
A2P75S12M3

Datasheet

ACEPACK[™] 2 sixpack topology, 1200 V, 75 A trench gate field-stop IGBT M series, soft diode and NTC

ACEPACK™ 2

Features

- ACEPACK[™] 2 power module
 - DBC Cu Al₂O₃ Cu
- Sixpack topology
 - 1200 V, 75 A IGBTs and diodes
 - Soft and fast recovery diode
- Integrated NTC

Applications

- Inverters
- Industrial
- Motor drives

Description

This power module is a sixpack topology in an ACEPACK[™] 2 package with NTC, integrating the advanced trench gate field-stop technologies from STMicroelectronics. This new IGBT technology represents the best compromise between conduction and switching loss, to maximize the efficiency of any converter system up to 20 kHz.

Product status	
A2P75S12M3	

Product summary				
Order code	A2P75S12M3			
Marking	A2P75S12M3			
Package	ACEPACK™ 2			
Leads type	Solder contact pins			

1 Electrical ratings

1.1 IGBT

Limiting values at T_J = 25 °C, unless otherwise specified.

Table 1. Absolute maximum	ratings of	the IGBT
---------------------------	------------	----------

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage ($V_{GE} = 0$)	1200	V
Ι _C	Continuous collector current (T_C = 100 °C)	75	А
I_{CP} ⁽¹⁾	Pulsed collector current ($t_p = 1 \text{ ms}$)	150	А
V_{GE}	Gate-emitter voltage	±20	V
P _{TOT}	Total power dissipation of each IGBT (T _C = 25 °C, T _J = 175 °C)	454.5	W
T _{JMAX}	Maximum junction temperature	175	°C
T _{Jop}	Operating junction temperature range under switching conditions	-40 to 150	°C

1. Pulse width limited by maximum junction temperature.

Table 2. Electrical characteristics of the IGBT

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	$\frac{\text{Collector-emitter}}{\text{breakdown voltage}} I_{\text{C}} = 1 \text{ mA}, \text{ V}_{\text{GE}} = 0 \text{ V}$	1200			V	
Vor(ast)	0 11 1 11	V _{GE} = 15 V, I _C = 75 A		1.95	2.3	
V _{CE(sat)} Collector-emitter (terminal) saturation voltage	$V_{CT} = 15 V I_C = 75 A$		2.3		V	
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	5	6	7	V
I _{CES}	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 1200 V			100	μA
I _{GES}	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ± 20 V			± 500	nA
C _{ies}	Input capacitance			4700		pF
C _{oes}	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V		350		pF
C _{res}	Reverse transfer capacitance			190		pF
Qg	Total gate charge	V_{CC} = 960 V, I _C = 75 A, V _{GE} = ±15 V		350		nC
t _{d(on)}	Turn-on delay time			198		ns
tr	Current rise time	V_{CC} = 600 V, I _C = 75 A, R _G = 10 Ω,		32		ns
E _{on} ⁽¹⁾	Turn-on switching energy	V _{GE} = ±15 V, di/dt = 1900 A/µs		3.59		mJ

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off delay time	V/ = 600 V/ I- = 75 A		250		ns
t _f	Current fall time	- V _{CC} = 600 V, I _C = 75 A, R _G = 10 Ω, V _{GE} = ±15 V,		159		ns
E _{off} ⁽²⁾	Turn-off switching energy	dv/dt = 6000 V/µs;		5.13		mJ
t _{d(on)}	Turn-on delay time	V _{CC} = 600 V, I _C = 75 A,		200		ns
tr	Current rise time	$R_{G} = 10 \Omega, V_{GE} = \pm 15 V,$		35		ns
E _{on} ⁽¹⁾	Turn-on switching energy	di/dt = 1718 A/µs, T _J = 150 °C		6.28		mJ
t _{d(off)}	Turn-off delay time	V _{CC} = 600 V, I _C = 75 A,		266		ns
t _f	Current fall time	R_{G} = 10 Ω, V_{GE} = ±15 V,		251		ns
E _{off} ⁽²⁾	Turn-off switching energy	dv/dt = 4900 V/µs, T _J = 150 °C		7.7		mJ
t _{SC}	Short-circuit withstand time	$V_{CC} \le 600 \text{ V}, V_{GE} \le 15 \text{ V},$ $T_{Jstart} \le 150 \text{ °C}$	10			μs
R _{THj-c}	Thermal resistance junction-to-case	Each IGBT		0.30	0.33	°C/W
R _{THc-h}	Thermal resistance case-to-heatsink	Each IGBT, $\lambda_{grease} = 1 \text{ W/(m} \cdot ^{\circ}\text{C})$		0.60		°C/W

