REVISIONS																				
LTR	DESCRIPTION									DA	TE (Y	R-MO-E	DA)	APPROVED						
А	Upda	Update boilerplate to MIL-PRF-38535 requirements CFS												06-0	6-15		Т	homas	M. He	SS
REV	А	Α	А	Α	А	А														
SHEET	35	36	37	38	39	40														
REV	А	А	А	А	А	А	А	А	А	А	А	Α	А	А	А	А	А	А	А	А
SHEET	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
REV STATUS				REV	,		А	А	А	А	А	А	Α	А	А	Α	А	А	А	А
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A PREPARED Thomas M. Hess STANDARD MICROCIRCUIT CHECKED BY Thomas M. Hess						DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 http://www.dscc.dla.mil														
DRAWING APPROVED BY THIS DRAWING IS AVAILABLE Monica L. Poelking FOR USE BY ALL Monica L. Poelking DEPARTMENTS DEPARTMENT OF DEFENSE DEPARTMENT OF DEFENSE DRAWING APPROVAL DATE 93-05-19 93-05-19						MICROCIRCUIT, DIGITAL, CMOS, UNIVERSAL SERIAL CONTROLLER, MONOLITHIC SILICON					1									
AMS	SC N/A			REVI	SION	LEVEL	4			SIZ / SHE	ZE A ET	CA	GE CC 67268	DE B	10	Ę	5962-	9065	7	

DSCC FORM 2233 APR 97

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.

1.2 PIN. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	<u>Generic number</u>	Circuit function
01	16C30	Universal serial controller

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class		Device requirements documentation								
Μ	Vendor self-certification to the requirements for MIL-STD-883 compliant, non- JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A									
Q or V	Certific	Certification and qualification to MIL-PRF-38535								
1 Case outline(s).	The case outline(s) are as de	esignated in MIL-S	D-1835 and as follows:							
Outline letter	Descriptive designator	<u>Terminals</u>	Package style							
Х	CMGA3-P68	68	Pin grid array							

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-90657
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 2
DSCC FORM 2234			

1.2.4

1.3 Absolute maximum ratings. 1/

	Supply voltage range (V_{CC})	-0.3 V to +7.0 V dc -0.3 V dc to V _{CC} + 0.3 V dc
	Lead temperature (soldering, 10 seconds)	+270°C See MIL-STD-1835
	Junction temperature (T _J)	+145°C -65°C to +150°C
1.4	Recommended operating conditions.	
	Supply voltage range (V $_{CC}$) Ambient operating temperature range (T $_{A}$)	+4.5 V dc to +5.5 V dc -55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	 Test Method Standard Microcircuits.
MIL-STD-1835	- Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-90657
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 3
DSCC FORM 2234			

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 <u>Case outline</u>. The case outline shall be in accordance with 1.2.4 herein.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.

3.2.3 <u>Block diagram</u>. The block diagram shall be as specified on figure 2.

3.2.4 Timing waveforms and test circuit. The timing waveforms and test circuit shall be as specified on figure 3.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 105 (see MIL-PRF-38535, appendix A).

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-90657
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 4
DSCC FORM 2234			

Downloaded from Arrow.com.

Test	Symbol	Conditions -55°C <u><</u> T _A <u><</u> +129	<u>1/</u> 5°C,	Group A	Device	Lir	nits	Unit
		$4.5 \ V \leq V_{CC} \leq 5.8$ unless otherwise sp	5 V ecified	subgroups	types	Min	Max	
Input high voltage	V _{IH}			1, 2, 3	All	2.2	V _{CC} + 0.3	V
Input low voltage	V _{IL}					-0.3	0.8	V
Output high voltage	V _{OH1}	$I_{OH} = -1.6 \text{ mA}, V_{CC} = 4.4$	5 V			2.4		V
Output high voltage	V _{OH2}	$I_{OH} = -250 \ \mu A, \ V_{CC} = 4.$	5 V			V _{CC} – 0.8		V
Output low voltage	V _{OL}	I_{OL} = +2 mA, V_{CC} = 4.5	V				0.4	V
Input leakage current	IIL	$0.4 V < V_{IN} < 2.4 V$					10	μA
Output leakage current	I _{OL}	$0.4 V < V_{IN} < 2.4 V$ $V_{CC} = 5.5 V$					10	μA
V _{CC} supply current	I _{CCI}	$V_{CC} = 5.0 V$ $V_{HI} = 4.8 V. V_{HI} = -0.2 V$	/				50	mA
Input capacitance	C _{IN}	See 4.4.1.c	,	4	All		10	pF
Output capacitance	C _{OUT}	See 4.4.1.c					15	pF
Bidirectional capacitance	C _{I/O}	See 4.4.1.c					20	pF
Functional testing		See 4.4.1.b		7, 8	All			
Bus cycle time	1	$V_{CC} = 4.5 V$		9, 10, 11	All	160		ns
AS low width	2					40		ns
AS high width	3					90		ns
DS low width	4	-				70		ns
DS high width	5					60		ns
\overline{AS} to \overline{DS} delay time	6	-				5		ns
\overline{DS} to \overline{AS} delay time	7					5		ns
See footnotes at end of tab	le.	I						<u> </u>
STA		WING	SIZE A				5962·	·9065
	CENTER (COLUMBUS		REVIS		_	SHEET	

Test	Symbol	Conditior -55°C <u><</u> T _A <u>></u>	ns <u>1</u> / ⊦125°C,	Group A	Device	Lir	nits	Unit
		$4.5 \text{ V} \le \text{V}_{\text{CC}} \le$ unless otherwise	5.5 V specified	subgroups	types	Min	Max	-
$\overline{\text{DS}}\downarrow$ to data active delay	8	$V_{CC} = 4.5 V$ See figure 3.		9, 10, 11	All	0		ns
$\overline{\text{DS}}\downarrow$ to data valid delay	9	Ŭ					85	ns
DS↑ to data not valid delav	10					0		ns
DS↑ to data float delay	11						20	ns
$\overline{\text{CS}}$ to $\overline{\text{AS}}$ for setup time	12					15		ns
$\overline{\text{CS}}$ to $\overline{\text{AS}}$ hold time	13					0		ns
Direct address to $\overline{AS}\uparrow$	14					15		ns
Direct address to AS↑	15					5		ns
SITACK to AS↑ setup	16					15		ns
SITACK to AS↑ hold time	17					5		ns
Address to AS↑ setup	18					15		ns
Address to AS↑ hold time	19					5		ns
R/W to \overline{DS} ↓ setup time	20					0		ns
R/\overline{W} to $\overline{DS}\downarrow$ hold time	21					25		ns
DS↓ to RxREQ inactive delay 3/	22						60	ns
DS↑ to RxREQ active	23					0		ns
Write data to DS1 setup	24					30		ns
Write data to DS↑ hold time	25					0		ns
See footnotes at end of tab	le.							
		WING	SIZE A				5962	-90657
DEFENSE SUPPL COLUMBUS,	Y CENTER C	COLUMBUS 3-3990		REVI	SION LEVE	L	SHEET	6

А

TARIFI	Flectrical	performance	characteristics	-	Continued
	LICOULIOUI				001101000

DSCC FORM 2234 APR 97

Test	Symbol	Conditions -55°C <u><</u> T _A <u><</u> +12	<u>1/</u> 25°C,	Group A	Device	Lir	nits	Unit
		$4.5 \text{ V} \le \text{V}_{\text{CC}} \le 5$ unless otherwise s	.5 V pecified	subgroup	s types	Min	Max	
$\overline{\text{DS}}\downarrow$ to $\overline{\text{TxREQ}}$ inactive	26	V _{CC} = 4.5 V		9, 10, 11	All		70	ns
<u>delay <u>4</u>/</u>	07	See figure 3.						<u> </u>
DST to TxREQ active delay	27					0		ns
RD low width	28					70		ns
RD high width	29					60		ns
\overline{AS} to \overline{RD} delay time	30					5		ns
\overline{RD} to \overline{AS} \downarrow delay time	31					5		ns
$\overline{\text{RD}}\downarrow$ to data active delay	32					0		ns
$\overline{RD}\downarrow$ to data valid delay	33						85	ns
RD [↑] to data non valid	34					0		ns
\overline{RD} to data float delay	35						20	ns
RD↓ to RxREQ inactive	36						60	ns
RD↑ to RxREQ active	37					0		ns
WR low width	38					70		ns
WR high width	39					60		ns
\overline{AS} to \overline{WR} \downarrow delay time	40	•				5		ns
\overline{WR} to \overline{AS} \downarrow delay time	41					5		ns
Write data to WR↑ setup	42					30		ns
Write data to WR↑ hold	43					0		ns
WR↓ to TxREQ inactive delay 4/	44						70	ns
See footnotes at end of tab	le.				- .	•		·
STA	NDARD		SIZE				5000	00657
MICROCIRO DEFENSE SUPPLY	CUIT DRA	WING COLUMBUS	A	RE	/ISION LEVE	L	SHEET	-2002/

Test	Symbol	Conditions <u>1</u> / -55°C < T₄ < +125°C.	Group A	Device	Lir	nits	Unit
1650	Symbol	$4.5 V \le V_{CC} \le 5.5 V$	subgroups	types	Min	Max	
	_	unless otherwise specified			IVIIII	IVIAX	
WR↑ to TxREQ active	45	$V_{CC} = 4.5 V$	9, 10, 11	All	0		ns
delay		See figure 3.					
CS to DS↓ setup time	46				0		ns
<u>5/</u>		-					
CS to DS↓ hold time	47				25		ns
<u>5/</u>	40						
Direct address to DS↓	48				5		ns
setup time $\frac{2}{5}$	40				05		
Direct address to DS↓	49				25		ns
$\frac{1}{2} \frac{1}{5}$	50	-					-
SITACK to DS↓ setup	50				5		ns
	54	-			05		-
SITACK to DS↓ noid	21				25		ns
	50	-					
CS to RD↓ setup time	52				0		115
$\frac{\underline{0}}{\underline{0}}$	52				25		
	55				25		115
	54				5		ns
setun time 2/ 5/	54				5		115
Direct address to RD	55				25		ns
hold time $2/5/$	00				20		110
SITACK to RD setup	56				5		ns
time 5/					Ū.		
SITACK to $\overline{RD}\downarrow$ hold	57				25		ns
time 5/							
CS to WR↓ setup time	58				0		ns
<u>5</u> /							
$\overline{\text{CS}}$ to $\overline{\text{WR}}\downarrow$ hold time	59				25		ns
<u>5</u> /							
Direct address to $\overline{WR}\downarrow$	60				5		ns
setup time <u>2/5/</u>							
Direct address to $\overline{WR}\downarrow$	61				25		ns
hold time <u>2</u> / <u>5</u> /							
SITACK to WR↓ setup	62				5		ns
time <u>5</u> /							
SITACK to $\overline{WR}\downarrow$ hold	63				25		ns
time <u>5</u> /							
See footnotes at and of tal	blo						
dee roomotes at enu of tal	010.						
		SIZE					

