

7516 Central Industrial Drive Riviera Beach, Florida 33404

PHONE: (561) 842-0305 FAX: (561) 845-7813

2N3585

APPLICATIONS:

- Off-Line Inverters
- Switching Regulators
- Motor Controls
- Deflection Circuits
- DC-DC Converters
- High Voltage Amplifiers

FEATURES:

High Voltage: 250 to 500V

Fast Switching: t_f < 3μsec.

• High Power: 35 Watts

High Current: 2 Amps

Low V_{CE (SAT)}

5 Amp, 500V, High Voltage NPN Silicon Power Transistors

DESCRIPTION:

These power transistors are produced by PPC's DOUBLE DIFFUSED PLANAR process. This technology produces high voltage devices with excellent switching speeds, frequency response, gain linearity, saturation voltages, high current gain, and safe operating areas. They are intended for use in Commercial, Industrial, and Military power switching, amplifier, and regulator applications.

Ultrasonically bonded leads and controlled die mount techniques are utilized to further increase the SOA capability and inherent reliability of these devices. The temperature range to 200°C permits reliable operation in high ambients, and the hermetically sealed package insures maximum reliability and long life.

ABSOLUTE MAXIMUM RATINGS:

SYMBOL	CHARACTERISTIC	VALUE	UNITS
V _{CBO} *	Collector-Base Voltage	500	Volts
V _{CEO} *	Collector-Emitter Voltage	300	Volts
V _{CER} *	Collector-Emitter Voltage $R_{BE} = 50\Omega$	400	Volts
V _{EBO} *	Emitter-Base Voltage	6	Volts
I _C *	Peak Collector Current	5	Amps
lc*	Continuous Collector Current	2	Amps
I _B *	Base Current	1	Amps
T _{STG} *	Storage Temperature	-65 to 200	∘C
T _J *	Operating Junction Temperature	-65 to 200	۰C
*	Lead Temperature 1/16" from Case for 10 Sec.	235	∘ C
P _T *	Power Dissipation		
	T _C = 25°C	35	Watts
θJC	Thermal Impedance	5.0	°C/W

^{*} Indicates JEDEC registered data.

MSC1057.PDF 05-19-99

ELECTRICAL CHARACTERISTICS:

(25°Case Temperature Unless Otherwise Noted)

SYMBOL	CHARACTERISTIC	TECT COMPITIONS	VAL	VALUE	
		TEST CONDITIONS	Min.	Max.	Units
V _{CEO(sus)*}	Collector-Emitter Sustaining Voltage	I_C = 0.2 Amp (Notes 1 and 2)	300		Volt
V _{CER(sus)}	Collector-Emitter Sustaining Voltage	I_{C} = 0.2A, R_{BE} = 50 Ω (Notes 1 and 2)	400		Volt
I _{CEV*}	Collector Cutoff Current	$V_{CE} = 450V, V_{BE} = -1.5V$		1.0	mA
I _{CEV} *	Collector Cutoff Current T _C = 150°C	$V_{CE} = 300V, V_{BE} = -1.5V$		3.0	m <i>A</i>
I _{CEO*}	Collector Cutoff Current	$V_{CE} = 150V, I_B = 0$		5.0	m <i>A</i>
I _{EB0*}	Emitter Cutoff Current	$V_{EB} = 6V, I_{C} = 0$		0.5	m <i>A</i>
h _{FE} *	DC Forward Current Transfer Ratio (Note 1)	$I_C = 0.1A, V_{CE} = 10V$ $I_C = 1.0A, V_{CE} = 10V$ $I_C = 1.0A, V_{CE} = 2V$	40 25 8	100 80	
V _{CE(sat)} *	Collector-Emitter Saturation Voltage (Note 1)	$I_C = 1.0A, I_B = 0.125A$		0.75	Vol
V _{BE(sat)} *	Base-Emitter Saturation Voltage (Note 1)	$I_C = 1.0A$, $I_B = 0.10A$		1.4	Vol
I S/b	Second-Breakdown Collector Current (with base forward biased)	V _{CE} = 100V, t = 1.0sec.	0.35		A
E _{S/b*}	Second-Breakdown Energy (with base reverse biased)	$V_{EB} = 4V, R_{BE} = 20\Omega, L = 100\mu h$	200		μς
h _{fe} *	Common-Emitter Small- Signal Forward Current Transfer Ratio	V _{CE} = 10V, I _C = 0.2A, f = 5 MHz	3		
l h _{fe} l*	Common-Emitter Small- Signal Forward Current Transfer Ratio, f = 5 MHz	V _{CE} = 10V, I _C = 0.2A	2.0		
C _{Ob}	Collector-Base Capacitance	$V_{CB} = 10V, I_E = 0, f = 1.0MHz$		120	þ
tr*	Rise Time	I _C = 1.0A, I _{B2} = 0.10A		3.0	μSe
ts*	Storage Time	$I_C = 1.0A$, $I_{B1} = I_{B2} = 0.10A$		4.0	μSe
tf*	Fall Time	$I_C = 1.0A$, $I_{B1} = I_{B2} = 0.10A$		3.0	μSe

Note 1: Pulse Test: Pulse width = 300μSec., Rep. Rate 60Hz.

Note 2: Caution - Do not use Curve Tracer.

MSC1057.PDF 05-19-99

^{*} Indicates JEDEC registered data.

PACKAGE MECHANICAL DATA:

