC ANALOG INPUTS Differential Input Voltage Full-Scale Sine Wave Input Power Common-Mode Input Voltage (VCM ${ }_{\mathrm{IN}}$) Differential Input Impedance Return Loss	ADCxP and ADCxN Input power level resulting 0 dBFS tone level on fast Fourier transform (FFT) AC-coupled, equal to voltage at $V C M x$ for $A D C x$ input $<2.7 \mathrm{GHz}$ 2.7 GHz to 3.8 GHz 3.8 GHz to 5.4 GHz		$\begin{aligned} & 1.4 \\ & 3.9 \\ & 1 \\ & 100 / / 0.4 \\ & -4.3 \\ & -3.6 \\ & -2.9 \end{aligned}$		$\begin{aligned} & \mathrm{Vp}-\mathrm{p} \\ & \mathrm{dBm} \\ & \mathrm{~V} \\ & \Omega / / \mathrm{pF} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$

SPECIFICATIONS

CLOCK INPUTS AND OUTPUTS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 5. Clock Input and Outputs

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CLOCK INPUTS Differential Input Power Minimum Maximum Common-Mode Voltage Differential Input Impedance	CLKINP and CLKINN Direct RF clock AC-coupled			$\begin{aligned} & 0 \\ & 6 \\ & 0.5 \\ & 100 / 0.3 \end{aligned}$	dBm dBm V $\Omega / / p F$
CLOCK OUTPUTS (ADC CLOCK DRIVER) Differential Output Voltage Magnitude ${ }^{1}$ Differential Output Resistance Common-Mode Voltage	ADCDRVP and ADCDRVN 1.5 GHz 2.0 GHz 3.0 GHz 6.0 GHz AC-coupled			$\begin{aligned} & 740 \\ & 690 \\ & 640 \\ & 490 \\ & 100 \\ & 0.5 \end{aligned}$	$m V p-p$ $m V p-p$ $m V p-p$ $m V p-p$ Ω Ω

1 Measured with differential 100Ω load and less than 2 mm of printed circuit board (PCB) trace from package ball.

CLOCK INPUT AND PHASE-LOCKED LOOP (PLL) FREQUENCY SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 6.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CLOCK INPUTS (CLKINP, CLKINN) FREQUENCY RANGES		25		12000	MHz
PHASE FREQUENCY DETECTOR (PFD) INPUT FREQUENCY RANGES		25		750	MHz
FREQUENCY RANGES ACCORDING TO CLOCK PATH CONFIGURATION Direct Clock (PLL Off) PLL Reference Clock (PLL On)	M divider set to divide by 1 M divider set to divide by 2 M divider set to divide by 3 M divider set to divide by 4	$\begin{aligned} & 2900^{1} \\ & 25 \\ & 50 \\ & 75 \\ & 100 \end{aligned}$		$\begin{aligned} & 12000 \\ & 750 \\ & 1500 \\ & 2250 \\ & 3000 \end{aligned}$	MHz MHz MHz MHz MHz
PLL VOLTAGE CONTROLLED OSCILLATOR (VCO) FREQUENCY RANGES VCO Output Divide by 1 Divide by 2 Divide by 3 Divide by 4	D divider set to divide by 1 D divider set to divide by 2 D divider set to divide by 3 D divider set to divide by 4	$\begin{array}{\|l} 5.8 \\ 2.9 \\ 1.93333 \\ 1.45 \end{array}$		$\begin{aligned} & 12 \\ & 6 \\ & 4 \\ & 3 \end{aligned}$	GHz GHz GHz GHz

1 The minimum direct clock frequency is limited by the minimum DAC (core) sample rate, as specified in Table 7 . The clock receiver can accommodate the full range between the minimum PLL reference clock frequency and the maximum direct clock frequency.

DAC SAMPLE RATE SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply. For the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

SPECIFICATIONS

Table 7. DAC Sample Rate Specifications

Parameter	Min	Typ	Max	Unit
DAC SAMPLE RATE1				
Minimum				
Maximum	12		GSPS	

1 Pertains to the update rate of the DAC core, independent of datapath and JESD204 mode configuration.

SPECIFICATIONS

ADC SAMPLE RATE SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply. For the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 8. ADC Sample Rate Specifications

Parameter	Min	Typ	Max	Unit
ADC SAMPLE RATE ${ }^{1}$			1.45	GSPS
Minimum	4			GSPS
Maximum		65	fs rms	
Aperture Jitter ${ }^{2}$				

1 Pertains to the update rate of the ADC core, independent of datapath and JESD204 mode configuration.
${ }^{2}$ Measured using a signal-to-noise ratio (SNR) degradation method with the DAC disabled, clock divider $=1$, ADC frequency $\left(f_{A D C}\right)=4$ GSPS, and input frequency $\left(f_{\mathbb{N}}\right)=$ 5.55 GHz .

SPECIFICATIONS

INPUT DATA RATES SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 9.

Parameter ${ }^{12}$	Test Conditions/Comments	Min	Typ	Max	Unit
MAXIMUM DATA RATE PER NUMBER OF ACTIVE DAC OUTPUTS	Single DAC, FDUC bypassed, 1 CDUC enabled (not bypassable), 12-bit or 16-bit resolution; limited by the maximum DAC clock rate and the minimum total interpolation of $2 \times$ inside the CDUC block Quad DAC, FDUC bypassed, 4 CDUCs enabled (not bypassable), 12-bit resolution; limited by the maximum JESD204C link throughput $(M=8, L=8)$ and the minimum total interpolation of $2 \times$ inside the CDUC block			$\begin{aligned} & 6000 \\ & 2000 \end{aligned}$	MSPS MSPS
MAXIMUM COMPLEX (I/Q) DATA RATE PER NUMBER OF ACTIVE INPUT DATA CHANNELS	1 channel: FDUC bypassed, 1 CDUC enabled, 12-bit or 16-bit resolution; limited by the maximum CDUC NCO clock rate 2 channels: FDUC bypassed, 2 CDUCs enabled, 12-bit resolution; limited by the maximum JESD204C link throughput ($M=4, L=8$) 4 channels: FDUC bypassed, 4 CDUCs enabled, 12-bit resolution; limited by the maximum JESD204C link throughput ($M=8, L=8$) 8 channels: 8 FDUCs enabled, one or more CDUC enabled, 12-bit or 16 -bit resolution; limited by the maximum FDUC NCO clock rate divided by the minimum $2 x$ interpolation rate required to enable the FDUC			$\begin{aligned} & 6000 \\ & 4000 \\ & 2000 \\ & 750 \end{aligned}$	MSPS MSPS MSPS MSPS

1 The values listed for these parameters are the maximum possible when considering all JESD204 modes of operation. Some modes are more limiting, based on other parameters.
2 The interpolation filters in the Tx datapath have a total complex filter bandwidth of 80% of the data rate, combining the 40% bandwidth in the I path and 40% bandwidth in the Q path. Similarly, the decimation stages inside the Rx datapath use filters with a total complex filter bandwidth of 81.4%. Therefore, the maximum allowed instantaneous complex signal bandwidth (iBW) per channel is calculated as $\mathrm{BW}=$ [Complex I/Q Data Rate per Channel] \times [Total Complex Filter Bandwidth].