Α

REVISION LEVEL

А

5962-90657

8

SHEET

TABLE I.	Electrical	performance	characteristics	-	Continued
	LIGOUIIGUI	ponormaneo	onaraotonotioo		001101000

DSCC FORM 2234 APR 97

STANDARD

MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS

COLUMBUS, OHIO 43218-3990

Test	Condition Symbol -55°C < T₄ < +		s <u>1</u> / 25°C,	Group A	Device	Lir	nits	Unit
1650	Cymbol	$4.5 \text{ V} \leq \text{V}_{\text{CC}} \leq 3$	5.5 V	subgroup	os types	LII N4in	Maria	
		unless otherwise s	specified			IVIIN	Max	
RxACK low width <u>5</u> /	64	$V_{CC} = 4.5 V$		9, 10, 11	All	70		ns
		See figure 3.						
RxACK high width <u>5</u> /	65					60		ns
RxACK↓ to data active	66					0		ns
RxACK↓ to data valid	67						85	ns
RxACK [↑] to data not valid	68					0		ns
RxACK [↑] to data float	69						20	ns
RxACK↓ to RxREQ	70						60	ns
RxACK↑ to RxREQ	71					0		ns
TxACK low width	72					70		ns
TxACK high width	73					60		ns
Write data to TxACK	74					30		ns
Write data to TxACK↑	75					0		ns
TxACK↓ to TxREQ	76						60	ns
TxACK↑ to TxREQ	77					0		ns
DS↓ (intack) to READY↓	78						200	ns
READY↓ to data valid	79						40	ns
D↑ to READY↑ delay	80						40	ns
IEI to DS↓ (intack) setup	81					60		ns
IEI to DS↑ (intack) hold	82					0		ns
See footnotes at end of tabl	le.	1		<u> </u>		1	1	1
STA			SIZE				5962	-9065
		VVING COLUMBUS 8-3990		RE	ISION LEVE	L	SHEET	0

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions <u>1</u> / -55°C <u><</u> T _A <u><</u> +125°C,	Group	A Device	Lir	nits	Unit
		$4.5~V \leq V_{CC} \leq 5.5~V \label{eq:VCC}$ unless otherwise specified	subgrou	ps types	Min	Max	-
IEI to IEO delay	83	$V_{CC} = 4.5 V$ See figure 3.	9, 10, 1	1 All		60	ns
$\overline{\text{AS}}^{\uparrow}$ (intack) to IEO delay	84					60	ns
DS↓ (intack) to INT inactive delay	85					200	ns
DS↓ (intack) to WAIT↓ delay	86					40	ns
DS↓ (intack) to WAIT↑ delay	87					200	ns
WAIT ↑ to data valid delav	88					40	ns
RD↓ (intack) to READY↓ delay	89					200	ns
RD↑ to READY↑ delay	90					40	ns
IEI to RD↓ (intack) setup time	91				60		ns
IEI to RD↑ (intack) hold time	92				0		ns
RD↓ (intack) to INT inactive delay	93					200	ns
RD↓ (intack) to WAIT↓ delay	94					40	ns
RD↓ (intack) to WAIT↑ delay	95					200	ns
PITACK low width	96				70		ns
PITACK high width	97				60		ns
AS↑ to PITACK↓ delay time	98				5		ns
PITACK↑ to AS↓ delay time	99				5		ns
PITACK↓ to data active delay	100				0		ns
See footnotes at end of tabl	e.						
STA MICROCIRC	NDARD CUIT DRA	SI WING	ZE A			5962	-90657
DEFENSE SUPPLY COLUMBUS,	COLUMBUS 3-3990	RE	EVISION LEVE A	L	SHEET	10	

Test	Symbol	-55°C <u><</u> T _A <u><</u> +125°C,	Group A	Device	Lir	mits	Unit
		$4.5 \text{ V} \le V_{CC} \le 5.5 \text{ V}$ unless otherwise specifie	subgroup d	s types	Min	Max	
PITACK [↑] to data not valid	101	$V_{CC} = 4.5 V$	9, 10, 11	All	0		ns
delay	102	See figure 3.				20	ne
delay	102					20	115
IEI to PITACK↓ setup time	103				60		ns
IEI to PITACK [↑] hold time	104				0		ns
PITACK↓ to IEO delay	105					60	ns
PITACK↓ to INT inactive delay	106					200	ns
PITACK↓ to READY↓ delay	107					200	ns
PITACK↑ to READY↑ delay	108					40	ns
PITACK↓ to WAIT↓ delay	109					40	ns
PITACK↓ to WAIT↑ delay	110					200	ns
SITACK↓ to IEO inactive	111					200	ns
Strobe high width <u>6</u> /	112				60		ns
Reset low width	113				170		ns
Reset high width	114				60		ns
Reset [↑] to Strobe↓ <u>6</u> /	115				60		ns
$\overline{DS}\downarrow$ to $\overline{READY}\downarrow$ delay	116					50	ns
WR↓ to READY↓ delay	117					50	ns
WR↑ to READY↑ delay	118					40	ns
See footnotes at end of table	e.		L			•	<u>.</u>
STA	NDARD		SIZE			5060	0064
			A			2902	-9003

TABLE I. Electrical performance characteristics - Continued.

