

- Off-Line Inverters
- Switching Regulators
- Motor Controls
- High Voltage: 250 to 500V
- Fast Switching: $\mathrm{t}_{\mathrm{f}}<3 \mu \mathrm{sec}$.
- High Power: 35 Watts
- Deflection Circuits
- DC-DC Converters
- High Voltage Amplifiers
- High Current: 2 Amps
- Low $\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}$

5 Amp, 500V,

 High Voltage NPN Silicon Power Transistors

These power transistors are produced by PPC's DOUBLE DIFFUSED PLANAR process. This technology produces high voltage devices with excellent switching speeds, frequency response, gain linearity, saturation voltages, high current gain, and safe operating areas. They are intended for use in Commercial, Industrial, and Military power switching, amplifier, and regulator applications.

Ultrasonically bonded leads and controlled die mount techniques are utilized to further increase the SOA capability and inherent reliability of these devices. The temperature range to $200^{\circ} \mathrm{C}$ permits reliable operation in high ambients, and the hermetically sealed package insures maximum reliability
 and long life.

SYMBOL	CHARACTERISTIC	VALUE	UNITS
$\mathrm{V}_{\text {cbo }}{ }^{\text {* }}$	Collector-Base Voltage	500	Volts
$\mathrm{V}_{\text {cEO }}{ }^{*}$	Collector-Emitter Voltage	300	Volts
$\mathrm{V}_{\text {cER }}{ }^{*}$	Collector-Emitter Voltage $\mathrm{R}_{\text {BE }}=50 \Omega$	400	Volts
$\mathrm{V}_{\text {EBO* }}{ }^{*}$	Emitter-Base Voltage	6	Volts
Ic^{*}	Peak Collector Current	5	Amps
Ic^{*}	Continuous Collector Current	2	Amps
$\mathrm{I}_{\mathrm{B}}{ }^{*}$	Base Current	1	Amps
$\mathrm{T}_{\text {stG }}{ }^{*}$	Storage Temperature	-65 to 200	${ }^{\circ} \mathrm{C}$
TJ*	Operating Junction Temperature	-65 to 200	${ }^{\circ} \mathrm{C}$
*	Lead Temperature 1/16" from Case for 10 Sec.	235	${ }^{\circ} \mathrm{C}$
P ${ }_{\text {¢ }}{ }^{\text {® JC }}$	Power Dissipation $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Thermal Impedance	$\begin{aligned} & 35 \\ & 5.0 \end{aligned}$	Watts ${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]Procress Powered by Technolcey

2N3585

(25° Case Temperature Unless Otherwise Noted)

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	VALUE		Units
			Min.	Max.	
$\mathrm{V}_{\text {CEO(sus)* }}$	Collector-Emitter Sustaining Voltage	$\mathrm{I}_{\mathrm{C}}=0.2 \mathrm{Amp}$ (Notes 1 and 2)	300	----	Volts
$\mathbf{V}_{\text {cER(sus) }}$	Collector-Emitter Sustaining Voltage	$\mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~A}, \mathrm{R}_{\mathrm{BE}}=50 \Omega($ Notes 1 and 2)	400	----	Volts
ICEV^{*}	Collector Cutoff Current	$\mathrm{V}_{\text {CE }}=450 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=-1.5 \mathrm{~V}$	----	1.0	mA.
ICEv^{*}	Collector Cutoff Current $\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=300 \mathrm{~V}, \mathrm{~V}_{\text {bE }}=-1.5 \mathrm{~V}$	----	3.0	mA.
$\mathrm{I}_{\text {ceo* }}$	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CE}}=150 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	----	5.0	mA.
IEBO^{*}	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	----	0.5	mA.
$\mathrm{h}_{\text {FE }}{ }^{\text {* }}$	DC Forward Current Transfer Ratio (Note 1)	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~A}, \quad \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \quad \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \end{aligned}$	$\begin{gathered} 40 \\ 25 \\ 8 \end{gathered}$	$\begin{gathered} ---100 \\ 80 \end{gathered}$	------
$\mathrm{V}_{\text {CE(sat) }}{ }^{*}$	Collector-Emitter Saturation Voltage (Note 1)	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.125 \mathrm{~A}$	----	0.75	Volts
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}{ }^{*}$	Base-Emitter Saturation Voltage (Note 1)	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.10 \mathrm{~A}$	----	1.4	Volts
$\mathrm{I}_{\text {s/b }}$	Second-Breakdown Collector Current (with base forward biased)	$\mathrm{V}_{\text {CE }}=100 \mathrm{~V}, \mathrm{t}=1.0 \mathrm{sec}$.	0.35	----	A
$\mathrm{E}_{\text {Sb }{ }^{*}}$	Second-Breakdown Energy (with base reverse biased)	$\mathrm{V}_{\mathrm{EB}}=4 \mathrm{~V}, \mathrm{R}_{\mathrm{BE}}=20 \Omega, \mathrm{~L}=100 \mu \mathrm{~h}$	200	----	$\mu \mathrm{J}$
$\mathrm{h}_{\mathrm{fe}}{ }^{\text {* }}$	Common-Emitter SmallSignal Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~A}, \mathrm{f}=5 \mathrm{MHz}$	3	----	----
$\underline{~} \mathrm{ffe}^{\text {l }}{ }^{\text {* }}$	Common-Emitter SmallSignal Forward Current Transfer Ratio, $\mathrm{f}=5 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~A}$	2.0	----	----
Cob	Collector-Base Capacitance	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	----	120	pf
tr*	Rise Time	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 2}=0.10 \mathrm{~A}$	----	3.0	$\mu \mathrm{sec}$.
ts*	Storage Time	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=0.10 \mathrm{~A}$	----	4.0	$\mu \mathrm{sec}$.
tf*	Fall Time	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=0.10 \mathrm{~A}$	----	3.0	$\mu \mathrm{sec}$.

Note 1: Pulse Test: Pulse width $=300 \mu$ Sec., Rep. Rate 60 Hz .
Note 2: Caution - Do not use Curve Tracer.

* Indicates JEDEC registered data.

[^0]: * Indicates JEDEC registered data.