SPECIFICATIONS

NCO FREQUENCY SPECIFICATIONS

For the minimum and maximum values, $\mathrm{TJ}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 10.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
MAXIMUM NUMERICALLY CONTROLLED OSCILLATOR (NCO) CLOCK RATE FDUC NCO CDUC NCO FDDC NCO CDDC NCO				$\begin{aligned} & 1.5 \\ & 12 \\ & 1.5 \\ & 4 \end{aligned}$	GHz GHz GHz GHz
MAXIMUM NCO SHIFT FREQUENCY RANGE FDUC NCO CDUC NCO FDDC NCO CDDC NCO	channel interpolation rate must be $>1 \times$ $\mathrm{f}_{\mathrm{DAC}}=12 \mathrm{GHz}$, main interpolation rate must be $>1 \mathrm{x}$ channel decimation rate must be $>1 x$ $\mathrm{f}_{\mathrm{ADC}}=4 \mathrm{GHz}$, main decimation rate must be $>1 \mathrm{x}$	$\begin{aligned} & -750 \\ & -6 \\ & -750 \\ & -2 \end{aligned}$		$\begin{aligned} & +750 \\ & +6 \\ & +750 \\ & +2 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{MHz} \\ \mathrm{GHz} \\ \mathrm{MHz} \\ \mathrm{GHz} \end{array}$
MAXIMUM FREQUENCY SPACING BETWEEN CHANNELIZER CHANNELS Tx FDUC Channels Rx FDDC Channels	Maximum FDUC NCO clock rate $\times 0.8^{1}$ Maximum FDDC NCO clock rate $\times 0.814^{2}$			$\begin{aligned} & 1200 \\ & 1221 \end{aligned}$	$\begin{array}{\|l\|l\|} \mathrm{MHz} \\ \mathrm{MHz} \end{array}$

1 The 0.8 factor is because the total complex pass-band of the first interpolation filter is 80% of the filter input data rate.
2 The 0.814 factor is because the total complex pass-band of the decimation filter is 81.4% of the filter output data rate.

JESD204B AND JESD204C INTERFACE ELECTRICAL AND SPEED SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, and for the typical values, $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 11. Serial Interface Rate Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
JESD204B SERIAL INTERFACE RATE Unit Interval	Serial lane rate (bit repeat option disabled)	$\begin{array}{\|l\|} \hline 1.0 \\ 64.5 \end{array}$		$\begin{aligned} & \hline 15.5 \\ & 1000.0 \end{aligned}$	$\begin{aligned} & \mathrm{Gbps} \\ & \mathrm{ps} \end{aligned}$
JESD204C SERIAL INTERFACE RATE Unit Interval	Serial lane rate (bit repeat option disabled)	$\begin{array}{\|l\|} \hline 6.0 \\ 40.4 \\ \hline \end{array}$		$\begin{aligned} & 24.75 \\ & 166.67 \end{aligned}$	Gbps ps
Table 12. JESD204 Receiver (JRx) Electrical Specifications					
Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
JESD204x DATA INPUTS Standards Compliance Differential Voltage, RVDIFF Differential Impedance, $Z_{\text {RDIFF }}$ Termination Voltage, $\mathrm{V}_{T T}$	SERDINx \pm, where $x=0$ to 7 At dc AC-coupled		$\begin{aligned} & \text { JE } \\ & 800 \\ & 98 \\ & 0.97 \end{aligned}$		$\begin{aligned} & m V p-p \\ & \Omega \\ & V \end{aligned}$
SYNCXOUTB \pm OUTPUTS ${ }^{1}$ Output Differential Voltage, $\mathrm{V}_{O D}$ Output Offset Voltage, Vos	Where $\mathrm{x}=0$ or 1 Driving 100Ω differential load				$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~V} \end{aligned}$
SYNCxOUTB+ OUTPUT	CMOS output option		Refer	cations	

1 IEEE 1596.3 standard LVDS compatible.
Table 13. JESD204 Transmitter (JTx) Electrical Specifications

Parameter	Test Conditions/Comments	Min	Typ
JESD204x DATA OUTPUTS	SERDOUTx \pm where $x=0$ to 7	Max	Unit

SPECIFICATIONS

Table 13. JESD204 Transmitter (JTx) Electrical Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Standards Compliance Differential Output Voltage Differential Termination Impedance Rise Time, t_{R} Fall Time, t_{F}	Maximum strength 20% to 80% into 100Ω load 20% to 80% into 100Ω load	80	JESD2 675 108 18 18	120	$\begin{aligned} & m \vee p-p \\ & \Omega \\ & \text { ps } \\ & \text { ps } \end{aligned}$
SYNCxINB \pm INPUT ${ }^{1}$ Logic Compliance Differential Input Voltage Input Common-Mode Voltage $\mathrm{R}_{\text {IN }}$ (Differential) Input Capacitance (Differential)	Where $x=0$ or 1 DC-coupled	240	$\begin{aligned} & 0.7 \\ & 0.675 \\ & 18 \\ & 1 \end{aligned}$	1900 2	$\begin{aligned} & m V p-p \\ & V \\ & k \Omega \\ & p F \end{aligned}$
SYNCxINB+ INPUT	CMOS input option	Refer to CMOS Pin Specifications			

1 IEEE 1596.3 standard LVDS compatible.

SPECIFICATIONS

Table 14. SYSREF Electrical Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SYSREF+ AND SYSREF- INPUTS					
Logic Compliance			LVDS/LVPECL ${ }^{1}$		
Differential Input Voltage			0.7	1.9	$V \mathrm{p}-\mathrm{p}$
Input Common-Mode Voltage Range	DC-coupled		0.675	2	V
Input Reference, $\mathrm{R}_{\mathbf{I N}}$ (Differential)			100		Ω
Input Capacitance (Differential)			1		pF

${ }^{1}$ LVDS means low voltage differential signaling and LVPECL means low voltage positive/pseudo emitter-coupled logic.

