CMOS Latched 8-/16-Channel Analog Multiplexers

FEATURES

44 V supply maximum rating $V_{s s}$ to $V_{D D}$ analog signal range
Single- or dual-supply specifications
Wide supply ranges (10.8 V to 16.5 V)
Microprocessor compatible (100 ns WR pulse)
Extended plastic temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Low leakage (20 pA typical)
Low power dissipation (28 mW maximum)
Available in PDIP, CERDIP, SOIC, and PLCC packages
Superior alternative to DG526 and DG527

APPLICATIONS

Data acquisition systems
Communication systems
Automatic test equipment
Microprocessor controlled systems

GENERAL DESCRIPTION

The ADG526A and ADG527A are CMOS monolithic analog multiplexers with 16 single channels and dual 8 channels, respectively. On-chip latches facilitate microprocessor interfacing.
The ADG526A switches one of 16 inputs to a common output, depending on the state of four binary addresses and an enable input. The ADG527A switches one of eight differential inputs to a common differential output, depending on the state of three binary addresses and an enable input. Both devices have TTL and 5 V CMOS logic-compatible digital inputs.

The ADG526A and ADG527A are designed on an enhanced LC^{2} MOS process that gives an increased signal capability of V_{ss} to $V_{D D}$ and enables operation over a wide range of supply voltages. The devices can comfortably operate anywhere in the 10.8 V to 16.5 V single- or dual-supply range. These multiplexers also feature high switching speeds and low Rov.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADG526A

Figure 2. ADG527A

PRODUCT HIGHLIGHTS

1. Single- or Dual-Supply Specifications with a Wide Tolerance. The devices are specified in the 10.8 V to 16.5 V range for both single and dual supplies.
2. Easily Interfaced. The ADG526A and ADG527A can be easily interfaced with microprocessors. The $\overline{\mathrm{WR}}$ signal latches the state of the address control lines and the enable line. The $\overline{\mathrm{RS}}$ signal clears both the address and enable data in the latches, resulting in no output (all switches off). $\overline{\mathrm{RS}}$ can be tied to the microprocessor reset pin.
3. Extended Signal Range. The enhanced $L C^{2}$ MOS processing results in a high breakdown and an increased analog signal range from $V_{S S}$ to $V_{D D}$.
4. Break-Before-Make Switching. Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
5. Low Leakage. Leakage currents in the range of 20 pA make these multiplexers suitable for high precision circuits.
[^0][^1]
ADG526A/ADG527A

TABLE OF CONTENTS

Features 1
Applications
General Description 1
Functional Block Diagrams 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 5
Absolute Maximum Ratings 7
REVISION HISTORY
6/08-Rev. B to Rev. C.
Updated Format Universal
ADG526A LCCC Package Removed Universal
Changes to Features 1
Added Applications Section 1
Changes to Absolute Maximum Ratings 7
Added Table 4, Renumbered Sequentially 8
Added Table 5 9
Changes to Figure 7 and Figure 8 11
Updated Outline Dimensions 17
Changes to Ordering Guide 19
ESD Caution 7
Pin Configurations and Function Descriptions 8
Typical Performance Characteristics 11
Terminology 12
Timing 13
Test Circuits 14
Outline Dimensions 17
Ordering Guide 19
2/02-Rev. A to Rev. B.
Edits to Specifications Table, Dual Supply 2
Edits to Specifications Table, Single Supply 3
Edits to Ordering Guide 4
Removal of one Pin Configuration and Diagram 6

SPECIFICATIONS

DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}$ to $16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-10.8 \mathrm{~V}$ to -16.5 V , unless otherwise noted.
Table 1.

ADG526A/ADG527A

Parameter	ADG526A/ADG527A				ADG526A TVersion $25^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit	Comments
	K Version		B Version $25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
Off Isolation	68		68		68		dB typ	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}= \\ & 15 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=7 \mathrm{Vrms}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$
	50		50		50		dB min	$\mathrm{V}_{\mathrm{s}}=7 \mathrm{~V} \mathrm{rms}, \mathrm{f}=100 \mathrm{kHz}$
C_{5} (Off)	5		5		5		pF typ	$\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$
C_{D} (Off)								
ADG526A	44		44		44		pF typ	$\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$
ADG527A	22		22				pF typ	
Qins, Charge Injection	4		4		4		pC typ	$\begin{aligned} & R_{s}=0 \Omega, V_{s}=0 \mathrm{~V} ; \\ & \text { see Figure } 25 \end{aligned}$
POWER SUPPLY lod								
	0.6		0.6		0.6		mA typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
		1.5	1.5			1.5	mA max	
Iss	20		20		20		$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
		0.2	0.2			0.2	mA max	
Power Dissipation	10		10		10		mW typ	
		28		28		28	mW max	

[^2]
SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}$ to $16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}$ to 0 V , unless otherwise noted.
Table 2.