TABLE I. Electrical performance characteristics - Continued.								
Test	Symbol	Conditions <u>1</u> / -55°C \leq T _A \leq +125°C, 4.5 V \leq V ₂₀ \leq 5.5 V	Conditions <u>1</u> / -55°C $\leq T_A \leq +125°C$, Group A		Limits		Unit	
		unless otherwise specified	subgroups	types	Min	Max		
$\overline{RD}\downarrow$ to $\overline{READY}\downarrow$ delay	119	$V_{CC} = 4.5 V$ See figure 3.	9, 10, 11	All		50	ns	
RxACK↓ to READY↓ delay	120					50	ns	
RxACK↑ to READY↑ delay	121					40	ns	
TxACK↓ to READY↓ delay	122					50	ns	
TxACK↑ to READY↑ delay	123					40	ns	

1/ All testing to be performed at worst-case test conditions unless otherwise specified.

2/ Direct address is any of A/B, D/C or AD15 – AD8 used as an address bus.

 $\underline{3}$ Parameter applies only if read empties the receive FIFO.

- 4/ Parameter applies only if write fills the transmit FIFO.
- 5/ The parameter applies only when \overline{AS} is not present.
- 6/ Strobe is any of DS, RD, WR, PITACK, RXACK, or TXACK.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-90657
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 12
DSCC FORM 2234			

					(Case X						
	1	2	3	4	5	6	7	8	9	10	11	
L			IEOA	v _{dd}	AD1	AD3	AD5	AD7	v _{dd}			L
к (acka D		ieia O	v _{ss} O	ADO	AD2	AD4		v _{ss} O			к
IAW J L		Y SITACK								R×DA	DCDA O	L
н (a/b C	D/C O								T×CA	T×DA	н
G (Cs C	RESET								CTSA ()	v _{ss} O	G
F (E	BOTTOM	VIEW			v _{ss} ()	v _{ss} O	F
E (СТЅВ		E
D (ds C									T×CB	DCDB	D
с (R/W		v					.,	R×DB	R×CB	С
РІ В (T×ACKB	іе1в О	v _{ss} O		AD10	AD12	AD14	v _{ss} ○			B
A							AD11	AD13	AD15	V _{DD}	/	A
	1	2	3	4	5	6	7	8	9	10		
				FIGUI	RE 1. <u>T</u>	erminal	connect	ions.				
								_				
S ⁻ MICROCI	TAN RCL	DARD JIT DR	AWIN	G			SIZE A					5962-90657
DEFENSE SUPI COLUMBL	ply (JS, OI	CENTER HIO 432	COLU 18-3990	MBUS)				R	EVISION	LEVEL A		SHEET 13

DSCC FORM 2234 APR 97

AFK 97

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

4.2.1 Additional criteria for device class M.

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein.

4.2.2 Additional criteria for device classes Q and V.

- a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II herein.
- c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the functionality of the device. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
- c. Subgroup 4 (C_{IN}, C_{OUT}, and C_{I/O}) shall be measured only for the initial test and after process or design changes which may affect capacitance. A minimum sample size of five devices with zero rejects shall be required.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-90657
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 35
DSCC FORM 2234			

Test requirements	Subgroups	Subgi	roups
	(in accordance with	(in accordance with	
	MIL-STD-883,	MIL-PRF-38	535, table III)
	method 5005, table I)		
	Device	Device	Device
	class M	class Q	class V
Interim electrical			1, 7, 9
parameters (see 4.2)			
Final electrical	1, 2, 3, 7, 8,	1, 2, 3, 7, 8,	1, 2, 3, 7, 8,
parameters (see 4.2)	9, 10, 11 <u>1</u> /	9, 10, 11 <u>1</u> /	9, 10, 11 <u>2</u> /
Group A test	1, 2, 3, 4, 7, 8,	1, 2, 3, 4, 7, 8,	1, 2, 3, 4, 7, 8,
requirements (see 4.4)	9, 10, 11	9, 10, 11	9, 10, 11
Group C end-point electrical	1, 7, 9	1, 7, 9	1, 7, 9
parameters (see 4.4)			
Group D end-point electrical	1, 7, 9	1, 7, 9	1, 7, 9
parameters (see 4.4)			
Group E end-point electrical			
parameters (see 4.4)			

TABLE II. Electrical test requirements.

1/ PDA applies to subgroup 1.

 $\frac{1}{2}$ / PDA applies to subgroups 1 and 7.

4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-90657
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 36
DSCC FORM 2234			

Downloaded from Arrow.com.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table II herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331 and as follows in table III.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-90657
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 37
DSCC FORM 2234			

Downloaded from Arrow.com.

TABLE III. Pin descriptions.				
Symbol	Function			
RESET	Reset (input, active low). This signal res	<u>Reset</u> (input, active low). This signal resets the device to a known state. The first write to the USC after a reset accesses the BCR to select additional bus options for the device.		
ĀS	<u>Address Strobe</u> (input, active low). This address on the AD lines. The AS signal tied to V_{DD} in these cases.	<u>Strobe</u> (input, active low). This signal is used in the multiplexed bus modes to latch the on the AD lines. The AS signal is not used in the non-multiplexed bus modes and should be _{DD} in these cases.		
DS	<u>Data Strobe</u> (input, active low). This sig strobe an interrupt vector out of the devi data into the device during the active sta	Data Strobe (input, active low). This signal strobes data out of the device during a read and may strobe an interrupt vector out of the device during an interrupt acknowledge cycle. DS also strobes data into the device during the active state of R/W.		
RD	<u>Read strobe</u> (input, active low). This sig strobe an interrupt vector out of the devi	Read strobe (input, active low). This signal strobes data out of the device during a read and may strobe an interrupt vector out of the device during an interrupt acknowledge cycle.		
WR	Write strobe (input, active low). This signal strobes data into the device during a write.			
R/W	<u>Read/Write</u> (input). This signal determines the direction of data transfer for a read or write cycle in conjunction with DS.			
CS	Chip Select (input, active low). This sign read and write cycles, but is ignored dur case of a multiplexed bus interface, CS	nal selects the dev ing interrupt ackno is latched by the ri	vice for access and must be owledge and fly-by DMA tra- sing edge of AS.	e asserted for ansfers. In the
A/B	<u>Channel A/Channel B select</u> (input). This signal selects between the two channels in the device. High selects channel A and low selects channel B. This signal is sampled and the result is latched during the BCR (Bus Configuration Register) write. It programs the sense of the WAIT/RDY signal appropriate for different bus interfaces. (See WAIT/RDY below.)			the device. High s latched during signal
D/C	Data/Control select (input). This signal, when high, provides for direct access to the RDR and TDR. In the case of a multiplexed bus interface, D/C high overrides the address provided to the device.			
SITACK	Status Interrupt Acknowledge (input, act interrupt acknowledge cycle is in progres may be encoded with the type of interrup compatible with 680x0 family microproce	ive low). This sigr ss. The device is of pending during f essors.	nal is a status signal that in capable of returning an inte this acknowledge cycle. Th	dicates that an errupt vector that nis signal is
PITACK	Pulsed Interrupt Acknowledge (input, ac interrupt acknowledge cycle is in progres may be encoded with the type of interrup programmed to accept a single pulse or the BCR. With the double pulse type se place. The interrupt vector is returned o The double pulse type is compatible with	tive low). This is a ss. The device is of pending during t double pulse ackr lected, the first PI n the second puls a 8x86 family micro	a strobe signal that indicate capable of returning an inte this acknowledge cycle. Pl nowledge type. This progra TACK is recognized but no e if the no-vector option is oprocessors.	es that an errupt vector that TACK may be amming is done in action takes not selected.
L				
MICF	STANDARD ROCIRCUIT DRAWING	SIZE A		5962-90657
DEFENSE COLI	SUPPLY CENTER COLUMBUS JMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 38

DSCC FORM 2234 APR 97

Symbol Function WAIT/RDY Wait data Ready (output, active low). This signal indicates when the data is available during an interupt acknowledge cycle It may be programmed to function either as a valiable during an interrupt acknowledge cycle It may be programmed to function either as a valiable during an interrupt acknowledge cycle It may be programmed to function either as a valiable during an interrupt acknowledge cycle It may be programmed to function either as a valiable during an interrupt acknowledge cycle It may be programmed to function either as a valiable during an intervation as a ready and this supports the DTACK function of B6000 family microprocessors. AD15 - AD0 Address/Data bus (bidirectional, active high, three-state). The AD signals carry addresses to, an data to and from, the device. Addresses are provided using a pointer within the device that is loaded to and form, the device. The pointer is used for addressing. AD15 - 0 carry of and from the device. When the 8-bit non-multiplexed bus is selected without separate addres, AD7 - 0 are used to transfer data. When the 8-bit non-multiplexed bus is selected without separate address, AD7 - 0 are used to the address bus. Not P - 0 are used to transfer data. INTA, INTB Interrupt request(outputs, active low). These signals indicate that the channel has an interrupt condition pending and is requesting service. These outputs are NOT open-drained. INTA, INTB Interrupt request(outputs, active high). The IED signal for each channel is used with the accompanying [E signal to form an interrupt dais ychain. An active IEI indicates that no device in higher princip is requesting or servicing an interrupt. INTA,		TABLE III. <u>Pin de</u>	escriptions - Conti	nued.	
WAIT/RDY Wait data Ready (output, active low). This signal indicates when the data is available during an interrupt acknowledge cycleIt may be programmed to function either as a signal or a Ready signal using the state of the AB pin during the BCR write. When AVB is high a signal or a Ready signal using the state of the AB pin during the BCR write. When AVB is high a the BCR write, this signal functions as a wait output and thus supports the ECR write, this signal functions as a wait output and thus supports the ECR write, this signal functions as a wait output and thus supports the ECR write, this signal functions as a ready, and this supports the DTACK function of 680x0 family microprocessors. AD15 - AD0 Addresse/Data bus (bidirectional, active high, three-state). The AD signals carry addresses to, and from, the device. When the 8-bit non-multiplexed bus is selected without separate address and the signal eighter address. When the 8-bit non-multiplexed bus is selected without separate address are unused when the AD15 - 0 are used to transfer data. The pointer is used for addresses are unused when the 8-bit non-flowed bus with separate address is selected without separate address and data. Sublex AD15 - 0 are used to transfer data. The Solite address without the 8-bit multiplexed bus is selected without separate address and data. Subten Dis without Separate address and data, SD15 - 8 are used. When the 8-bit multiplexed bus is selected without separate address and data SD15 - 8 are used to transfer data, while AD15 - 0 are used to transfer data. The solite the channel has an interrupt condition pending and is requesting service. These outputs are NOT open-drained. INTA, INTB Interrupt Engle for the main interrupt daisy chain. An active IEI indicates that no device in higher priority is requesting or servicing an interrupt. IEIA,	Symbol	Function			
AD15 - AD0 Address/Data bus (bidirectional, active high, three-state). The AD signals carry addresses to, ar draw the device. When the 16-bit non-multiplexed bus is selected, AD15 - 0 carry or and from the device. Addresses are provided using a pointer within the device that is toaded wit desired register address. When the 8-bit non-multiplexed bus is selected with separate address, AD1 - 0 are used to transfer data. The pointer is used for addressing; AD15 - 8 are unused. When the 8-bit non-multiplexed bus is selected with separate address, AD7 - 0 are used to transfer data. The pointer is used for address bus. INTA, When the 8-bit non-multiplexed bus is selected, with separate address, AD7 - 0 are used to transfer data transfers are studene bits wide. When the 8-bit multiplexed bus is selected, without separate address, AD7 - 0 are used to transfer address and data, AD15 - 0 are used to transfer datas an address bus. INTA, INTB Interrupt request (outputs, active low). These signals indicate that the channel has an interrupt condition pending and is requesting service. These outputs are NOT open-drained. IEIA, IEIB Interrupt Enable (n (inputs, active high). The IEI signal for each channel is used with the accompanying IEI signal to form an interrupt daisy chain. An active IEI indicates that no device I higher priority is requesting or a witcine an interrupt. IEOA, IEOB Interrupt Enable Out (outputs, active high). The IEO signal for each channel is used with the accompanying IEI signal to form an interrupt. IEOA, IEOB Interrupt Enable Out (outputs, active high). The IEO signal for each channel is used with the accompanying IEI signal to form an interrupt. IEOA, IEOB Interrupt Enable Out (outp	WAIT/RDY	<u>Wait data Ready</u> (output, active low). cycle, when the device is ready to rece available during an interrupt acknowled signal or a Ready signal using the stat the BCR write, this signal functions as family microprocessors. When A/B is and this supports the DTACK function	This signal indicate sive data during a v dge cycleIt may b e of the A/B pin du a wait output and t low during the BCF of 680x0 family mi	es when the data is availa write cycle, and when a va- be programmed to functio ring the BCR write. When hus supports the READY write, this signal function croprocessors.	ble during a read alid vector is n eitber as a Wait n A/B is high during function of 8x86 ns as a ready outpu
INTA, INTB Interrupt request (outputs, active low). These signals indicate that the channel has an interrupt condition pending and is requesting service. These outputs are NOT open-drained. IEIA, IEIB Interrupt Enable In (inputs, active high). The IEI signal for each channel is used with the accompanying IEI signal to form an interrupt daisy chain. An active IEI indicates that no device I higher priority is requesting or servicing an interrupt. IEOA, IEOB Interrupt Enable Out (outputs, active high). The IEO signal for each channel is used with the accompanying IEI signal to form an interrupt daisy chain. IEO is low of IEI is low, an interrupt is service in the channel, or an interrupt is pending during an interrupt acknowledge cycle. TXACKA, Transmit Acknowledge (inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers to the transmit FIFO's. Also, they can be used as bit inputs or outputs, active high, three-state). The se signals carry the serial transmit data for channel. RXACKA Transmit Data (outputs, active high). These signals carry the serial transmit data for channel. RXDA, RXDB Receive Data (inputs, active high). These signals carry the serial transmit data for channel. RXDA, RXDB Receive Data (inputs, active high). These signals carry the serial for each channel. BEFENSE SUPPLY CENTER COLUMBUS A DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL	AD15 – AD0	<u>Address/Data bus</u> (bidirectional, active high, three-state). The AD signals carry addresses to, and data to and from, the device. When the 16-bit non-multiplexed bus is selected, AD15 – 0 carry data to and from the device. Addresses are provided using a pointer within the device that is loaded with the desired register address. When the 8-bit non-multiplexed bus is selected without separate address, only AD7 – 0 are used to transfer data. The pointer is used for addressing; AD15 – 8 are unused. When the 8-bit non-multiplexed bus is selected without separate address, addresses are lated bus is selected with separate address, AD7 – 0 are used to transfer data, while AD15 – 8 are used as an address bus. When the 16-bit multiplexed bus is selected, addresses are latched from AD7 – 0 and data transfers are sixteen bits wide. When the 8-bit multiplexed bus is selected without separate addresses and data; AD15 – 8 are unused. When the 8-bit multiplexed bus is selected without separate address, only AD7 – 0 are used to transfer data, while AD15 – 8 are unused. When the 8-bit multiplexed bus is selected without separate address, and data; AD15 – 8 are unused. When the 8-bit multiplexed bus with separate address is selected, only AD7 – 0 are used to transfer data, while AD15 – 8 are unused.			
IEIA, IEIB Interrupt Enable In (inputs, active high). The IEI signal for each channel is used with the accompanying IEI signal to form an interrupt daisy chain. An active IEI indicates that no device I higher priority is requesting or servicing an interrupt. IEOA, IEOB Interrupt Enable Out (outputs, active high). The IEO signal for each channel is used with the accompanying IEI signal to form an interrupt daisy chain. IEO is low of IEI is low, an interrupt is service in the channel, or an interrupt is pending during an interrupt acknowledge cycle. TXACKA, Transmit Acknowledge (inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers to the transmit FIFO's. Also, they can be used as bit inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers from the receive FIFO's. Also, they can be used as bit inputs or outputs, active high, three-state). These signals carry the serial transmit data for channel. RxDA, TxDB Transmit Data (outputs, active high). These signals carry the serial receive data for each channel. RxDA, RxDB Receive Data (inputs, active high). These signals carry the serial receive data for each channel. Built CROCIRCUIT DRAWING SIZE Serial Serial DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL SHEET	INTA, INTB	Interrupt request (outputs, active low). These signals indicate that the channel has an interrupt condition pending and is requesting service. These outputs are NOT open-drained.			
IEOA, IEOB Interrupt Enable Out (outputs, active high). The IEO signal for each channel is used with the accompanying IEI signal to form an interrupt daisy chain. IEO is low of IEI is low, an interrupt is service in the channel, or an interrupt is pending during an interrupt acknowledge cycle. TxACKA, Transmit Acknowledge (inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers to the transmit FIFO's. Also, they can be used as bit inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers from the receive FIFO's. Also, they can be used as bit inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers from the receive FIFO's. Also, they can be used as bit inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers from the receive FIFO's. Also, they can be used as bit inputs or outputs, active high, three-state). These signals carry the serial transmit data for channel. RxDA, TxDB Transmit Data (outputs, active high). These signals carry the serial receive data for each channel. RxDA, RxDB Receive Data (inputs, active high). These signals carry the serial receive data for each channel. BEFENSE SUPPLY CENTER COLUMBUS A S962- DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL SHEET	IEIA, IEIB	Interrupt Enable In (inputs, active high). The IEI signal for each channel is used with the accompanying IEI signal to form an interrupt daisy chain. An active IEI indicates that no device havin higher priority is requesting or servicing an interrupt.			
TxACKA, TxACKB Transmit Acknowledge (inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers to the transmit FIFO's. Also, they can be used as bit inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers from the receive FIFO's. Also, they can be used as bit inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers from the receive FIFO's. Also, they can be used as bit inputs or outputs, active back, active high, three-state). These signals carry the serial transmit data for channel. TxDA, TxDB Transmit Data (outputs, active high). These signals carry the serial transmit data for channel. RxDA, RxDB Receive Data (inputs, active high). These signals carry the serial receive data for each channel. STANDARD Size Specific transmit Data Specific tra <	IEOA, IEOB	Interrupt Enable Out (outputs, active high). The IEO signal for each channel is used with the accompanying IEI signal to form an interrupt daisy chain. IEO is low of IEI is low, an interrupt is unde service in the channel, or an interrupt is pending during an interrupt acknowledge cycle.			
RXACKA, RXACKB Receive Acknowledge (inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers from the receive FIFO's. Also, they can be used as bit inputs or outputs, active high, three-state). These signals carry the serial transmit data for channel. TXDA, TXDB Transmit Data (outputs, active high, three-state). These signals carry the serial transmit data for channel. RXDA, RXDB Receive Data (inputs, active high). These signals carry the serial receive data for each channel. STANDARD SIZE MICROCIRCUIT DRAWING A 5962- COLUMBUS DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL SHEET	TxACKA, TxACKB	<u>Transmit Acknowledge</u> (inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers to the transmit FIFO's. Also, they can be used as bit inputs or outputs.			
TxDA, TxDB Transmit Data (outputs, active high, three-state). These signals carry the serial transmit data for channel. RxDA, RxDB Receive Data (inputs, active high). These signals carry the serial receive data for each channel. STANDARD SiZE MICROCIRCUIT DRAWING A DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL SHEET SHEET	RxACKA, RxACKB	<u>Receive Acknowledge</u> (inputs or outputs, active low). The primary function of these signals is to perform fly-by DMA transfers from the receive FIFO's. Also, they can be used as bit inputs or outputs			
RxDA, RxDB Receive Data (inputs, active high). These signals carry the serial receive data for each channel. STANDARD SIZE MICROCIRCUIT DRAWING A DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL COLUMPUS ONLO DE SUPPLY CENTER COLUMBUS SHEET	TxDA, TxDB	<u>Transmit Data</u> (outputs, active high, th channel.	ree-state). These	signals carry the serial tra	ansmit data for eac
STANDARD SIZE MICROCIRCUIT DRAWING A 5962- DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL SHEET	RxDA, RxDB	Receive Data (inputs, active high). These signals carry the serial receive data for each channel.			
STANDARD MICROCIRCUIT DRAWINGSIZE ASIZE A5962-DEFENSE SUPPLY CENTER COLUMBUS COLUMPLIS OFFIC 42318 2000REVISION LEVELSHEET					
DEFENSE SUPPLY CENTER COLUMBUS COLUMPUS OFICIA 42218 2000 COLUMPUS OFICIA 42218 2000	MICR	STANDARD OCIRCUIT DRAWING	SIZE A		5962-906
	DEFENSE S	SUPPLY CENTER COLUMBUS MBUS, OHIO 43218-3990		REVISION LEVEL	SHEET .39

TxCA, TxCBTransmit Clock (inputs or outputs, active low). These signals are used as clock inputs for any of the functional blocks within the device. They may also be used as outputs for various transmitter signals or internal clock signals.RxCA, RxCBReceive Clock (inputs or outputs, active low). These signals are used as clock inputs for any of the functional blocks within the device. They may also be used as outputs for various receiver signals o internal clock signals.TxREQA, TxREQA,Transmit Request (inputs or outputs, active low). The primary function of these signals is to request DMA transfers to the transmit FIFO's. They may also be used as simple inputs or outputs.RxREQA, RxREQBReceive Request (inputs or outputs, active low). The primary function of these signals is to request DMA transfers from the receive FIFO's. They may also be used as simple inputs or outputs.CTSA, CTSBClear to Send (inputs or outputs, active low). These signals are used as enables for the respective transmitters. They may also be programmed to generate interrupts on either transition or be used as simple inputs or outputs.DCDA, DCDBData Carrier Detect (inputs or outputs, active low). These signals are used as enables for the respective finputs or outputs, active low). These signals are used as enables for the	Symbol	Function
RxCA, RxCBReceive Clock (inputs or outputs, active low). These signals are used as clock inputs for any of the functional blocks within the device. They may also be used as outputs for various receiver signals o internal clock signals.TxREQA, TxREQBTransmit Request (inputs or outputs, active low). The primary function of these signals is to request DMA transfers to the transmit FIFO's. They may also be used as simple inputs or outputs.RxREQA, RxREQBReceive Request (inputs or outputs, active low). The primary function of these signals is to request DMA transfers from the receive FIFO's. They may also be used as simple inputs or outputs.CTSA, CTSBClear to Send (inputs or outputs, active low). These signals are used as enables for the respective transmitters. They may also be programmed to generate interrupts on either transition or be used as simple inputs or outputs.DCDA, DCDBData Carrier Detect (inputs or outputs, active low). These signals are used as enables for the	TxCA, TxCB	<u>Transmit Clock</u> (inputs or outputs, active low). These signals are used as clock inputs for any of the functional blocks within the device. They may also be used as outputs for various transmitter signals or internal clock signals.
TxREQA, TxREQBTransmit Request (inputs or outputs, active low). The primary function of these signals is to request DMA transfers to the transmit FIFO's. They may also be used as simple inputs or outputs.RxREQA, RxREQBReceive Request (inputs or outputs, active low). The primary function of these signals is to request DMA transfers from the receive FIFO's. They may also be used as simple inputs or outputs.CTSA, CTSBClear to Send (inputs or outputs, active low). These signals are used as enables for the respective transmitters. They may also be programmed to generate interrupts on either transition or be used as simple inputs or outputs.DCDA, DCDBData Carrier Detect (inputs or outputs, active low). These signals are used as enables for the respective to the transmitters. They may also be programmed to generate interrupts on either transition or be used as simple inputs or outputs.	RxCA, RxCB	<u>Receive Clock</u> (inputs or outputs, active low). These signals are used as clock inputs for any of the functional blocks within the device. They may also be used as outputs for various receiver signals or internal clock signals.
RxREQA, RxREQBReceive Request (inputs or outputs, active low). The primary function of these signals is to request DMA transfers from the receive FIFO's. They may also be used as simple inputs or outputs.CTSA, CTSBClear to Send (inputs or outputs, active low). These signals are used as enables for the respective transmitters. They may also be programmed to generate interrupts on either transition or be used as simple inputs or outputs.DCDA, DCDBData Carrier Detect (inputs or outputs, active low). These signals are used as enables for the	TxREQA, TxREQB	Transmit Request (inputs or outputs, active low). The primary function of these signals is to request DMA transfers to the transmit FIFO's. They may also be used as simple inputs or outputs.
CTSA, CTSBClear to Send (inputs or outputs, active low). These signals are used as enables for the respective transmitters. They may also be programmed to generate interrupts on either transition or be used as simple inputs or outputs.DCDA, DCDBData Carrier Detect (inputs or outputs, active low). These signals are used as enables for the	RxREQA, RxREQB	Receive Request (inputs or outputs, active low). The primary function of these signals is to request DMA transfers from the receive FIFO's. They may also be used as simple inputs or outputs.
DCDA, DCDB Data Carrier Detect (inputs or outputs, active low). These signals are used as enables for the	CTSA, CTSB	<u>Clear to Send</u> (inputs or outputs, active low). These signals are used as enables for the respective transmitters. They may also be programmed to generate interrupts on either transition or be used as simple inputs or outputs.
respective receivers. Also, they may be programmed to generate interrupts on either transition or be used as simple inputs or outputs.	DCDA, DCDB	Data Carrier Detect (inputs or outputs, active low). These signals are used as enables for the respective receivers. Also, they may be programmed to generate interrupts on either transition or be used as simple inputs or outputs.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-90657
		REVISION LEVEL A	SHEET 40

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 06-06-15

Approved sources of supply for SMD 5962-90657 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-9065701MXC	0C7V7	Z16C3010GMB

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

0C7V7

QP Semiconductor 2945 Oakmead Village Court Santa Clara, CA 95051

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.