SPECIFICATIONS

CMOS PIN SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}, 1.7 \mathrm{~V} \leq \mathrm{DVDD1P8} \leq 2.1 \mathrm{~V}$, other supplies nominal, unless otherwise noted.
Table 15.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
INPUTS Logic 1 Voltage Logic 0 Voltage Input Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	SDIO, SCLK, CSB, RESETB, RXEN0, RXEN1, TXEN0, TXEN1, SYNCOINB \pm, SYNC1INB \pm, and GPIOx	$\begin{aligned} & 0.70 \times \text { DVDD1P8 } \\ & 40 \\ & \hline \end{aligned}$		$0.3 \times$ DVDD1P8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \end{aligned}$
OUTPUTS Logic 1 Voltage Logic 0 Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	SDIO, SDO, GPIOx, ADCx_FDx, ADCx_SMONx, SYNCOOUTB \pm, and SYNC1OUTB $\pm, 4 \mathrm{~mA}$ load	DVDD1P8-0.45		0.45	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
INTERRUPT OUTPUTS Logic 1 Voltage Logic 0 Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	IRQB_0 and IRQB_1, pull-up resistor of $5 \mathrm{k} \Omega$ to DVDD1P8	1.35		0.48	

DAC AC SPECIFICATIONS

Nominal supplies with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Specifications represent the average of all four DAC channels with the $\mathrm{DAC} \mathrm{I}_{\text {OUTFS }}=26 \mathrm{~mA}$, unless otherwise noted.

Table 16.

SPECIFICATIONS

Table 16.

SPECIFICATIONS

Table 16.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
	$\mathrm{C} 3=33 \mathrm{nF}$, and phase detector frequency (PFD) $=$ 500 MHz				
$\mathrm{f}_{\text {OUT }}=1.8 \mathrm{GHz}, \mathrm{f}_{\text {DAC }}=12 \mathrm{GSPS}, \mathrm{f}_{\text {CLKIN }}=0.5 \mathrm{GHz}$					
1 kHz			-106		$\mathrm{dBc} / \mathrm{Hz}$
10 kHz			-113		$\mathrm{dBc} / \mathrm{Hz}$
100 kHz			-120		$\mathrm{dBc} / \mathrm{Hz}$
600 kHz			-127		$\mathrm{dBc} / \mathrm{Hz}$
1.2 MHz			-134		$\mathrm{dBc} / \mathrm{Hz}$
1.8 MHz			-138		$\mathrm{dBc} / \mathrm{Hz}$
6 MHz			-150		$\mathrm{dBc} / \mathrm{Hz}$

ADC AC SPECIFICATIONS

Nominal supplies with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Input amplitude $\left(\mathrm{A}_{\mid I}\right)=-1 \mathrm{dBFS}$, full bandwidth (no decimation) mode. For the minimum and maximum values, $\mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$. Specifications represent average of four ADC channels with DACs powered on. See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.

Table 17.

analog.com

SPECIFICATIONS

Table 17.

	3 GSPS			4 GSPS			
Parameter	Min	Typ	Max	Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz}$		-50			-53		dBFS
$\mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz}$		-48			-48		dBFS
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		-46			-46		dBFS
THIRD-ORDER HARMONIC DISTORTION (HD3)							
$\mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz}$		-78			-76		dBFS
$\mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz}$		-79			-76		dBFS
$\mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz}$		-78			-75		dBFS
$\mathrm{f}_{\mathrm{IN}}=2700 \mathrm{MHz}$		-76			-73	-66	dBFS
$\mathrm{f}_{\mathrm{IN}}=3600 \mathrm{MHz}$		-71			-76		dBFS
$\mathrm{f}_{\mathrm{IN}}=4500 \mathrm{MHz}$		-62			-64		dBFS
$\mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz}$		-60			-60		dBFS
$\mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz}$		-59			-57		dBFS
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		-58			-54		dBFS
WORST OTHER, EXCLUDING HD2, HD3, AND INTERLEAVING SPURS							
$\mathrm{f}_{\mathrm{IN}}=450 \mathrm{MHz}$		-78			-88		dBFS
$\mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz}$		-78			-87		dBFS
$\mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz}$		-78			-81		dBFS
$\mathrm{f}_{\mathrm{IN}}=2700 \mathrm{MHz}$		-78			-79	-64	dBFS
$\mathrm{f}_{\mathrm{IN}}=3600 \mathrm{MHz}$		-78			-77		dBFS
$\mathrm{f}_{\mathrm{IN}}=4500 \mathrm{MHz}$		-77			-75		dBFS
$\mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz}$		-78			-74		dBFS
$\mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz}$		-74			-72		dBFS
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		-73			-72		dBFS
INTERLEAVING SPUR $\left(\mathrm{f}_{\mathrm{N}} \pm \mathrm{f}_{\mathrm{S}} / 2\right)^{3}$							
$\mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz}$		-97			-93		dBFS
$\mathrm{f}_{\mathrm{IN}}=900 \mathrm{MHz}$		-94			-93		dBFS
$\mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz}$		-96			-90		dBFS
$\mathrm{f}_{\mathrm{IN}}=2700 \mathrm{MHz}$		-86			-86		dBFS
$\mathrm{f}_{\mathrm{IN}}=3600 \mathrm{MHz}$		-84			-81		dBFS
$\mathrm{f}_{\mathrm{IN}}=4500 \mathrm{MHz}$		-53			-85		dBFS
$\mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz}$		-78			-86		dBFS
$\mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz}$		-77			-79		dBFS
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		-78			-74		dBFS
DIGITAL COUPLING SPUR ($\mathrm{f}_{\mathrm{N}} \pm \mathrm{f}_{\mathrm{S}} / 4$)							
$\mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz}$		-83			-94		dBFS
$\mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz}$		-79			-91		dBFS
$\mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz}$		-73			-89		dBFS
$\mathrm{f}_{\mathrm{IN}}=2700 \mathrm{MHz}$		-70			-86	-67	dBFS
$\mathrm{f}_{\mathrm{IN}}=3600 \mathrm{MHz}$		-68			-87		dBFS
$\mathrm{f}_{\mathrm{I}}=4500 \mathrm{MHz}$		-66			-83		dBFS
$\mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz}$		-65			-82		dBFS
$\mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz}$		-64			-80		dBFS
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		-63			-79		dBFS
TWO-TONE INTERMODULATION DISTORTION (IMD3, $2 \mathrm{f}_{\mathrm{I} 1}-\mathrm{f}_{\mathrm{IN} 2}$ OR $2 \mathrm{f}_{\mathrm{IN} 2}-\mathrm{f}_{\mathrm{N} 1}$)							
$\begin{aligned} & \mathrm{A}_{\mathrm{IN} 1} \text { AND } \mathrm{A}_{\mathrm{IN} 2}=-7 \mathrm{dBFS} \\ & \mathrm{f}_{\mathrm{N} 1}=1775 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=1825 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N} 1}=2675 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=2725 \mathrm{MHz} \end{aligned}$		-81 -77			-84 -78		dBFS dBFS

SPECIFICATIONS

Table 17.