ADG526A/ADG527A

[^3]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	44 V
VDD to GND	25 V
Vss to GND	-25V
Analog Inputs ${ }^{1}$	
Voltage at Sx or Dx Pins	$V_{S S}-2 V \text { to } V_{D D}+2 V$ or 20 mA , whichever occurs first
Continuous Current, Sx or Dx Pins	20 mA
Pulsed Current, Sx or Dx Pins 1 ms Duration, 10\% Duty Cycle	40 mA
Digital Inputs ${ }^{1}$	
Voltage at $\mathrm{A}, \mathrm{EN}, \overline{\mathrm{WR}}, \overline{\mathrm{RS}}$	$\mathrm{V}_{S S}-4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+4 \mathrm{~V}$ or 20 mA , whichever occurs first
Power Dissipation (Any Package)	
Up to $75^{\circ} \mathrm{C}$	470 mW
Derates Above $75^{\circ} \mathrm{C}$	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	
Commercial (K Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltage at $\mathrm{A}, \mathrm{EN}, \overline{\mathrm{WR}}, \overline{\mathrm{RS}}, \mathrm{Sx}$, or Dx pins are clamped by diodes. Limit current to the maximum rating in Table 3.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG526A/ADG527A

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. ADG526A PDIP, SOIC, and CERDIP Pin Configuration

Figure 4. ADG526A PLCC Pin Configuration

Table 4. ADG526A Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V $_{\text {DD }}$	Most Positive Power Supply Potential.
2	NC	No Connect.
3	$\overline{R S}$	Reset. The $\overline{R S}$ signal clears both the address and enable data in the latches resulting in no output (all switches off).
4	S16	Source Terminal. This pin can be an input or output.
5	S15	Source Terminal. This pin can be an input or output.
6	S14	Source Terminal. This pin can be an input or output.
7	S13	Source Terminal. This pin can be an input or output.
8	S12	Source Terminal. This pin can be an input or output.
9	S11	Source Terminal. This pin can be an input or output.
10	S10	Source Terminal. This pin can be an input or output.
11	S9	Source Terminal. This pin can be an input or output.
12	GND	Ground (0V) Reference.
13	WR	Write. The $\overline{\text { WR } \text { signal latches the state of the address control lines and the enable line. }}$
14	A3	Logic Control Inputs. Selects which source terminal is connected to the drain (D).
15	A2	Logic Control Inputs. Selects which source terminal is connected to the drain (D).
16	A1	Logic Control Inputs. Selects which source terminal is connected to the drain (D).
17	A0	Logic control inputs. Selects which source terminal is connected to the drain (D).
18	EN	Enable. Active high logic control input.
19	S1	Source Terminal. This pin can be an input or output.
20	S2	Source Terminal. This pin can be an input or output.
21	S3	Source Terminal. This pin can be an input or output.
22	S4	Source Terminal. This pin can be an input or output.
23	S5	Source Terminal. This pin can be an input or output.
24	S6	Source Terminal. This pin can be an input or output.
25	S7	Source Terminal. This pin can be an input or output.
26	S8	Source Terminal. This pin can be an input or output.
27	VSS	Most Negative Power Supply Potential.
28	D	Drain Terminal. This pin can be an input or output.