1. Including the reverse recovery of the diode.

2. Including the tail of the collector current.

1.2 Diode

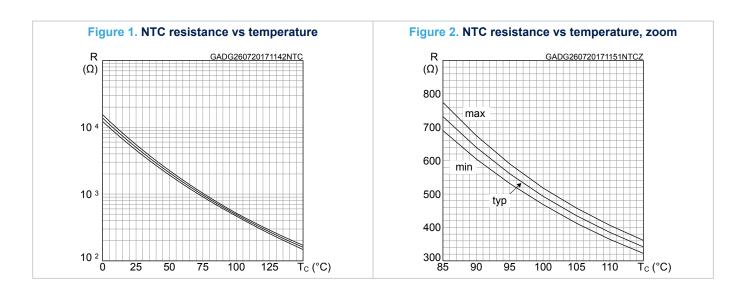
Limiting values at T_J = 25 °C, unless otherwise specified.

Table 3. Absolute maximum ratings of the diode

Symbol	Parameter	Value	Unit
V _{RRM}	Repetitive peak reverse voltage	1200	V _{rms}
١ _F	Continuous forward current (T _C = 100 °C)	75	А
I _{FP} ⁽¹⁾	Pulsed forward current (t _p = 1 ms)	150	А
T _{JMAX}	Maximum junction temperature	175	°C
T _{Jop}	Operating junction temperature range under switching conditions	-40 to 150	°C

1. Pulse width limited by maximum junction temperature.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward voltage	I _F = 75 A	-	2.95	4.1	v
(terminal)	Forward voltage	I _F = 75 A, T _J = 150 °C	-	2.3		V
t _{rr}	Reverse recovery time		-	200		ns
Qrr	Reverse recovery charge	$I_F = 75 \text{ A}, V_R = 600 \text{ V},$	-	6.0		μC
I _{rrm}	Reverse recovery current	V _{GE} = ±15 V, di/dt = 1900 A/µs	-	78		А
E _{rec}	Reverse recovery energy		-	2.2		mJ
t _{rr}	Reverse recovery time	I _F = 75 A, V _R = 600 V,	-	500		ns
Qrr	Reverse recovery charge	V _{GE} = ±15 V,	-	12.5		μC
I _{rrm}	Reverse recovery current	di/dt = 1718 A/µs,	-	90		А
E _{rec}	Reverse recovery energy	T _J = 150 °C	-	5.2		mJ
R _{THj-c}	Thermal resistance junction-to-case	Each diode	-	0.55	0.60	°C/W
R _{THc-h}	Thermal resistance case- to-heatsink	Each diode, $\lambda_{grease} = 1 \text{ W/(m} \cdot ^{\circ}\text{C})$	-	0.75		°C/W

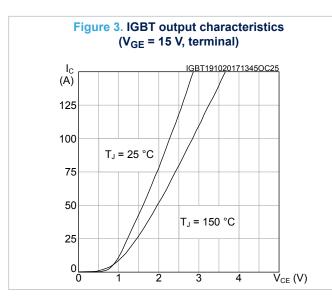

Table 4. Electrical characteristics of the diode

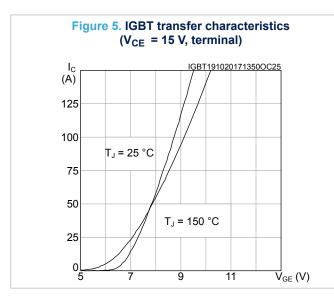
1.3

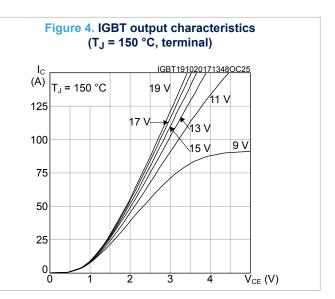
NTC

Table 5. NTC temperature sensor, considered as stand-alone

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
R ₂₅	Resistance	T = 25 °C		5		kΩ
R ₁₀₀	Resistance	T = 100 °C		493		Ω
ΔR/R	Deviation of R ₁₀₀		-5		+5	%
B _{25/50}	B-constant			3375		К
B _{25/80}	B-constant			3411		К
Т	Operating temperature range		-40		150	°C