	3 GSPS			4 GSPS			Unit
Parameter	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\mathrm{N} 1}=3575 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=3625 \mathrm{MHz}$		-73			-74		dBFS
$\mathrm{f}_{\mathrm{N} 1}=5375 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=5425 \mathrm{MHz}$		-66			-66		dBFS
ANALOG BANDWIDTH ${ }^{4}$		7.5			7.5		GHz

${ }^{1}$ Noise density is measured at 250 MHz input frequency at -30 dBFS , where timing jitter does not degrade noise floor.
2 Noise figure is based on a nominal full-scale input power of 4.5 dBm with an input span of 1.4 V p-p and $\mathrm{R}_{\mathrm{IN}}=100 \Omega$.
${ }^{3}$ With background interleaving calibration converged.
${ }^{4}$ Analog input bandwidth is the bandwidth of operation in which the full-scale input frequency response rolls off by -3 dB based on a de-embedded model of the ADC extracted from the measured frequency response on evaluation board. This bandwidth requires optimized matching network to achieve this upper bandwidth.

TIMING SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 18.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
SERIAL PORT INTERFACE (SPI) WRITE OPERATION Maximum SCLK Clock Rate SCLK Clock High SCLK Clock Low SDIO to SCLK Setup Time SCLK to SDIO Hold Time CSB to SCLK Setup Time CLK to CSB Hold Time	$\mathrm{f}_{\text {SCLK }}, 1 / \mathrm{t}_{\text {SCLK }}$ $\mathrm{t}_{\text {PWH }}$ $\mathrm{t}_{\text {PWL }}$ $\mathrm{t}_{\text {DS }}$ $\mathrm{t}_{\text {DH }}$ t_{S} t_{H}	$\begin{aligned} & \text { SCLK }=33 \mathrm{MHz} \\ & \text { SCLK }=33 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 33 \\ & 8 \\ & 8 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$			MHz ns ns ns ns ns ns
SPI READ OPERATION LSB First Data Format Maximum SCLK Clock Rate SCLK Clock High SCLK Clock Low MSB First Data Format Maximum SCLK Clock Rate SCLK Clock High SCLK Clock Low SDIO to SCLK Setup Time SCLK to SDIO Hold Time CSB to SCLK Setup Time SCLK to SDIO Data Valid Time SCLK to SDO Data Valid Time CSB to SDIO Output Valid to High-Z CSB to SDO Output Valid to High-Z	$\mathrm{f}_{\text {SCLK, }} 1 / \mathrm{tsCLK}$ $t_{\text {PWH }}$ tpwL $\mathrm{f}_{\text {SCLK }} 1 /$ tsCLK tpwh tpwL tDs $t_{D H}$ t_{s} t_{DV} tDV_SDO t_{z} $\mathrm{t}_{\mathrm{Z} \text { SDO }}$		$\begin{aligned} & 33 \\ & 8 \\ & 8 \\ & 8 \\ & 15 \\ & 30 \\ & 30 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$			MHz ns ns MHz ns
RESETB		Minimum hold time to trigger a device reset	40			ns

SPECIFICATIONS

Timing Diagrams

Figure 2. Timing Diagram for 3-Wire Write Operation

Figure 3. Timing Diagram for 3-Wire Read Operation

Figure 4. Timing Diagram for 4-Wire Read Operation

ABSOLUTE MAXIMUM RATINGS

Table 19.

Parameter	Rating
ISET, DACxP, DACxN, TDP, TDN	-0.3 V to AVDD2 + 0.3 V
VCO_COARSE, VCO_FINE, VCO_VCM, VCO_VREG	-0.3 V to AVDD2_PLL +0.3 V
Rx Input Power (ADCOP/N, ADC1P/N, ADC2P/N, ADC3P/N) ${ }^{1}$	22 dBm
VCM0, VCM1	-0.3 V to RVDD2 +0.3 V
CLKINP, CLKINN	-0.2 V to PLLCLKVDD1 + 0.2 V
ADCDRVN, ADCDRVP	-0.2 V to CLKVDD1 + 0.2 V
SERDINx \pm, SERDOUTx \pm	-0.2 V to SVDD1 +0.2 V
SYSREFP, SYSREFN, and SYNCxINB \pm	-0.2 V to +2.5 V
SYNCxOUTB \pm, SYNCXINB \pm, RESETB, TXENx, RXENx, IRQB_x, CSB, SCLK, SDIO, SDO, TMU_REFN, TMU_REFP, ADCx_SMONO, ADCx_SMON1, ADCx_FDO, ADCx_FD1, GPIOx	-0.3 V to DVDD1P8 + 0.3 V
AVDD2, AVDD2_PLL, BVDD2, RVDD2, SVDD2_PLL, DVDD1P8	-0.3 V to +2.2 V
PLLCLKVDD1, AVDD1, AVDD1_ADC, CLKVDD1, FVDD1, DAVDD1, DVDD1_RT, DCLKVDD1, SVDD1, SVDD1_PLL	-0.2 V to +1.2 V
VNN1	-1.1 V to +0.2 V
Temperature Ranges	
Maximum Junction ($\left.\mathrm{T}_{\mathrm{J}}\right)^{2}$	$120^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

${ }^{1}$ Tested continuously for 1000 hours with $\mathrm{f}_{\mathrm{N}}=4.7 \mathrm{GHz}$ pulsed and continuous tone at maximum allowed junction temperature (T_{J}). Refer to UG-1578, the device user guide, for more information.
${ }^{2}$ Do not exceed this temperature for any duration of time when the device is powered.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to PCB design and operating environment. The use of appropriate thermal management techniques is recommended to ensure that the maximum T_{j} does not exceed the limits shown in Table 19.
θ_{JA} is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.
$\theta_{J C_{-} \text {TOP }}$ is the junction to case, thermal resistance.
θ_{JB} is the junction to board, thermal resistance.
Table 20. Simulated Thermal Resistance ${ }^{1}$

PCB Type	Airflow Velocity (m/ $\mathrm{sec})$	$\theta_{\text {JA }}$	$\theta_{\text {Jc_top }}$	$\theta_{\text {JB }}$	Unit
JEDEC 2s2p Board	0.0	14.9	0.70	1.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Thermal resistance values specified are simulated based on JE DEC specifications in compliance with JESD51-12 with the device power equal to 9 W .

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devi- ces and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration

Table 21. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
Power Supplies	AVDD2		
A2, E2, H2, L2, P2, V2 L3	AVDD2_PLL	Input	Analog 2.0 V Supply Inputs for DAC.
D7, E7, P7, R7	Input	Analog 2.0 V Supply Input for Clock PLL Low Dropout (LDO)	
B11, U11	Regulator.		
J5	RVDD2	Input	Analog 2.0 V Supply Inputs for ADC Buffer.
D2, D3, D4, E3, F3, N3, P3, R2, R3, R4	PLLCLKVDD1	Input	Analog 2.0 V Supply Inputs for ADC Reference.
G7, G8, M7, M8	Input	Analog 1.0 V Supply Input for Clock PLL.	
G6, M6	AVDD1_ADC	Input	Analog 1.0 V Supply Inputs for DAC Clock.
D6, R6	Input	Analog 1.0 V Supply Inputs for ADC.	

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 21. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
D10, R10	VDD1_NVG	Input	Analog 1.0 V Supply Inputs for Negative Voltage Generator (NVG) Used to Generate -1 V Output.
E9, P9	NVG1_OUT	Output	Analog -1 V Supply Outputs from NVG. Decouple NVG1_OUT to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
D8, E8, E10, P8, R8, P10	VNN1	Input	Analog -1 V Supply Inputs for ADC Buffer and Reference. Connect these pins to the adjacent NVG1_OUT pins.
C9, T9	BVNN2	Output	Decoupling Pin for the Internally Generated Analog -2 V ADC Buffer Supply. Decouple each BVNN2 pin to GND with a 0.1 $\mu \mathrm{F}$ capacitor.
C10, T10	BVDD3	Output	Decoupling Pin for the Internally Generated Analog 3 V ADC Buffer Supply. Decouple BVDD3 to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
E5, F5, N5, P5	DAVDD1	Input	Digital Analog 1.0 V Supply Inputs.
F10, H9, H11, J9, J11, K9, K11, L9, L11, M9	DVDD1	Input	Digital 1.0 V Supply Inputs.
J7, K7	DVDD1_RT	Input	Digital 1.0 V Supply Inputs for Retimer Block.
K5	DCLKVDD1	Input	Digital 1.0 V Clock Generation Supply.
A16, B16, C16, D16, E16, F16, G16, H16, M16, N16, P16, R16, T16, U16, V16	SVDD1	Input	Digital 1.0 V Supply Inputs for SERDES Deserializer and Serializer.
K15	SVDD2_PLL	Input	Digital 2.0 V Supply Input for SERDES LDO Regulator.
J16, K16	SVDD1_PLL	Input	Digital 1.0 V Supply Inputs for SERDES Clock Generation and PLL.
C13, F9, T13	DVDD1P8	Input	Digital Interface and Temperature Monitoring Unit (TMU) Supply Inputs (Nominal 1.8 V).
$\mathrm{A} 1, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 7, \mathrm{~A} 8, \mathrm{~A} 11, \mathrm{~A} 17, \mathrm{~A} 18, \mathrm{~B} 2$ to $\mathrm{B} 6, \mathrm{~B} 9, \mathrm{~B} 10$, B14, B15, C2, C5 to C8, C11, C17, C18, D1, D5, D9, D14, D15, E1, E4, E6, E17, E18, F2, F4, F6 to F8, F14, F15, G2 to G5, G17, G18, H1, H5 to H8, H10, H12, H14, H15, J2, J8, J10, J12, J14, J15, J17, J18, K2, K8, K10, K12, K14, K17, K18, L1, L5 to L8, L10, L12, L14, M2 to M5, M10, M17, M18, N2, N4, N6 to N8, N14, N15, P1, P4, P6, P17, P18, R1, R5, R9, R14, R15, T2, T5 to T8, T11, T17, T18, U2 to U6, U9, U10, U14, U15, V1, V3, V4, V7, V8, V11, V17, V18	GND	Input/output	Ground References.
Analog Outputs			
B1, C1	DACOP, DACON	Output	DACO Output Currents, Ground Referenced. Tie these pins to GND if unused.
G1, F1	DAC1P, DAC1N	Output	DAC1 Output Currents, Ground Referenced. Tie these pins to GND if unused.
M1, N1	DAC2P, DAC2N	Output	DAC2 Output Currents, Ground Referenced. Tie these pins to GND if unused.
U1, T1	DAC3P, DAC3N	Output	DAC3 Output Currents, Ground Referenced. Tie these pins to GND if unused.
H3	ISET	Output	DAC Bias Current Setting Pin. Connect this pin with a $5 \mathrm{k} \Omega$ resistor to GND.
C4, C3	ADCDRVP, ADCDRVN	Output	Optional Clock Output. These pins are disabled by default but can be used as a clock source for an external ADC or another device that requires a reference clock. Leave the pins floating if unused.
B7, U7, B8, U8	VCM0, VCM1, VCM2, VCM3	Output	ADC Buffer Common-Mode Output Voltage. Decouple these pins to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
K3	VCO_VREG	Output	PLL LDO Regulator Output. Decouple this pin to GND with a $2.2 \mu \mathrm{~F}$ capacitor.
G9	TMU_REFN	Output	TMU ADC Negative Reference. Connect this pin to GND.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 21. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
G10	TMU_REFP	Output	TMU ADC Positive Reference. Connect this pin to DVDD1P8.
Analog Inputs			
A6, A5	ADCOP, ADCON	Input	ADCO Differential Inputs with Internal 100Ω Differential Resistor. Leave these pins floating if unused.
V6, V5	ADC1P, ADC1N	Input	ADC1 Differential Inputs with Internal 100Ω Differential Resistor. Leave these pins floating if unused.
A10, A9	ADC2P, ADC2N	Input	ADC2 Differential Inputs with Internal 100Ω Differential Resistor. Leave these pins floating if unused.
V10, V9	ADC3P, ADC3N	Input	ADC3 Differential Inputs with Internal 100Ω Differential Resistor. Leave these pins floating if unused.
J3	VCO_FINE	Input	On-Chip Device Clock Multiplier and PLL Fine Loop Filter Input. If the PLL is not in use, leave this pin floating and disable the PLL via the control registers.
J4	VCO_COARSE	Input	On-Chip Device Clock Multiplier and PLL Coarse Loop Filter Input. If the PLL is not in use, leave this pin floating and disable the PLL via the control registers.
K4	VCO_VCM	Input	On-Chip Device Clock Multiplier and VCO Common-Mode Input. If the PLL is not in use, leave this pin floating and disable the PLL via the control registers.
N9, N10	TDP, TDN	Input	Anode and Cathode of Temperature Diodes. This feature is not supported. Tie TDP and TDN to GND.
J1, K1	CLKINP, CLKINN	Input	Differential Clock Inputs with Nominal 100Ω Termination. These self biased inputs require ac coupling. When the onchip clock multiplier PLL is enabled, this input is the reference clock input. If the PLL is disabled, an RF clock equal to the DAC output sample rate is required.
CMOS Inputs and Outputs ${ }^{1}$			
G13	CSB	Input	Serial Port Enable Input. Active low.
H13	SCLK	Input	Serial Plot Clock Input.
F13	SDIO	Input/output	Serial Port Bidirectional Data Input/Output.
J13	SDO	Output	Serial Port Data Output.
C12	RESETB	Input	Active Low Reset Input. RESETB places digital logic and SPI registers in a known default state. RESETB must be connected to a digital IC that is capable of issuing a reset signal for the first step in the device initialization process.
E13, D13	RXEN0, RXEN1	Input	Active High ADC and Receive Datapath Enable Inputs. RXENx is also SPI configurable.
P13, R13	TXENO, TXEN1	Input	Active High DAC and Transmit Datapath Enable Inputs. TXENx is also SPI configurable.
D12, D11	ADC0_FD0, ADCO_FD1	Output	ADCO Fast Detect Outputs by Default. Do not connect if unused.
E12, E11	ADC1_FD0, ADC1_FD1	Output	ADC1 Fast Detect Outputs by Default. Do not connect if unused.
F12, F11	ADC2_FD0, ADC2_FD1	Output	ADC2 Fast Detect Outputs by Default. Do not connect if unused.
G12, G11	ADC3_FD0, ADC3_FD1	Output	ADC3 Fast Detect Outputs by Default. Do not connect if unused.
P12, R12	IRQB_0, IRQB_1	Output	Interrupt Request Outputs. These pins are open-drain, active low outputs (CMOS levels with respect to DVDD1P8). Connect $\mathrm{a}>5 \mathrm{k} \Omega$ pull-up resistor to DVDD1P8 to prevent these pins from floating when unused.
N12, M12, N11, M11, P11, R11	GPIO0 to GPIO5	Input/output	General-Purpose Input or Output Pins. These pins control auxiliary functions related to the Tx datapaths.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 21. Pin Function Descriptions

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 21. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
No Connects and Do Not Connects			
J6, K6	NC	NC	No Connect. These pins can be left open or connected.
H4, L4, L15, L16	DNC	DNC	Do Not Connect. The pins must be kept open.

1 CMOS inputs do not have pull-up or pull-down resistors.
2 SERDINX \pm and SERDOUT $x \pm$ include 100Ω internal termination resistors.

TYPICAL PERFORMANCE CHARACTERISTICS

DAC

The data curves represent the average performance across all outputs with harmonics and spurs falling in the first Nyquist zone (<fidac $/ 2$). All SFDR, IMD3, and NSD data measured on a laboratory evaluation board. All data for phase noise and ACLR is measured on the AD9081-FMCA-EBZ or the AD9082-FMCA-EBZ customer evaluation board. For additional information on the JESD204B and JESD204C mode configurations see the UG-1578 user guide.

Figure 6. HD2 vs. $f_{\text {OUT }}$ over Digital Scale, 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, Mode 15C

Figure 7. HD2 vs. $f_{\text {OUT }}$ over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, Mode 15C

Figure 8. HD3 vs. fout over Digital Scale, 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, Mode 15C

Figure 9. HD2 vs. fout over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, Mode 15C

Figure 10. HD2 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, Mode 16B

Figure 11. HD3 vs. $f_{\text {OUT }}$ over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, Mode 15C

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 12. HD3 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, Mode 15C

Figure 13. SFDR, Worst Spurious vs. fout over Digital Scale, 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, Mode 15C

Figure 14. SFDR, Worst Spurious vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, Mode 15C

Figure 15. HD3 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, Mode 16B

Figure 16. SFDR, Worst Spurious vs. fout over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, Mode 15C

Figure 17. SFDR, Worst Spurious vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, Mode 16B

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 18. IMD3 vs. $f_{\text {OUT }}$ over Digital Scale (Mode 17B), 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, Mode 15C; IMD3 is a Two-Tone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale

Figure 19. IMD3 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, Mode 15C; IMD3 is a TwoTone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale

Figure 20. IMD3 vs. $f_{\text {OUT }}$ over $f_{\text {DAC, }}$, Digital Scale -7 dBFS; IMD3 is a Two-Tone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale

Figure 21. IMD3 vs. fout over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, Mode 15C; IMD3 is a TwoTone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale

Figure 22. IMD3 vs. $f_{\text {OUT }}$ over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, Mode 16B; IMD3 is a TwoTone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale

Figure 23. SFDR, Worst In-Band Spurious vs. fout over $f_{D A C}$, with 0 dBFS Tone Level

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 24. DACO Fundamental Output Power vs. $f_{\text {OUT }}$ Across $f_{\text {DAC }}$, at 0 dBFS Digital Back Off, Measured on a Laboratory Evaluation Board; the AD9081-FMCA-EBZ or AD9082-FMCA-EBZ Evaluation Board has a Different PCB Layout and Results in a Different Frequency Response when Compared to a Laboratory Evaluation Board

Figure 25. Single Sideband Phase Noise vs. Frequency Offset for Different Clock Input Power ($\mathrm{P}_{\text {CLK }}$), $f_{\text {OUT }}=1.8 \mathrm{GHz}$, External 12 GHz Clock Input with Clock PLL Disabled

Figure 26. Single-Tone NSD Measured at 10% Offset from fout vs. fout over $f_{\text {DAC }}$, Shuffle On, 16-Bit Resolution, Mode 15C

Figure 27. Single Sideband Phase Noise vs. Frequency Offset for Different PLL Reference Clocks ($f_{\text {REF }}$), $f_{\text {OUT }}=1.8 \mathrm{GHz}, f_{D A C}=12$ GSPS, PLL Enabled with Exception of External 12 GHz Clock Input with Clock PLL Disabled

Figure 28. Single Sideband Phase Noise vs. Frequency Offset for Different DAC Output Frequencies (fout), External 12 GHz Clock Input with Clock PLL Disabled

Figure 29. Single-Tone NSD Measured at 10% Offset from fout vs. $f_{\text {OUT }}$ over $f_{\text {DAC }}$, 12-Bit Resolution, Shuffle On, Mode 24C

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 30. Single-Tone NSD Measured at 10% Offset from fout vs. $f_{\text {OUT }}$, Shuffle Off vs. Shuffle On, $f_{D A C}=11796.48$ MSPS, 16-Bit Resolution, Mode 15C

Figure 31. Dual Band ACLR Performance for Two 20 MHz LTE carriers at $f_{\text {OUT }}=1.88 \mathrm{GHz}$ and $f_{\text {OUT }}=2.145 \mathrm{GHz}$ refer to figure 32 for a wideband plot); Showing a Close Up of One Carrier at $f_{\text {OUT }}=1.88$ GHz, $f_{D A C}=11.796$ GSPS, Test Vector PAR = 7.7 dB with -1 dBFS Back Off, Channel Interpolation 3x, Main Interpolation 8x, Mode 9C

Figure 32. Dual Band Wideband Plot for Two 20 MHz LTE Carriers at fout $=1.88 \mathrm{GHz}$ and $f_{O U T}=2.145 \mathrm{GHz}$ (3GPP Bands, B1 and B3, Respectively), at $f_{D A C}=11.796$ GSPS, Test Vector PAR $=7.7 \mathrm{~dB}$ with -1 dBFS Back Off, Channel Interpolation 3x, Main Interpolation 8x, Mode 9C

Figure 33. Single-Tone NSD Measured at 10% Offset from fout vs. $f_{\text {OUT }}$, Shuffle Off vs. Shuffle On, $f_{D A C}=11796.48$ MSPS, 12-Bit Resolution, Mode 24C

Figure 34. Dual Band ACLR Performance for two 20 MHz LTE carriers at fout $=1.88 \mathrm{GHz}$ and $f_{\text {OUT }}=2.145 \mathrm{GHz}$ (Refer to Figure 32 for a Wideband Plot); Showing a Close-up of One Carrier at $f_{\text {OUT }}=2.145 \mathrm{GHz}, f_{\text {DAC }}=11.796$ GSPS, Test Vector PAR = 7.7 dB with -1 dBFS Back Off, Channel Interpolation 3x, Main Interpolation 8x, Mode 9C

Figure 35. Adjacent Channel Leakage Ratio (ACLR) Performance for 100 MHz $5 G$ Test Vector at $f_{O U T}=3.9 \mathrm{GHz}$ and $f_{D A C}=11.898$ GSPS, Test Vector Peak to RMS = 11.7 dB with -1 dBFS Back Off (Mode 9C), Channel Interpolation 3x, Main Interpolation 8x

TYPICAL PERFORMANCE CHARACTERISTICS

ADC

Nominal supplies, sampling rate (sample frequency $\left(\mathrm{f}_{\mathrm{S}}\right)$ or $\left.\mathrm{f}_{\mathrm{ADC}}\right)=3$ GSPS with DAC clock frequency ($\mathrm{f}_{\mathrm{CLK}}$) $=12 \mathrm{GHz}$, direct RF clock. The ADC datapath is configured for a complex I/Q data rate (f_{S} DATA $)=1500 \mathrm{MSPS}$ and decimation of $2 \times$ with $N C O$ tuned to $\mathrm{f}_{\mathrm{S}} / 4$ ($\mathrm{f}_{\mathrm{S}} / 4$ means the same as $f_{A D C}(4)$. JTx mode of $16 \mathrm{C}(\mathrm{L}=8, \mathrm{M}=8, F=2, \mathrm{~S}=1, \mathrm{~K}=128, \mathrm{E}=1, \mathrm{~N}=16, \mathrm{NP}=16), \mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right), 128 \mathrm{kFF}$ sample with five averages, and $A_{\mathbb{I N}}=-1 \mathrm{dBFS}$, unless otherwise noted.

Figure 36. Single-Tone FFT at $f_{I N}=450 \mathrm{MHz}$

Figure 37. Single-Tone FFT at $f_{I N}=900 \mathrm{MHz}$

Figure 38. Single-Tone FFT at $f_{I N}=1800 \mathrm{MHz}$

Figure 39. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=450 \mathrm{MHz}, f_{S}=4$ GSPS

Figure 40. Single-Tone SFDR and SNR vs. $A_{I_{N}}$ at $f_{I_{N}}=900 \mathrm{MHz}, f_{S}=4$ GSPS

\bar{j}
Figure 41. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=1800 \mathrm{MHz}, f_{S}=4$ GSPS

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 42. Single-Tone FFT at $f_{I_{N}}=2700 \mathrm{MHz}$

Figure 43. Single-Tone FFT at $f_{I_{N}}=3600 \mathrm{MHz}$

Figure 44. Single-Tone FFT at $f_{I N}=4700 \mathrm{MHz}$

Figure 45. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=2700 \mathrm{MHz}, f_{S}=4$ GSPS

Figure 46. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=3600 \mathrm{MHz}, f_{S}=4$ GSPS

Figure 47. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=4500 \mathrm{MHz}, f_{S}=4$ GSPS

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 48. Single-Tone FFT at $f_{I_{N}}=5400 \mathrm{MHz}$

Figure 49. Single-Tone FFT at $f_{I_{N}}=6300 \mathrm{MHz}$

Figure 50. Single-Tone FFT at $f_{I N}=7200 \mathrm{MHz}$

Figure 51. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=5400 \mathrm{MHz}, f_{S}=4$ GSPS

Figure 52. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=6300 \mathrm{MHz}, f_{S}=4$ GSPS

Figure 53. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=7200 \mathrm{MHz}, f_{S}=4$ GSPS

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 54. Two-Tone FFT, $f_{I N 1}=1.775 \mathrm{GHz}, f_{f_{N 2}}=1.825 \mathrm{GHz}$,
$A_{I N 1}$ and $A_{I N 2}=-7 d B F S$ (IMD3L $=2 f_{I_{N 1}}-f_{I N 2}$, and IMD3H $=2 f_{N 2}-f_{I N 1}$; IMD3L and IMD3H Are the Lower and Higher IMD3 Product Components, Respectively)

Figure 55. Two-Tone FFT, $f_{I N 1}=2.675 \mathrm{GHz}, f_{I N 2}=2.725 \mathrm{GHz}$, $A_{\text {IN } 1}$ and $A_{\text {IN } 2}=-7 d B F S$

Figure 56. Two-Tone FFT, $f_{N 1}=3.575 \mathrm{GHz}, f_{I_{N 2}}=3.625 \mathrm{GHz}$, $A_{\text {IN } 1}$ and $A_{I_{N} 2}=-7 d B F S$

Figure 57. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I_{N} 1}=1.775 \mathrm{GHz}, f_{I_{N 2}}=1.825 \mathrm{GHz}$

Figure 58. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I N 1}=2.675 \mathrm{GHz}, f_{N 2}=2.725 \mathrm{GHz}$

Figure 59. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I N 1}=3.575 \mathrm{GHz}, f_{I N 2}=3.625 \mathrm{GHz}$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 60. Two-Tone FFT, $f_{I N 1}=5.375 \mathrm{GHz}, f_{I_{N 2}}=5.425 \mathrm{GHz}$,
$A_{I_{1} 1}$ and $A_{I N 2}=-7 d B F S$

Figure 61. SNR and SFDR vs. Input Frequency with $A_{I N}=-1 d B F S, f_{S}=4$ GSPS

Figure 62. Harmonics (HD2 and HD3) vs. Input Frequency with $A_{/ N}=-1 d B F S$, $f_{S}=4$ GSPS

Figure 63. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I_{N} 1}=5.375 \mathrm{GHz}, f_{I_{N 2}}=5.425 \mathrm{GHz}$

Figure 64. SNR vs. Input Frequency, Direct Clock vs. On-Chip PLL Clock, $A_{I N}=-1 \mathrm{dBFS}, f_{S}=4$ GSPS

Figure 65. FFT Close-In Comparison, Direct Clock vs. On-Chip PLL Clock, \boldsymbol{f}_{N} $=2.7 \mathrm{GHz}, A_{I N}=-1 \mathrm{dBFS}, f_{S}=4 \mathrm{GSPS}$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 66. SNR and SFDR vs. Die Temperature, $f_{I N}=1.85 \mathrm{GHz}, A_{I N}=-1 \mathrm{dBFS}, f_{S}=4 \mathrm{GSPS}$

Figure 67. SNR and SFDR vs. Sample Frequency (f_{S}), $f_{I_{N}}=450 \mathrm{MHz}, f_{S}=4$ GSPS

Figure 68. Power vs. Junction Temperature, $f_{I_{N}}=1.85 \mathrm{GHz}, A_{I N}=-1 \mathrm{dBFS}, f_{S}=$ 4 GSPS

Figure 69. Harmonics (HD2, HD3, and Interleaving) vs. Junction Temperature, $f_{I_{N}}=1.85 \mathrm{GHz}, f_{S}=4 \mathrm{GSPS}$

Figure 70. Harmonics (HD2 and HD3) vs. Sample Rate, $f_{I_{N}}=450 \mathrm{MHz}$

Figure 71. Power vs. Sample Rate, $f_{\mathcal{N}}=450 \mathrm{MHz}$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 72. Input Referred Noise Histogram

Figure 73. $D N L, f_{I N}=255 \mathrm{MHz}$

Figure 74. Measured Input Bandwidth ADC Input on AD9081-FMCA-EBZ (No Matching Network)

Figure 75. INL, $f_{N}=255 \mathrm{MHz}$

THEORY OF OPERATION

The AD9988 is a highly integrated, mixed-signal, direct radio frequency (RF) sampling transceiver offering four transmitters and four receivers (4T4R) and digital signal processing (DSP) functions (see Figure 1). The device delivers a versatile combination of high performance, configurability, and low power consumption demanded by wireless infrastructure applications such as multiband macro 5 G and mmWave 5 G base station radios. The AD9988 also offers features to support the time division duplex (TDD) and the frequency division duplex (FDD) techniques.

The receive path consists of four pipelined, 12-bit, 4 GSPS rate, RF analog-to-digital converter (ADC) cores. The transmit path consists of four 16-bit, 12 GSPS maximum sample rate, RF digital-to-ana\log converter (DAC) cores. Both receive and transmit paths are designed and optimized to sample and synthesize signals up to 7.5 GHz , with maximum instantaneous bandwidths of up to 1.2 GHz with a sample resolution of 16 bits. The device also supports lower resolutions such as 12 bits and 8 bits to reduce the bit rate of the JESD204B/C link for applications that do not require the higher dynamic range a 16 -bit resolution offers. The wide instantaneous bandwidth allows the chip to support multiple carrier bands or a single wide band within a single device. The combination of the direct RF conversion architecture relaxes the requirements of the RF filters when compared to traditional intermediate frequency (IF) receivers. Several auxiliary functions, such fast detect and signal monitor, a programmable finite impulse response (FIR) filter, trans-
mit downstream power amplifier protection, and general-purpose inputs/output (GPIO) control are also integrated.
The DAC and ADC cores use sampling clocks that originate from either an external clock source or an on-chip clock multiplier that consists of an integer PLL circuit and voltage-controlled oscillator (VCO).
The device features eight transmit and eight receive lanes, where each lane supports up to 24.75 Gbps JESD204C or up to 15.5 Gbps JESD204B as a single or a dual link. Multichip synchronization and deterministic latency are supported according to JESD204B/C Subclass 1. The JESD204B/C interface supports a wide range of setups depending on the interface bandwidth requirements of the custom application specific IC (ASIC) or field-programmable gate array (FPGA). Refer to UG-1578, the device user guide, for more information on device features and operation.

The AD9988 has an on-chip thermal management unit (TMU) that can be used to measure die junction temperature as part of a thermal management solution to guarantee thermal stability during system operation. The device is controlled via a standard 4-wire serial port interface (SPI) with support for 3-wire SPI communications. A comprehensive set of power-down modes are included to minimize power consumption during system downtime. The AD9988 is packaged in a $15 \mathrm{~mm} \times 15 \mathrm{~mm}$, 324-ball, thermally enhanced, ball grid array (BGA_ED).

APPLICATIONS INFORMATION

Refer to UG-1578, the device user guide, for more information on device initialization and other Applications Information.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-275-KKAB-1
Figure 76. 324-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]
(BP-324-3)
Dimensions shown in millimeters

ORDERING GUIDE

				Package
Model 1	Temperature Range 2	Package Description	Ordering Quantity	Option
AD99988BBPZ-4D4AC	$-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	$324-$ Ball BGA_ED	Tray, 126	BP-324-3
AD9988BBPZRL-4D4AC	$-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	$324-$ Ball BGA_ED	Reel, 1000	BP-324-3

1 Z = RoHS Compliant Part.
${ }^{2}$ Specified operating junction temperature (T_{J}).

EVALUATION BOARDS

Model	Description
AD9988-FMCB-EBZ	AD9988 Evaluation Board