Figure 5. ADG527A PDIP, SOIC Pin Configuration

Figure 6. ADG527A PLCC Pin Configuration

Table 5. ADG527A Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VDD	Most Positive Power Supply Potential.
2	DB	Drain Terminal. This pin can be an input or output.
3	$\overline{R S}$	Reset. The $\overline{R S}$ signal clears both the address and enable data in the latches resulting in no output (all switches off).
4	S8B	Source Terminal. This pin can be an input or output.
5	S7B	Source Terminal. This pin can be an input or output.
6	S6B	Source Terminal. This pin can be an input or output.
7	S5B	Source Terminal. This pin can be an input or output.
8	S4B	Source Terminal. This pin can be an input or output.
9	S3B	Source Terminal. This pin can be an input or output.
10	S2B	Source Terminal. This pin can be an input or output.
11	S1B	Source Terminal. This pin can be an input or output.
12	GND	Ground (OV) Reference.
13	$\overline{\text { WR }}$	Write. The $\overline{\text { WR } \text { signal latches the state of the address control lines and the enable line. }}$
14	NC	No Connect.
15	A2	Logic Control Inputs. Selects which source terminal is connected to the drain (D).
16	A1	Logic Control Inputs. Selects which source terminal is connected to the drain (D).
17	AO	Logic Control Inputs. Selects which source terminal is connected to the drain (D).
18	EN	Enable. Active high logic control input.
19	S1A	Source Terminal. This pin can be an input or output.
20	S2A	Source Terminal. This pin can be an input or output.
21	S3A	Source Terminal. This pin can be an input or output.
22	S4A	Source Terminal. This pin can be an input or output.
23	S5A	Source Terminal. This pin can be an input or output.
24	S6A	Source Terminal. This pin can be an input or output.
25	S7A	Source Terminal. This pin can be an input or output.
26	S8A	Source Terminal. This pin can be an input or output.
27	VSS	Most Negative Power Supply Potential.
28	DA	Drain Terminal. This pin can be an input or output.

ADG526A/ADG527A

Table 6. ADG526A Truth Table ${ }^{1}$

A3	A2	A1	A0	EN	$\overline{\text { WR }}$	$\overline{\mathbf{R S}}$	ON SWITCH
X	X	X	X	X	J	1	Retains previous switch condition
X	X	X	X	X	X	0	None (address and enable latches cleared)
X	X	X	X	0	0	1	None
0	0	0	0	1	0	1	1
0	0	0	1	1	0	1	2
0	0	1	0	1	0	1	3
0	0	1	1	1	0	1	4
0	1	0	0	1	0	1	5
0	1	0	1	1	0	1	6
0	1	1	0	1	0	1	7
0	1	1	1	1	0	1	8
1	0	0	0	1	0	1	9
1	0	0	1	1	0	1	10
1	0	1	0	1	0	1	11
1	0	1	1	1	0	1	12
1	1	0	0	1	0	1	13
1	1	0	1	1	0	1	14
1	1	1	0	1	0	1	15
1	1	1	1	1	0	1	16

Table 7. ADG527A Truth Table ${ }^{1}$

A2	A1	A0	EN	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R S}}$	ON SWITCH PAIR
X	X	X	X	1	1	Retains previous switch condition
X	X	X	X	X	0	None (address and enable latches cleared)
X	X	X	0	0	1	None
0	0	0	1	0	1	1
0	0	1	1	0	1	2
0	1	0	1	0	1	3
0	1	1	1	0	1	4
1	0	0	1	0	1	5
1	0	1	1	0	1	6
1	1	0	1	0	1	7
1	1	1	1	0	1	8

TYPICAL PERFORMANCE CHARACTERISTICS

The multiplexers are guaranteed functional with reduced single or dual supplies down to 4.5 V .

Figure 7. Ron as a Function of $V_{D}\left(V_{S}\right)$: Single-Supply Voltage, $T_{A}=25^{\circ} \mathrm{C}$

Figure 8. Ron as a Function of $V_{D}\left(V_{s}\right)$: Dual-Supply Voltage, $T_{A}=25^{\circ} \mathrm{C}$

Figure 9. Leakage Current as a Function of Temperature (Leakage Currents Reduce as the Supply Voltages Reduce)

Figure 10. Trigger Levels vs. Power Supply Voltage, Dual or Single Supply, $T_{A}=25^{\circ} \mathrm{C}$

Figure 11. ttransition vs. Supply Voltage: Dual and Single Supplies, $T_{A}=25^{\circ} \mathrm{C}$ (Note: For $V_{D D}$ and $V_{S S}<10 V_{;} V 1=V_{D D} / V_{S S}, V 2=V_{S S} / V_{D D}$; See Figure 20)

Figure 12. I $I_{D D}$ vs. Supply Voltage: Dual or Single Supply, $T_{A}=25^{\circ} \mathrm{C}$

ADG526A/ADG527A

TERMINOLOGY

Ron
Ohmic resistance between Terminal D and Terminal S.

Ron Match

Difference between the Ron of any two channels.

Ron Drift

Change in Ron vs. temperature.
I_{s} (Off)
Source terminal leakage current when the switch is off.
I_{D} (Off)
Drain terminal leakage current when the switch is off.
I_{D} (On)
Leakage current that flows from the closed switch into the body.
$V_{S}\left(V_{D}\right)$
Analog voltage on Terminal S or Terminal D.
Cs (Off)
Channel input capacitance for off condition.

C_{d} (Off)

Channel output capacitance for off condition.
C_{IN}
Digital input capacitance.
ton (EN)
Delay time between the 50% and 90% points of the digital input and switch on condition.
toff (EN)
Delay time between the 50% and 10% points of the digital input and switch off condition.
$\mathbf{t}_{\text {transition }}$
Delay time between the 50% and 90% points of the digital inputs and switch on condition when switching from one address state to another.
topen
Off time measured between 50% points of both switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
$V_{D D}$
Most positive voltage supply.
$V_{\text {ss }}$
Most negative voltage supply.
I_{DD}
Positive supply current.
Iss
Negative supply current.

ADG526A/ADG527A

TIMING

Figure 13 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while $\overline{\mathrm{WR}}$ is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of $\overline{\mathrm{WR}}$.

Figure 13. Timing Sequence

Figure 14 shows the reset pulse width, t_{RS}, and reset turn-off time, toff ($\overline{\mathrm{RS}}$).
Note that all digital input signal rise and fall times are measured from 10% to 90% of $3 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=20 \mathrm{~ns}$.

Figure 14. Reset Pulse

ADG526A/ADG527A

TEST CIRCUITS

Figure 17. Io (Off)

Figure 19. IDIFF

Figure 21. Break-Before-Make Delay, topen

Figure 22. Enable Delay, ton (EN) toff (EN)

ADG526A/ADG527A

NOTE:
DEVICE MUST BE RESET PRIOR TO APPLYING $\overline{\text { WR PULSE. }}$

Figure 23. Write Turn-On Time, ton $(\overline{W R})$

NOTE
DEVICE $\overline{W R}$ MUST PULSE LOW PRIOR TO APPLYING $\overline{R S}$ PULSE.

Figure 24. Reset Turn-Off, toff $(\overline{R S})$

OUTLINE DIMENSIONS

Figure 26. 28-Lead Ceramic Dual In-Line Package [CERDIP] (Q-28)
Dimensions shown in inches and (millimeters)

Figure 27. 28-Lead Plastic Dual In-Line Package [PDIP] ($\mathrm{N}-28$)
Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-047-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 28. 28-Lead Plastic Leaded Chip Carrier [PLCC] (P-28A)
Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-013-AE
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 29. 28-Lead Standard Small Outline Package [SOIC] Wide Body (RW -28)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG526AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead PDIP	N-28
ADG526AKNZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead PDIP	N-28
ADG526AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead SOIC	RW-28
ADG526AKR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead SOIC	RW-28
ADG526AKRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead SOIC	RW-28
ADG526AKRZ-REEL¹	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead SOIC	RW-28
ADG526AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead PLCC	P-28A
ADG526AKP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead PLCC	P-28A
ADG526AKPZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead PLCC	P-28A
ADG526AKPZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead PLCC	P-28A
ADG526ATQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28-Lead CERDIP	Q-28
ADG526ABQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead CERDIP	Q-28
ADG526ATCHIPS			DIE
ADG527AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead PDIP	$\mathrm{N}-28$
ADG527AKNZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead PDIP	N-28
ADG527AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead SOIC	RW-28
ADG527AKR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead SOIC	RW-28
ADG527AKRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead SOIC	RW-28
ADG527AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead PLCC	P-28A
ADG527AKPZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead PLCC	P-28A

${ }^{1} Z=$ RoHS Compliant Part, \# denotes RoHS complaint product, may be top or bottom marked.

ADG526A/ADG527A

NOTES

[^0]: Rev. C
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 www.analog.com
 Fax: 781.461.3113
 ©2008 Analog Devices, Inc. All rights reserved.

[^2]: ${ }^{1}$ Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance.

[^3]: ${ }^{1}$ Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance.