1.4 Package


Table 6. ACEPACK™ 2 package


Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{isol}	Isolation voltage (AC voltage, t = 60 s)			2500	V _{rms}
T _{stg}	Storage temperature			125	°C
CTI	Comparative tracking index				
Ls	Stray inductance module P1 - EW loop		33.5		nH
R _s	Module single lead resistance, terminal to chip		3.6		mΩ

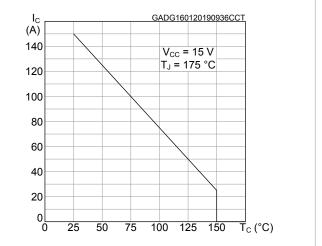
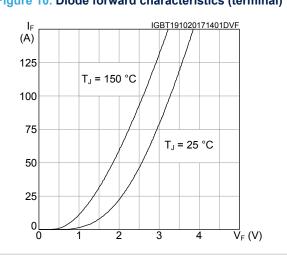
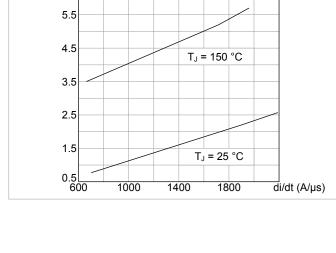

2 Electrical characteristics curves

Figure 6. IGBT collector current vs case temperature

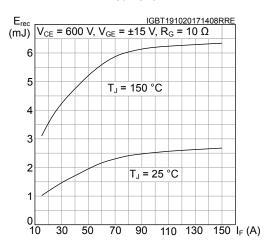

DS11655 - Rev 6 Downloaded from Arrow.com.



 $\begin{tabular}{|lgBT191020171351SLG|} \hline V_{CC} = 600 \ V, \ I_{C} = 75 \ A, \ V_{GE} = \pm 15 \ V \ \end{tabular}$ Е (mJ) 14 12 E_{ON} (T_J =25°C) 10 E_{ON} (T_J =150°C) 8 E_{OFF} (T_J =150°C) 6 E_{OFF} (T_J =25°C) 4 2 oL O 10 20 30 40 R_G (Ω)

Figure 8. Switching energy vs gate resistance

 $0 \frac{|T_{J} = 125 \text{ °C}, V_{GE} = \pm 15 \text{ V}, R_{G} = 10 \Omega}{300 \text{ }600}$


Figure 11. Diode reverse recovery energy vs diode current

slope

 V_{CE} = 600 V, V_{GE} = ±15 V, I_F = 75 A

IGBT191020171402RRE

Figure 12. Diode reverse recovery energy vs forward current

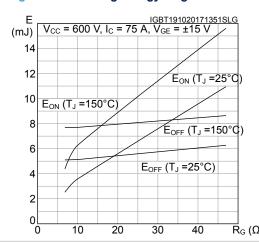
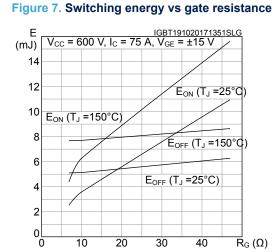



Figure 9. IGBT reverse biased safe operating area

(RBSOA)

IGBT191020171358OC175

V_{CE} (V)

I_C (A)

70

60

50

40

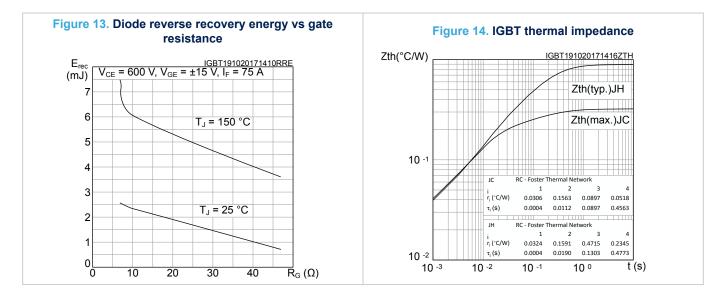
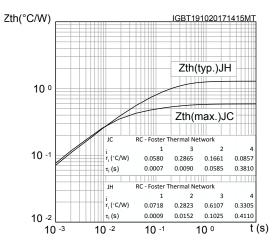
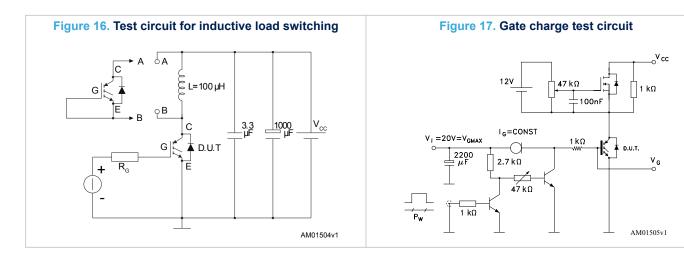
30

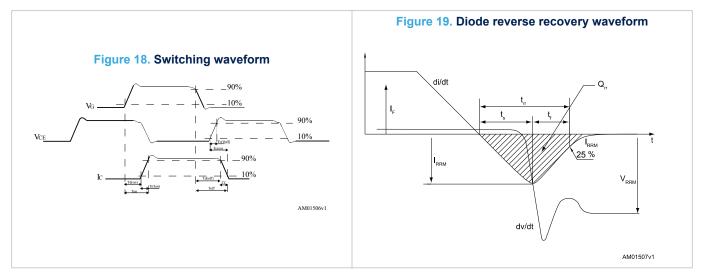
20

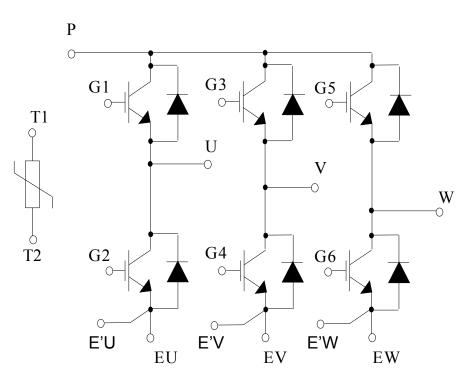
10

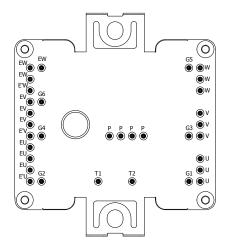
Erec

(mJ)

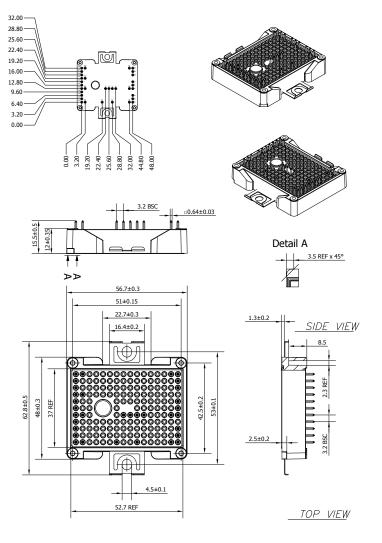





Figure 15. Inverter diode thermal impedance


3 Test circuits



4 Topology and pin description



5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

5.1 ACEPACK[™] 2 SIXPACK solder pins package information

Figure 22. ACEPACK[™] 2 sixpack solder pins package outline (dimensions are in mm)

8569722_rev4

- The lead size includes the thickness of the lead plating material.
- Dimensions do not include mold protrusion.
- Package dimensions do not include any eventual metal burrs.

Revision history

Date	Revision	Changes
19-May-2016	1	Initial release.
24-May-2016	2	Updated <i>Table 5: "Electrical characteristics of the diode"</i> . Minor text changes.
01-Feb-2017	3	Added Figure 19: "Package top view with pinout" and Section 2: "Electrical characteristics (curves)". Minor text changes.
19-Oct-2017	4	Updated Section 1: "Electrical ratings", Section 2: "Electrical characteristics curves", and Section 5: "Package information". Minor text changes.
06-Mar-2018	5	Document status promoted from preliminary data to production data. Removed maturity status indication from cover page. Updated features in cover page, Section 1.1 IGBT, Section 1.2 Diode, Section 1.4 Package, Section 2 Electrical characteristics curves and Figure 22. ACEPACK™ 2 sixpack solder pins package outline (dimensions are in mm). Minor text changes.
16-Jan-2019	6	Added Figure 6. Minor text changes.

Table 7. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved